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Abstract

The multi-scale modeling of Portland cement paste is addressed to predict simultaneously its stiffness and its effective
diffusion coefficient of chloride ions. The heterogeneity of cement paste is handled thanks to a hierarchy of Eshelby-based
homogenization schemes within the framework of micromechanics. The same microstructure description is used for both
mechanical and transport properties. In a first model, the porosity is partitioned at three scales into gel pores, small and
large capillary pores. Two layers of hydration products around clinker grains are considered: an inner layer comprising
high density C-S-H gel and nano-sized crystal hydrates; and an outer C-S-H layer containing low density C-S-H gel and
small capillary pores. In a second model, only three phases are considered: clinker grains, hydrates and capillary pores.
A comparison of models with experimental results shows that both transport and mechanical properties of cement paste,
throughout hydration, are accurately reproduced.
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1. Introduction

The durability of concrete and cement-based materi-
als results from their ability to resist to aggressive envi-
ronments. Studying chloride-induced corrosion is essential
to better understand the durability of reinforced concrete
(RC) structures. The initiation time of corrosion is gov-
erned by transport mechanisms in concrete, such as ingress
of chloride ions. Additionally, the service life of RC struc-
tures is characterized not only by the transport properties,
but also by the mechanical behavior. The serviceability
of concrete structures decreases when exposed to aggres-
sive environments and when mechanical deterioration pro-
cesses occur [1].

One primary factor which affects the durability is the
concrete composition. As it is the main changing compo-
nent of concrete, cement paste is the most critical phase
which governs the mechanical and transport properties of
concrete both at early age and at long term. The physical
properties of concrete thus depend strongly on the com-
plex microstructure and pore network of hardened cement
paste (HCP), which is inherited from hydration reactions
[2, 3]. During hydration, the microstructure evolves due
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to the formation of hydration products such as calcium sil-
icate hydrate (C-S-H) or portlandite crystals and the de-
velopment of the pore network. On the one hand, the hy-
drates form after setting an increasingly percolating solid
phase which builds up the strength and the stiffness of
the HCP. On the other hand, the connectivity of the pore
space strongly decreases during hydration, which affects
the rate of chloride ions penetration.

Several models have been developed to link the diffu-
sion and elastic properties of HCP to its microstructure
parameters, such as porosity. These models are either
empirical, or based on numerical or analytical multi-scale
methods. Empirical models provide relations between the
diffusivity and the relative humidity, power law relations
between diffusivity and porosity, temperature and many
other factors (see e.g. [4]) or between the elastic moduli
and the capillary porosity [5]. However the validity of em-
pirical models is guaranteed only for the type of cement
paste which corresponds to the experiments on which they
are based.

Multi-scale models aim at estimating the effective be-
havior of heterogeneous materials from the description of
their microstructure and phase properties [6]. However
the description of the microstructure of HCP is not a sim-
ple task. HCP is a complex multi-scale porous composite,
where the pore network needs to be carefully considered
because pore sizes vary by several orders of magnitude
(from a few nanometres to more than 10 µm) [3].

Numerical models are based on microstructure sim-
ulations by computer models. The development of the
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3D digitized model of cement hydration CEMHYD3D by
Bentz and Garboczi [7] led to the pioneering work of voxel-
based simulations of the diffusion through cement paste
[8] and its elastic moduli [9]. Similarly, using the HY-
MOSTRUC3D hydration simulation model [10], Liu et al.
[11] assessed the ionic diffusivity of cement paste by a ran-
dom walk algorithm (RWA). Ma et al. [12] modeled the
transport properties of cement paste using a RWA ap-
plied to a refined model in which the capillary porosity is
split into two scales. Walther et al. [13] performed Lattice
Boltzmann Method simulations on 2D representative vol-
ume elements of cement paste generated by bi-thresholded
random gaussian fields in combinaison with Powers’ hydra-
tion model [14].

An alternative multi-scale modeling strategy is to re-
sort to the analytical homogenization schemes of contin-
uum micromechanics [6, 15]. These methods do not in-
volve time consuming computer simulations, and rely on
simplified descriptions of the microstructure. In the past
fifteen years, the derivation of the effective behavior of
cement paste from continuum micromechanics has been
an active research field, following the pioneering work of
Bernard et al. [2], Acker [16]. A short review of the suc-
cessful application of micromechanics to the modeling of
the mechanical and diffusive properties of cement paste is
presented in section 2.3.

These micromechanics based models developed in the
literature are generally focusing either on the mechanical
properties or, separately, on the transport properties. Mi-
cromechanical models in which the same representation of
the microstructure is adopted for both transport and me-
chanical properties are scarce. To the best of our knowl-
edge, only the model of Bary and Béjaoui [17] theoretically
applies to both diffusion and poro-mechanical properties
of cement paste. Unfortunately it has only been validated
against experimental data on the coefficient of diffusion of
tritiated water in mature CEM I pastes, but not on the
mechanical properties.

The aim of the present work is to derive consistently
using homogenization tools both transport and mechan-
ical properties of HCP from a unified description of its
evolving microstructure during hydration. The originality
of the present work is to consider the same representation
of the cement paste microstructure using micromechanics,
with an appropriate description of the pore structure and
the solid skeleton, in order to model both the effective
elastic and diffusive properties. Two possible models are
presented, with different levels of detail on the microstruc-
ture description. The strategy adopted to build the models
is as follows:

• development of a morphological model of cement paste,
which describes the different solid and pore phases
at suitable scales;

• selection of appropriate homogenization schemes at
each scale, with a specific focus on solid and pore
connectivity;

• determination of the physical and geometrical prop-
erties of each phase at the microscopic scales;

• assessment of the models against experimental data
from the literature on Portland cement paste, for
both diffusive and elastic properties, for different hy-
dration degrees and water-to-cement ratios.

The article is organized as follows. Section 2 provides
background on continuum micromechanics and reviews ex-
isting micro-mechanical models of cement paste for either
mechanical or transport properties in order to build in sec-
tion 3 two new models – a detailed one and an engineer-
ing one – each potentially suitable for both mechanical
and transport properties. Section 4 details the assump-
tions used for the determination of the input data of the
models such as the volume fraction, the shape as well as
the elastic and diffusive properties of the constituents of
cement paste. The performances of the models are then
assessed against experimental data from the literature and
discussed in section 5, in terms of elastic moduli and dif-
fusion coefficient during hydration and at the end of the
hydration. Finally conclusions are drawn in section 6.

2. Review of homogenization schemes for elasticity

and diffusion and applications to cement paste

Within the framework of continuum micromechanics
[15] briefly recalled in sec. 2.1, Eshelby based homoge-
nization schemes constitute well established tools to es-
timate the effective behavior of a composite material. In
section 2.2 together with Appendix B, the differences be-
tween the most commonly used homogenization schemes
are briefly highlighted (see [6, 15, 18] for more detailed de-
scriptions), with a specific focus on the underlying assump-
tions regarding the connectivity of the different phases
which constitute the heterogeneous material (see also [19]).
The purpose is to provide a firm basis for the discussion in
section 2.3 (review of existing models) and section 3 (con-
struction of new models) on the representation of cement
paste morphology across the scales using these homoge-
nization schemes to estimate simultaneously its chloride
coefficient of diffusion and elastic moduli.

2.1. Principles of homogenization for linear composites

In the case of elasticity of composite media exhibiting a
random microstructure under the scale separation hypoth-
esis, the fundamental expression providing the homoge-
nized stiffness tensor of a representative volume element
(RVE) composed of different phases is recalled by Zaoui
[15]:

Chom = 〈C(z) : A(z)〉 =
∑

i

fiCi : 〈A(z)〉i (1)

where fi and Ci are the volume fraction and stiffness ten-
sor of phase i, A(z) is the strain concentration tensor field
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relating the local strain tensor ǫ at point z to the macro-
scopic one E and 〈•〉 (resp. 〈•〉i) denotes the volume av-
eraging operators of a field • over the whole RVE (resp.
over the domain occupied by phase i). Classical homoge-
nization schemes, as presented in section 2.2, rely on the
Eshelby inhomogeneity problem [20] to estimate the aver-
age concentration tensors 〈A(z)〉i of each phase i in the
material.

The framework of micromechanics may readily be trans-
posed to the homogenization of the diffusion tensor, using
the following analogy: the stiffness tensor is replaced by
the diffusion tensor D, the strain by the concentration
gradient ∇c and the stress by the molar flux.

2.2. Eshelby-based homogenization schemes

2.2.1. Eshelby problem

In the Eshelby inhomogeneity problem, a remote stress
E∞ is applied to an infinite medium of homogeneous stiff-
ness C0 in which a single inclusion of stiffness Ci is em-
bedded. In the case where the inclusion has an ellipsoidal
shape, the strain field ǫi within the inclusion is uniform
and given by:

ǫi = A
i
0 : E∞ with A

i
0 =

[

I+ P
i
0 : (Ci − C0)

]−1
(2)

where Pi
0 is the Hill tensor associated to the ellipsoidal

shape of the inclusion i embedded in a medium of stiffness
C0 and I is the symmetric identity forth order tensor. The
expressions of the Hill tensor Pi

0, which is related to the
Eshelby tensor Si0 by Si0 = Pi

0 : C0, may be found in [6, 18,
21] for elasticity and in [22] for diffusion problems. The
Hill tensor depends on the shape of the inclusion but not
on its size.

2.2.2. Matrix-inclusion materials

In the case where a phase m of the material is a matrix
within which separate inclusions of all the other phases i
are embedded, the concentration rule (2) of the Eshelby
problem can be used to estimate the actual concentration
tensors 〈A(z)〉i of each inclusion phase i. For example, the
Mori-Tanaka estimate [23] relies on a specific case of (2)
in which the matrix m of stiffness Cm is the embedding
media and the remote strain E∞ is equal to the average
strain in the matrix [24], which is determined from the
strain averaging rule 〈ǫ〉 = E. The Mori-Tanaka estimate
of the homogenized stiffness is:

Chom ≈ Cmt =
〈

Ci : A
i
m

〉

:
〈

A
i
m

〉 −1
(3)

where Ai
m as been defined in (2) and Am

m = I. In (3),
the shape of each inclusion i has to be estimated by an
ellipsoid (but not for the matrix).

Alternative homogenization schemes suitable for matrix-
inclusion materials are the differential scheme [25], the
PCW bound [26], or the interaction direct derivative (IDD)
scheme [27]. For all these schemes, a crucial point is that
the inclusion phases are never percolating while the matrix
phase is always connected and is the main contributor to
the effective property.

2.2.3. Disordered or poly-crystalline materials

When no phase plays the specific role of a matrix, the
microstructure is called “disordered” or “poly-crystalline”.
The above schemes are no longer suitable and instead the
self-consistent scheme [28, 29] is more appropriate. The
construction of the self-consistent estimate is similar to
that of the Mori-Tanaka scheme, except that the matrix
embedding the particles is replaced by the sought homoge-
nized material. Rearrangement of (3) yields the definition
of the self-consistent estimate Csc of the effective stiffness
as the solution to the non-linear tensor equation :

Chom ≈ Csc solution to
〈

(Ci − Csc) : A
i
sc

〉

= 0 (4)

An important feature of the self-consistent scheme is its
ability to account for the percolation of the phases depend-
ing on their volume fraction and shape. The self-consistent
estimates of the elastic and diffusive percolation thresholds
of a porous medium are presented in Appendix B. In par-
ticular the strong dependence of these thresholds on the
solid and poral phase aspect ratios are highlighted.

Statistical physical studies confirm that the connectiv-
ity of the phases, characterized by their percolation thresh-
olds, strongly depends on the shape of the particles [30–33]
but also indicate that it depends on the particles size distri-
bution (PSD) [34, 35], which is not accounted for by the
self-consistent scheme. Indeed, while statistical physical
studies provide accurate values of the percolation thresh-
olds on explicit morphological models, the self-consistent
scheme in which the morphology is implicitly accounted
for provides only “poor man’s percolation” [33]. Values of
the percolation porosities predicted by the self-consistent
scheme have been criticized, so one should be careful when
relying on them [21].

However, an appropriate trend in term of phase aspect
ratio has been observed against numerical simulations (see
e.g. [36]). Further, the percolating behavior of the self
consistent scheme is a valuable tool to model phenomena
such as setting processes or sharp variations in the effective
properties w.r.t. the phases volume fraction, such as the
diffusion coefficient of cement paste w.r.t. capillary poros-
ity. In the subsequent modeling developments, the perco-
lating behavior is described by the self-consistent scheme.
It should be kept in mind that the percolation values and
particles aspect ratios used in the modeling are only to be
considered as indicative, and may not exactly pertain to
the actual microstructure features.

Finally, the self-consistent and the Mori-Tanaka schemes
can be generalized to morphological patterns made of con-
centric spherical layers [37] or confocal ellipsoids [38]. This
generalization will be useful to model the inner and outer
layers of hydration products around a hydrating clinker
grain in cement paste.

2.3. Review of some existing morphological models of ce-

ment paste

A number of Eshelby-based homogenization models have
already been proposed for the description of the mechan-
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ical or transport properties of cement paste. As these
models perform generally well for the property (resp. me-
chanical or transport) for which they have been designed,
the following comments mainly focus on the portability
of these models to the other property (resp. transport or
mechanical) for which they have not been designed. The
purpose of this short review is to provide some guidelines
for the developments of multi-scale models suitable simul-
taneously for transport and mechanical properties.

2.3.1. Mechanics oriented models

In the early mechanical models of Constantinides and
Ulm [39], Ulm et al. [40], Stora et al. [41], the capillary
pores are embedded in a matrix of aging C-S-H. The mor-
phological models employed by Pichler et al. [42], Honorio
et al. [43], although more sophisticated, are also based
on a similar assumption. Stora et al. [19] pointed out
that for diffusion problem such morphology does not al-
low to reproduce the changes of diffusion coefficients from
low to high w/c ratios by several order of magnitudes,
which are experimentally observed in cement pastes (see
e.g. [44]). Further, these models implicitly assume that
the solid phase is always connected and forms a rigid skele-
ton that plays a mechanical role, even at the onset of the
hydration reaction.

Alternative representations of the cement paste by Bernard
et al. [2], Grondin et al. [45], Venkovic et al. [46] feature a
self-consistent assemblage of aging C-S-H, other hydrates,
unhydrated clinker and capillary pores at the cement scale.
As mentioned above, a self-consistent scheme at this scale
is a desirable feature to account for various order of mag-
nitudes in HCP diffusivities. Another advantage of this
morphological representation is to capture cement setting
through the percolation threshold of the self-consistent
scheme. However, although the setting of the paste is ap-
propriately modeled by the percolation of the solid phase
for w/c > 0.32, non-zero elastic moduli are predicted for a
zero hydration degree at low w/c. This results from an ini-
tial volume fraction of the clinker phase at this scale above
1/2 for w/c < 0.32, where 1/2 is the lowest solid phase
percolation threshold among the set of self-consistent as-
semblages of spheroidal solid particles and spherical (or
even prolate) pores (see fig. B.14b).

A sound way to solve the issue of a non-zero stiff-
ness at zero hydration and low w/c is to consider that
anhydrous clinker grains are surrounded by densifying in-
ner/outer layers containing some or all of the capillary
porosity and hydrates. The model of Sanahuja et al. [36]
is based on this assumption and provides a good agree-
ment with experimental results on the evolution of elastic
moduli throughout hydration for a wide range w/c. Unfor-
tunately, its direct transposition to diffusion leads to a zero
diffusion coefficient in the inner and outer hydrate layers,
since these are modeled as a self-consistent assemblage of
flat solid particles and spherical pores.

In order to keep the number of microstructural model
parameters to a minimum, so-called multi-scale engineer-

ing models have been proposed by Pichler et al. [47], Pich-
ler and Hellmich [48], Pichler et al. [49]. The model of
Pichler et al. [47] involves only one scale transition, in
which the self-consistent scheme is used to describe ce-
ment paste as a disordered assemblage of three phases:
hydration products, anhydrous clinker and capillary pores,
whose volume fractions are directly estimated from Pow-
ers’ hydration model [14]. A subsequent improvement
has been proposed in Pichler and Hellmich [48], Pichler
et al. [49] with two scale transitions. The first level con-
sists in a hydrate foam comprising a self-consistent assem-
blage of spherical capillary pores and acicular hydration
products, while the second level treats cement paste as
a matrix-inclusion composite using Mori-Tanaka scheme
with spherical anhydrous clinker inclusions in a matrix of
hydrate foam. In this way, the effective stiffness is always
zero at the onset of hydration and the gel/space ratio (den-
sity of the hydrate foam) is found to be a key parameter
governing the mechanical properties. Based on this model,
Termkhajornkit et al. [50] suggested further improvements
to assess the role of the different hydrate phases (C-S-
H, CH, AFm). A conclusion of their multi-scale study
was that C-S-H is the first-order parameter explaining the
compressive strength and that other hydrates simply act
as reinforcing inclusions.

2.3.2. Diffusion oriented models

Eshelby-based multi-scale models of the diffusion prop-
erties of cement paste are scarcer in the literature than
mechanics oriented ones. In a pioneering work, Pivonka
et al. [51] modeled HCP as a two-phase composite using
the differential scheme with capillary pores as a matrix and
non-diffusive solid inclusions. As stated in section 2.2, a
direct transposition of this morphology to elasticity is not
appropriate as it yields a zero effective stiffness. An im-
proved model by Damrongwiriyanupap et al. [52] is based
on the self-consistent scheme, but its direct transposition
to elasticity would exhibit a non-zero stiffness at a zero hy-
dration degree for very low w/c. Both models predict zero
diffusivity for HCP with a w/c ratio below which Powers’
hydration model predicts zero capillary porosity, whereas
experimental measurements rather indicate a change in the
order of magnitude of the diffusion coefficient.

Stora et al. [19] proposed that the gel pores may con-
stitute privileged percolating paths for diffusion. They
suggested to consider the capillary pores, together with
part of the mineral phases (CH,AF), as inclusions embed-
ded in an outer C-S-H gel matrix using a Mori-Tanaka
scheme at an intermediate scale. At a finest scale, to cap-
ture the pronounced variations of the transport properties
of C-S-H gels, the diffusivity of the inner and outer C-S-
H phases was modeled using a so-called Mixed Composite
Spheres Assemblage estimate (see [53]), which can be in-
terpreted as a generalized self-consistent scheme with two
types of composite inclusions: a pore in a solid shell and
a solid particle in a pore shell. Note that the direct trans-
position of this scheme to mechanical properties is unfor-
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tunately not appropriate as a morphological pattern made
of a solid grain in a pore shell has no mechanical meaning.
At the largest scale, the anhydrous clinker is assumed sur-
rounded by the inner and outer layers as in the model of
Sanahuja et al. [36]. A good agreement with experimental
data on the diffusion coefficient of tritiated water has been
obtained by assuming a low diffusivity in the nano-sized
C-S-H gel pores, but a bulk diffusion coefficient in the cap-
illary pores instead of a low diffusivity as in Pivonka et al.
[51], Damrongwiriyanupap et al. [52].

To sum up, although a large number of morpholog-
ical models have already successfully been proposed for
either fluid transport or mechanical properties, the above
discussion underlines that devising a morphological model
of cement paste suitable for both fluid transport and me-
chanical properties is not as straightforward as it might be
thought at first sight. In what follows, we present two dif-
ferent multi-scale models of cement paste, each designed
to estimate the elastic moduli and diffusion coefficient of
the cement paste as a function of the original water to
cement ratio and hydration degree based on a consistent
description of the microstructure:

• a detailed model which distinguishes small and large
capillary pores as well as inner, high density and
outer, low density hydration products.

• a simplified, engineering model which relies on a
much more restricted set of microstructure param-
eters.

The performance of these models will be assessed and dis-
cussed in sec. 5.

3. Construction of new multi-scale models of ce-

ment paste for both elastic and diffusive prop-

erties

3.1. Detailed model of cement paste

3.1.1. Overview of the microstructure model

As seen from the diversity of existing micro-mechanical
models of cement paste reviewed in sec. 2.3, there is no
unique choice to model the complex morphology of cement
paste. Cement paste indeed involves a continuum of length
scales, whose separation is somewhat arbitrary. Yet, from
a pragmatic point of view, micromechanics based models
have demonstrated their ability to model various proper-
ties of cement paste.

Based on the above review of existing models, we present
a first, rather detailed morphological representation of ce-
ment paste across the scales (see figure 1 and table 1).
This model is mostly inspired from Ma et al. [3] but also
incorporates several features of the models described in
section 2.3:

• Level II: At the largest scale, the Portland cement
paste is modeled as a disordered assemblage of large

capillary pores (LCPs >100nm), micro-sized crys-
tal hydrates (portlandite, ettringite, monocarbon-
ate [54]) and composite inclusions representing the
clinker surrounded by two hydrate layers called re-
spectively inner layer (high density) and outer C-S-H
layer (low density).

• Level I: At an intermediate scale, the inner layer is
considered as a disordered mix of high density C-S-
H gel and nano-sized crystal hydrates. In turn, the
outer C-S-H layer is considered as a mixture of small
capillary pores (SCPs ≈3-100nm) and low density
C-S-H gel.

• Level 0: At the finest scale, the high and low density
C-S-H gels are described as disordered assemblages
of solid C-S-H bricks and gel pores.

The particularity of this model is to classify the cap-
illary pore network into small and large capillary pores
(SCPs and LCPs respectively) to be consistent with the
several orders of magnitude encountered in capillary pore
sizes, as proposed by [3, 55]. The large size range 3–100nm
for the SCPs is selected since it corresponds to the pore
sizes investigated by nitrogen adsorption measurements
[56], which will be used in sec. 4.1.3 to quantitatively par-
tition pore volumes between scales I and II. In this model,
the diffusion may occur through the LCPs, the SCPs of
the outer C-S-H layer and the gel pores of the high and
low density C-S-H gels. The variation of the connectivity
of these different pore types as a function of the water to
cement ratio and the hydration degree is a key point in the
modeling of the transport properties of the cement paste
[57], which is detailed below.

3.1.2. Level 0: C-S-H gels

At the lowest scale, the C-S-H gels are modeled as an
assemblage of bricks of solid C-S-H and of gel pores as
shown in figure 1. Two types of C-S-H gels are considered,
a low density (LD-C-S-H) gel in the outer C-S-H layer and
a high density (HD-C-S-H) gel in the inner layer. Follow-
ing Ulm et al. [40], Constantinides and Ulm [58], the gel
porosities φhdcsh and φldcsh of the HD- and LD-C-S-H are
assumed to be equal to:

φhdcsh =
fp
hdcsh

fhdcsh
= 0.24 ; φldcsh =

fp
ldcsh

fldcsh
= 0.37 (5)

where fp
hdcsh is the HD-C-S-H gel pore volume and fhdcsh

the volume of HD-C-S-H per unit volume of cement paste.
These values are here assumed intrinsic to all ordinary
Portland cement pastes [40].

The gel morphology is accounted for by the self-consistent
scheme as in the illustrative example of Appendix B. Given
the great variability of C-S-H morphology [59], the repre-
sentation of C-S-H bricks and gel pores by mono-shaped
spheroids such as in [36, 58] is a strong modelling assump-
tion which lead to a controversy on the choice of the aspect
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Figure 1: Schematic representation of the detailed model of cement paste

ratio [60, 61]. Yet for the sake of simplicity and based
on observations of the C-S-H solid particles as elemen-
tary bricks of dimensions 60×30×5 nm [62], we consider
the elementary C-S-H bricks as oblate-shaped solid parti-
cles, whose aspect ratio would be ωs

csh = 5/
√
30× 60 =

0.12 [36]. The elementary C-S-H bricks are assumed non-
diffusive. Two fundamental requirements are that the HD-
and LD-C-S-H gel diffusion coefficients have to be non-zero
so that water can access the anhydrous clinker throughout
hydration, and that the gel stiffness is non-zero.

The effect of the shape used to model the gel pores has
not been previously addressed in the literature. Under the
above assumption of non-diffusive oblate solid particles,
figures B.14 and 9 indicate that considering the pores as
spherical as done by previous investigators leads to zero
diffusion coefficients for HD- and LD-C-S-H, and is there-
fore not appropriate. This is also true for HD-C-S-H if
the solid particles are assumed spherical, since the diffu-
sion percolation threshold is for a porosity of 1/3 when
both solid and pores are modeled by spheres. Thus, the
gel pores need to be modeled as either flat or elongated
spheroids in the present framework. However, an oblate
shape is to be excluded, since fulfilling both non-zero diffu-
sion and non-zero stiffness requirements for the gel porosi-
ties retained in (5) and ωs

csh = 0.12 is not possible for
oblate pores (see figure B.14). The gel pores have thus to
be modeled as prolate spheroids, and an aspect ratio ωgp

greater than 5.8 is required to ensure the percolation of
the pore phase for both gel porosities in (5). Due to the
lack of definitive observations at this scale, we assume that
ωgp = 1/ωs

csh ≈ 8.3.
We here wish to clarify that the aspect ratios consid-

ered herein are only modeling assumptions for which no
definitive proof has been exhibited. These retained as-
pect ratio values are chosen since, as summarized in fig-
ure 9 : 1) they allow to meet non-zero diffusion in both

HD- and LD-C-S-H gels and 2) they are as consistent as
previous models proposed by Sanahuja et al. [36], Con-
stantinides and Ulm [58] with experimental results on the
nano-indentation modulus M = E/(1 − ν2) reported by
Acker [16], Constantinides and Ulm [39, 58].

3.1.3. Level I: Inner layer and outer C-S-H layer

At an intermediate scale, the hydration products are
considered as two layers which coat the clinker grains.
These layers consists in C-S-H gels, other nano crystalline
hydration products (portlandite, sulfo-aluminates) and small
capillary pores [3].

Inner layer. The inner layer comprises high density C-S-H
gel (HD-C-S-H) and nano-sized crystal hydrates [3]. The
HD-C-S-H gel and the nano-crystal hydrates will be re-
ferred to as the inner hydration products. A self-consistent
homogenization scheme is used to model the inner layer,
in which the nano-crystals are assumed non diffusive.

Both nano-crystals and HD-C-S-H are assumed spheri-
cal in the inner layer in order to limit the number of model
parameters.

Outer C-S-H layer scale. The outer C-S-H layer comprises
low density C-S-H gel (LD-C-S-H) and small capillary pores
(SCPs). The size of the SCPs ranges from 3 to 100 nm ac-
cording to the definition proposed by Ma et al. [3], so that
it corresponds to the porosity accessible by nitrogen ad-
sorption. The self-consistent scheme is used to handle the
disorganized morphology of the outer C-S-H layer.

On the contrary to the case of the inner layer, the
shapes of the particles used to represent the LD-C-S-H
and the SCPs in the outer C-S-H layer are of prime im-
portance since they control both the percolation of the
solid phase – and hence the setting of cement paste – and
the connectivity of the pore space. The capillary poros-
ity is not always connected [19, 44, 57] and gel pores may
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Figure 2: Flowchart of calculations for the detailed model.

constitute privileged paths for diffusion in dense pastes.
To model this behaviour using the self-consistent scheme,
the SCPs are considered as spheres (which is the least
percolating shape) and the LD-C-S-H as oblate spheroids
(which hinders the most SCP connectivity). Considering
a non spherical shape for the LD-C-S-H adds a degree of
freedom to the model, which is identified as follows: 1) a
unique value of the LD-C-S-H aspect ratio will be used for
all cement pastes, 2) this value will be determined from an
inverse analysis of experimental measurements of early age
cement paste Young’s modulus, as detailed in section 4.2.

Since the size of the micro-crystal hydrates – typically
of a few tens of µm – is much larger than that of the
SCPs, the former have to be introduced at the cement
paste scale [3]. Although the LD-C-S-H gel and micro-
crystal hydrates are not introduced at the same scale, they
are referred to as outer hydration products according to the
terminology of Ma et al. [3].

3.1.4. Level II: Cement paste

At the largest scale, the cement paste is modeled using
a generalized self-consistent scheme which involves com-
posite spherical particles made of an anhydrous clinker
core surrounded by the two layers of level I as well as spher-
ical large capillary pores (LCPs) and spherical micro-sized
crystal hydrates.

Under these assumptions, the connectivity of the solid
phase of the cement is hence governed at two distinct
scales:

1. the volume fraction of LCPs has to be lower than 1/2
to ensure the percolation of the composite particles
at level II,

2. the volume fraction of SCPs among the outer C-S-H
layer (φocshlscp = fscp/(fscp + fldcsh)) has to be below
the elastic percolation porosity φe whose value de-
pends on the LD-C-S-H aspect ratio (see figure B.14).

A non presented sensitivity analysis shows that most
of the results of the present model are weakly dependent
on the aspect ratio of the micro-crystals in the range 0.1
to 100. Within this range, the most significant influence
of the micro-crystal shape is on the elastic moduli at very
early age, because extreme values of their aspect ratio may
change the percolation threshold of the solid phase. This
effect is not further investigated in the present work, and
the micro-crystals are kept spherical to limit the number
of model parameters.

A flowchart of calculations for the detailed model is
sketched in fig. 2.

3.2. Engineering model of cement paste

In this section, we consider an alternative modeling
strategy which is based on a simplified description of the
cement paste inspired from the so-called multi-scale engi-
neering models by [47–49] and [51, 52]. The advantages of
the engineering model are that the microstructure model
parameters are kept to a minimum. Further, closed form or
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at least semi-analytical expressions of the effective prop-
erties are obtained as a function of the water to cement
ratio and the hydration degree.

3.2.1. Morphological model

The proposed engineering model is designed to ben-
efit from the hydration model of Powers and Brownyard
[14], which distinguishes mainly three phases: anhydrous
clinker, hydration products and capillary pores. Since we
aim at modeling the mechanical and diffusion properties
from a unified description of the microstructure, the model
should ensure a suitable percolation of both solid and pore
phases throughout hydration; letting aside some details.
Following Pichler and Hellmich [48], Pichler et al. [49], we
adopt a two scale description of cement paste (see fig. 3):

• Level I: a hydrate foam is described as an aging dis-
ordered assemblage of hydration products and cap-
illary pores. A self-consistent scheme is used, with
both the hydrates and capillary pores modeled with
spheroidal shapes.

• Level II: cement paste is described as a composite
with a matrix of hydrate foam from level I in which
spherical anhydrous clinker inclusions are embedded,
using the Mori-Tanaka scheme.

Following the same arguments than for the C-S-H gels
of the detailed model (see sec. 3.1.2), the hydrates will here
be modeled by oblate spheroids and the capillary pores
by prolate spheroids with finite aspect ratio, so that the
connectivity of these phases will depend on the porosity of
the hydrate foam. Further, as a refinement of the models of
[51, 52], the hydration products will be considered diffusive
– albeit weakly – to account for the percolation of the gel
porosity they comprise. In that way, a non-zero diffusion
coefficient will be retrieved for mature pastes with low w/c,
as observed experimentally and not accounted for by these
previous models.

Since the hydrate foam is considered as a matrix at the
cement scale, its percolation behaviour will govern that
of the cement paste. Akin to the strategy developed by
Sanahuja et al. [36] for the outer layer, the aspect ratio
of hydrates will be calibrated from experimental data on
cement setting in section 4.2.

3.2.2. Closed-form expression of the diffusion coefficient

for the engineering model

Level I. The closed-form expression of the diffusion coef-
ficient Df of the hydrate foam is obtained following the
details given in Appendix A.1 as a function of the foam
porosity ϕ, the diffusion coefficients Dh and Dcp of the
hydrates and the capillary pores and the aspect ratios ωh

and ωcp of the particles used to represent them.

Level II. At the cement scale, the clinker particles are
modeled as non-diffusive spherical inclusions in the matrix
of hydrate foam using the Mori-Tanaka scheme (3). This
yields the following estimate of the cement paste diffusion
coefficient:

Deng.
cement =

1− fa
1 + fa/2

Df (6)

where fa is the volume fraction of anhydrous clinker in the
cement paste.

3.2.3. Elastic moduli for the engineering model

Level I. The stiffness tensor of the hydrate phase is as-
sumed isotropic, with bulk and shear moduli kh and µh

respectively. The self-consistent estimate of the hydrate
foam stiffness is solution to (4), which results in two cou-
pled equations (see Appendix A.2) on the bulk and shear
moduli kf and µf of the foam. The latter depend on the
foam porosity ϕ, the hydrate moduli and the aspect ra-
tios ωh and ωcp of the particles used to represent the hy-
drates and the capillary pores. In the general case, the
system (A.14) reduces to two high-order polynomial equa-
tions, which can be readily solved using classical numerical
solvers.

Level II. The elastic moduli of the cement paste are deter-
mined using the Mori-Tanaka scheme with the anhydrous
clinker modeled by spherical inclusions of bulk and shear
moduli ka and µa in the matrix of hydrate foam obtained
from the previous homogenization step. Projection of (3)
on the spherical and deviatoric isotropic fourth order ten-
sors J and K directly yields the bulk and shear moduli for
this engineering model as:

keng.cement = kf

[

1 + fa
ka − kf

kf + (1− fa)αf (ka − kf )

]

µeng.
cement = µf

[

1 + fa
µa − µf

µf + (1− fa)βf (µa − µf )

] (7)
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where αf , βf are the components of the Eshelby tensor of
a sphere in an isotropic elastic medium of bulk and shear
moduli kf and µf :

αf =
3kf

3kf + 4µf

; βf =
6

5

kf + 2µf

3kf + 4µf

(8)

A flowchart of calculations for the engineering model
is sketched in fig. 4.

4. Determination of the model inputs

The multi-scale models proposed in the above section
require as input data the diffusion and the elastic charac-
teristics of all the phases as well as their volume fractions.
This section details the retained hypothesis for this pur-
pose.

4.1. Volume fractions

In the detailed paste model of sec. 3.1, the homogeniza-
tion workflow requires the volume fractions fi in cement
paste of all the following phases i: anhydrous clinker (fa),
LCPs (flcp), SCPs (fscp), nano-crystal hydrates (fnc), micro-
crystal hydrates (fmc), HD-C-S-H (fhdcsh), LD-C-S-H (fldcsh).
Following the terminology of Ma et al. [3], we will refer also
to inner hydration products (fihp = fhdcsh+fnc), outer hy-
dration products (fohp = fldcsh+fmc), hydration products
(fh = fihp + fohp) and outer domain (fod = fohp + fscp).

4.1.1. Powers’ hydration model

Powers’ hydration model is used to estimate the main
phases of the cement paste during hydration [14, 63]. .

The required information are the density of anhydrous
clinker ρa = 3.13 as well as the volumes of consumed water
κw = 1.31 and produced hydrates κh = 2.13 when one unit
volume of anhydrous clinker is consumed by the hydration
reaction. Note that these values are for Portland cement
and may vary depending on the cement composition. Fur-
ther, these values include the gel pores in the volume of
produced hydrates but not the capillary pores, and the
volume of consumed water comprises a part reacting with
hydrates i.e. chemically bound water and a part filling gel
pores [64].

During hydration, the volume fractions of clinker, wa-
ter, and hydration products evolve. This evolution de-
pends on the initial water to cement ratio w/c and on
the degree of hydration α defined as the ratio of hydrated
clinker to initial anhydrous clinker, as well as on the curing
conditions. Referring to the capillary pores as the comple-
mentary domain to the anhydrous cement and hydration
products in cement paste, the volume fractions of anhy-
drous clinker, hydration products and capillary pores are
expressed during hydration by [14, 63]:

fa =
1− α

1 + ρaw/c
; fh =

κhα

1 + ρaw/c

fcp =
ρaw/c+ (1− κh)α

1 + ρaw/c

(9)

The hydration products are classically assumed to com-
prise a volume fraction of 28% of gel porosity, so that the
total porosity of the cement paste is 0.28fh + fcp.

During hydration, α increases from zero up to a maxi-
mum hydration degree αmax. Several cases may be distin-
guished for the maximum hydration degree, depending on
the curing conditions [63]:

1. When water is not available to the entire bulk of
paste from external sources, hydration stops when
one of the reactant – water or clinker – is depleted.
The maximum hydration degree is then:

αmax =







w/c

κw/ρa
if w/c ≤ κw/ρa

1 otherwise
(10)

where κw/ρa ≈ 0.42 for the above given values.

2. When water is available to the entire bulk of paste
from external sources, hydration stops either when
the clinker is depleted or when all the available space
is filled by the hydration products and residual clinker
(no residual capillary porosity). The maximum de-
gree of hydration is then:

αmax =







ρaw/c

κh − 1
if w/c ≤ κh − 1

ρa
1 otherwise

(11)

where (κh− 1)/ρa ≈ 0.36 for the above given values.
In that case, excess water wexcess must be available
for the chemical process, so that the final water to
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cement ratio is equal to the initial w/c ratio plus
wexcess/c. In particular, in the experimental study of
Helmuth and Turk [65] to which we will refer later
on, the initial water to cement ratios w/c at cast-
ing time are not reported. Instead, the total water
content to ignited weight ratio wt/ci has been mea-
sured on very mature pastes cured with extra water.
This wt/ci ratio should hence correspond to the final
water to cement at the maximum hydration (given
by (11)), from which the original w/c ratio may be
deduced by resolution of:

wt/ci =











w/c
κw

κh − 1
if w/c ≤ κh − 1

ρa

w/c+
1 + κw − κh

ρa
if w/c ≥ κh − 1

ρa
(12)

where hydration stops either due to total capillary
space filling or due to total anhydrous clinker con-
sumption (see figure 5). Using (12), the total porosi-
ties reported in Helmuth and Turk [65] comply pre-
cisely with the predicted ones by Powers’ model, as-
suming the usual value of 28% of gel porosity among
hydrates.

The input volume fractions (fa and ϕ) for the engi-
neering model presented in sec. 3.2 are directly drawn
from (9), with the hydrate foam capillary porosity ϕ =
fcp/(fcp + fh). The detailed model presented in sec. 3.1
requires further distinction of the different types of hy-
drates and capillary porosities, as presented below.

4.1.2. Distinction of the different types of hydrates

The revised model of the microstructure of Portland
cement paste proposed by Tennis and Jennings [66] pro-
vides an estimate of the mass ratioMr of LD-C-S-H to the
total C-S-H in dried conditions by:

Mr = 0.538 + α(3.017w/c− 1.347) (13)

This expression has been established by fitting experimen-
tal results on cement pastes with w/c ∈ [0.25; 0.50]. As it
leads to Mr > 1 at high values of α for w/c > 0.60, the
values ofMr obtained from (13) are thresholded to 1 when
necessary. Assuming that the solid phases of the two types
of C-S-H (i.e. excluding gel pores) have the same density,
the mass ratio (13) and the C-S-H gel porosities (5) pro-
vide a relationship on the volume fractions of LD- and
HD-C-S-H:

Mr =
(1− φldcsh)fldcsh

(1− φldcsh)fldcsh + (1− φhdcsh)fhdcsh
(14)

Next, following Ma et al. [3], it is assumed for sim-
plicity that the volume fraction fnc (resp. fmc) of the
nano-crystal hydrates (resp. micro-crystal) is a constant
percentage η of the volume fraction fihp (resp. fohp) of
the inner (resp. outer) hydration products:

fnc = ηfihp with fihp = fnc + fhdcsh

fmc = ηfohp with fohp = fmc + fldcsh
(15)

where all these volume fractions are per unit volume of
cement paste. The combination of eqs. (15), (9) and (14)
allows to derive the volume fractions of the inner and outer
hydration products, HD- and LD-C-S-H gels as well as
nano- and micro-crystal hydrates:

fohp = fh

(

1 +
1−Mr

Mr

1− φldcsh
1− φhdcsh

)

−1

fihp = fh − fohp

fmc = ηfohp fnc = ηfihp

fldcsh = (1− η)fohp fhdcsh = (1− η)fihp
(16)

In what follows, we consider a proportion η = 20% of
crystalline hydrates among hydration products in order to
obtain total porosities (gel+capillary) in agreement with
the predictions of Powers’ model.

4.1.3. Capillary porosity partition

As mentioned earlier, the large and small capillary pores
consist in the complementary domain to hydrates and an-
hydrous cement, and their total volume fraction fcp is
given by Powers’ hydration model (9). To partition fcp
into the volume fractions fscp and flcp of SCPs and LCPs,
we resort to the assumption suggested by Ma et al. [3]: the
porosity of SCPs in the outer domain φod = fscp/(fohp +
fscp) is assumed negatively proportional to the filling ra-
tio of the capillary network by outer hydrates defined as
ψf = fohp/(fohp + fcp). Hence it is assumed that:

φod = φinitod (1− ψf ) (17)
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where φinitod is the initial porosity of the SCPs in the outer
domain when the hydration reaction starts. As shown in
figure 7, experimental data from nitrogen adsorption by
Ma and Li [56] in the range w/c ∈ [0.3, 0.5] can be fitted
with a good agreement by (17) with φinitod = 0.63 regardless
of w/c.

Finally, the volume fractions fscp and flcp of SCPs and
LCPs can be derived from (9), (16) and (17) as:

fscp =
φod

1− φod
fohp ; flcp = fcp − fscp (18)

Our capillary porosity partition, while taking advan-
tage of (17), slightly differs from that provided in Ma et al.
[3]. Indeed the latter is based on the assumption that
the inner hydrates occupy exactly the same volume as the
dissolved fraction of the anhydrous particle. In addition,
the volume of the outer products is obtained by consis-
tency with the total amount of hydrate products (9). This
hypothesis implies that the ratio between LD-C-S-H and

total C-S-H remains constant over the hydration process,
which contradicts (13). Therefore we preferred to com-
ply with (13), which is supported by experimental results,
instead of keeping as a constant the current volume oc-
cupied by the composite formed by the anhydrous core
surrounded by the inner products.

The volume fractions of hydrates (16) and capillary
pores (18) required by the detailed multi-scale model are
plotted on figure 6 as a function of the hydration degree α
for w/c = 0.3 and w/c = 0.5, up to the maximum hydra-
tion degree given by (11).

4.2. Calibration of the aspect ratios of the hydrates

The hydrates aspect ratio is calibrated so as to retrieve
experimental values of the hydration degree of setting α0

from the model in which setting is controlled by the per-
colation threshold of the self-consistent scheme, as in [36].

Experimental data on hydration degree of setting. As ref-
erence values for the hydration degree of setting for w/c in
the range 0.25 to 0.60, we adopt the early age data on elas-
tic moduli reported by Boumiz et al. [67] from ultrasonic
measurements and by Zhang et al. [68] from Vicat setting
tests combined with ultrasonic measurements. Akin to the
strategy adopted by [69] from the compressive strength
measures of [70], the values of α0 are obtained from the
data of [67] by assuming an affine relationship between
the Young’s modulus and the degree of hydration, see fig-
ure 8a. Due to the difficulty to accurately determine the
hydration degree in the very first hours of hydration, the
earliest data points are disregarded in the fitting proce-
dure. The inferred values are reported in figure 8b and
are in good agreement with those reported by Zhang et al.
[68]. Note that values of α0 here determined from elastic
moduli are lower than those extrapolated from compres-
sive strength by [2, 69–71].
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Detailed model. The setting of the cement paste in the
detailed model requires the percolation at two scales: the
outer C-S-H layer (level I) and the cement paste (level
II). The aspect ratio ωldcsh of the LD-C-S-H gel particles
of the outer C-S-H layer is calibrated in order to retrieve
the experimental values determined in figure 8a and those
reported by [68]. Assuming that the SCPs can be de-
scribed by spherical particles, the best fit is obtained for
ωldcsh = 0.138 for the LD-C-S-H gel particles. The de-
gree of hydration at set obtained for the detailed model is
thus a composite curve w.r.t. the water to cement ratio
w/c. For w/c < 0.41, the percolation of level I occurs later
than that of level II and the calibrated model is able to
reproduce experimental hydration degrees at set. Hence,
as opposed to the earlier models of [2, 45–47] based on a
self-consistent scheme with all phases at the same scale,
no immediate set at α = 0+ is simulated by the detailed
model even for w/c < 0.32 since the outer layer is initially
not able to transmit mechanical loads. However, for water
to cement ratio above 0.41, the percolation of level II oc-
curs later than that of level I, so that the detailed model
overestimates the hydration degree of setting in that case
(α0 ≈ 0.15 predicted for w/c = 0.6 instead of α0 ≈ 0.06).
This drawback could be addressed by calibration of the
aspect ratio of the micro-crystals.

Engineering model. The setting of the cement paste in the
engineering model is ensured by the percolation of the hy-
drate foam (level I). Assuming that the capillary pores
can be described by spherical particles, the best fit is ob-
tained for ωh ≈ 0.014. However, since this aspect ratio
is very low, the connectivity of the capillary pores is too
strongly hindered if the capillary pores are assumed spher-
ical. To retrieve an appropriate tortuosity of the capillary
porosity, the capillary pores have to be considered elon-

gated (ωcp > 1). After calibration to experimental diffu-
sion data (see section 5.2), the final optimum is found to
be ωh = 0.013 and ωcp = 6.

The low value of hydrate aspect ratio required to repro-
duce the setting arises as a consequence of not considering
a partition of the capillary porosity across scales as in the
engineering model. Indeed, the porosity of the hydrate
foam is significantly higher than that of the outer C-S-H
layer of the detailed model throughout hydration. From
figure B.14, this implies that much flatter hydrate particles
have to be assumed to retrieve the appropriate percolation
porosity. The physical meaning of such a low aspect ratio
for the hydrates is arguably questionable. Note that in
the initial model of Pichler and Hellmich [48], an infinite
aspect ratio has been used to describe the hydrates.

4.3. Elastic moduli of the different phases

The elastic moduli of the constituents of the models are
summarized in table 1. All these mechanical properties are
considered to be independent of the hydration degree.

Detailed model. Nano-indentation results on LD- and HD-
C-S-H by Acker [16], Constantinides and Ulm [39, 58] are
reported in figure 9. Under the assumption of sec. 3.1.2
that the aspect ratio of the elementary C-S-H bricks and
gels pores are ωs

csh = 1/ωgp = 0.12, the properties of the
elementary C-S-H bricks are inferred by inverse analysis
as in Sanahuja et al. [36] from the measured indentation
moduli M = E/(1−ν2) and the commonly assumed value
of ν = 0.24 for both LD- and HD-C-S-H gels. The in-
verse analysis leads to a Young modulus Es

csh = 63GPa
and a Poisson ratio νscsh = 0.27 for the elementary C-S-H
bricks, which are close to the values obtained by Sanahuja
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csh
and ωp = ωgp,

against nano-indentation measurements.

et al. [36], Constantinides and Ulm [58] by inverse analy-
sis. The resulting modeled C-S-H gel indentation moduli
are displayed in figure 9.

The Young modulus and the Poisson ratio of the an-
hydrous clinker is taken from nano-indentation tests by
Acker [16], Velez et al. [72] as Ea = 135GPa and νa = 0.3.
We assume that portlandite is representative of crystalline
hydrates. We retain as Haecker et al. [9] E = 42.3GPa and
ν = 0.324 for portlandite based on the measures of Holuj
et al. [73], Monteiro and Chang [74].

Engineering model. To estimate the effective moduli of the
hydration products for the engineering model, the proce-
dure suggested by Pichler and Hellmich [48] is adapted.
The hydrate properties are inferred from the experimental
work of Helmuth and Turk [65] on mature cement pastes,
for which the hydration degree is assumed equal to the
maximum value αmax given by (11) since the samples have
been covered with added water to ensure saturation during
the 6 to 24 months curing. The w/c ratio at casting time
is not reported and is inferred from the final total water
content to ignited weight ratio wt/ci using (12). Numer-
ous data points are available for initial w/c close to 0.4,
which is slightly above the critical w/c value of 0.36 (see
(11)) above which all the clinker can be hydrated if water
is available from an external source. Hence the pastes of
Helmuth and Turk [65] with initial w/c = 0.4 should be
close from almost pure hydration products, with a small
amount of capillary pores (fcp(w/c = 0.4, α = 1) = 5.4%
and fh(w/c = 0.4, α = 1) = 94.6%). The reported values
by Helmuth and Turk [65] with initial w/c = 0.4 are a
Young’s modulus of E = 22.5GPa and a shear modulus

µ = 8.69GPa1. These moduli have been measured on sat-
urated pastes by dynamic measurements and should hence
correspond to undrained moduli (see [46, 75]). Using the
engineering model presented in sec. 3.2 and assuming a
water bulk modulus of 2.3GPa for the computation of the
homogenized undrained moduli, the inverse analysis pro-
vides Eh = 25.3GPa and νh = 0.29, which corresponds to
kh = 20.1GPa and µh = 9.81GPa.

4.4. Diffusion properties of the different phases

The anhydrous cement particles, the micro-sized and
the nano-sized crystal hydrates particles and the elemen-
tary solid C-S-H particles are assumed impenetrable. The
relative contribution of the capillary and gel pores remains
to be detailed.

There is a divergence in literature about the value of
the diffusion coefficient in capillary pores. In the multi-
scale models of [13, 17, 19], the diffusion coefficient of a
species in capillary pores is assumed equal to that of the
same species in bulk water. On the other hand, based on
an inverse analysis with simplified micromechanics based
models, [51, 52] have obtained diffusion coefficients in cap-
illary pores 7 to 10 times smaller than in bulk water.

Molecular dynamics (MD) simulations on tobermorites
and nuclear magnetic resonance (NMR) measures on ce-
ment pastes have evidenced that the diffusive transport in
confined pores can be lower than in bulk water. But a dis-
tinction must be made between interlayer water, surface
water and capillary or bulk water [76]. The auto-diffusion
coefficient of interlayer water within the 9 to 14 Å layers of
the crystalline structure of tobermorite, a C-S-H analogue,
has been evaluated to 1.4 to 6.8×10−11m2/s from MD sim-
ulations [76–79] and 2.6 × 10−11m2/s from NMR experi-
ments [80], which is about two orders of magnitude smaller
than the value for bulk water equal to 2.3×10−9m2/s. The
auto-diffusion coefficient of surface adsorbed water, located
within less than 1nm to the C-S-H surface, has been esti-
mated from 4.5× 10−10 to 1.2× 10−9m2/s [76, 79, 80] i.e.
2 to 5 times less than for bulk water. In turn, MD simu-
lations in 6nm pores between tobermorite sheets – which
roughly corresponds to the very finest capillary pores ac-
cording to the pore classification we have adopted – re-
port auto-diffusion coefficients of capillary water of 2 ×
10−9m2/s [76], which is only slightly below that of bulk
water.

For chloride ions associated with the surface, the diffu-
sion coefficient reported by Kalinichev et al. [77] from MD
simulations is of 3.8 × 10−10m2/s ; while in a 6nm pore,
excluding surface, Zehtab and Tarighat [79] found values
ranging from 6.6 to 7.6× 10−10m2/s. A study by Nguyen
and Amiri [81] based on the electrical double layer (EDL)
theory indicates that the coefficient of diffusion of chloride
ions can be affected in pores smaller than 2-3 nm, while
this effect is negligible for larger pores.

1Portland cement 15754 of this reference, cured 7 months, with
wt/ci = 0.457.
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phase size range E (GPa) ν (–) source D (m2/s) ω (–)
detailed model

level II: cement paste

anhydrous clinker 1–50µm 135 0.3 [16] 0 1
micro crystal hydrates 1–10µm 42.3 0.324 [9] (Portlandite) 0 1
large capillary pores 0.1–10µm 0 – Dbulk 1

level I: hydrate layers

nano crystal hydrates <1µm 42.3 0.324 [9] (Portlandite) 0 1
LD- and HD-C-S-H particles 0.1–1µm upscaled from model 0.14
small capillary pores 3–100nm 0 – Dbulk 1

level 0: C-S-H gels

C-S-H brick 5–60nm 63 0.27 see text 0 0.12
gel pores < 3nm 0 – 2.46× 10−2Dbulk 1/0.12

engineering model

level II: cement paste

anhydrous clinker 1–50µm 135 0.3 [16] 0 1
level I: hydrate foam

hydration products <10µm 25.3 0.29 [65] (see text) 5.04× 10−4Dbulk 0.013
capillary pores <10µm 0 – Dbulk 6

Table 1: Summary of model microscale parameters: elasticity properties (E, ν), diffusion coefficients (D) and aspect ratios (ω). Size ranges
are only indicative.

Based on these results, it seems more appropriate to
assume that the diffusion coefficient in most capillary pores
is close to that in bulk solution (Dbulk = 2.1×10−9m2/s at
25oC), and that the slow-down effect rather takes place in
gel pores. For both models, an inverse analysis is carried
out to determine the amount of this slow-down.

For the engineering model, the diffusion coefficient of
the hydrates is inferred from the experimental data of Yu
and Page [82] obtained on Portland cement pastes. Since
these pastes have been cured from 3 to 9 months in satu-
rated lime water, their hydration degree is assumed equal
to αmax when water is available from external sources,
given by (11). Hence, the paste with initial ratio w/c =
0.35 and measured chloride diffusion coefficient 1.00×10−12m2/s
should be close to almost pure hydrates. According to (9),
this mature paste composition should be fh = 98.5%,
fa = 1.5% and fcp = 0, from which the hydrate diffu-
sion coefficient Dh is obtained by inverse analysis using
(6) with Df = Dh since fcp = 0. This yields Dh = 1.05×
10−12m2/s, which corresponds to Dh = 5.04× 10−4Dbulk.
The obtained value of chloride diffusion coefficients for the
hydrates is consistent with the value Dh = 2× 10−12m2/s
adopted by Walther et al. [13].

Similarly for the detailed model, the diffusion coeffi-
cient in gel pores is obtained by inverse analysis from the
same reference [82], which yields Dgp = 0.0246Dbulk. The
corresponding HD and LD-C-S-H diffusion coefficients as
upscaled from level 0 are Dhdcsh = 4.4 × 10−4Dbulk and
Dldcsh = 1.6 × 10−3Dbulk. This is consistent with the or-
der of magnitude of the C-S-H gel chloride diffusion co-
efficient Dcsh = 2.5 × 10−3Dbulk adopted by Garboczi

and Bentz [8] for numerical simulations, or for the triti-
ated water diffusion coefficient found by inverse analysis
by Bary and Béjaoui [17] (Dhdcsh = 3.7 × 10−4Dbulk and
Dldcsh = 1.5× 10−3Dbulk).

5. Results and Discussion

The two models developed in sec. 3 and 4 are assessed
against experimental results from the literature on the ef-
fective coefficient of diffusion and the elastic moduli.

5.1. Young’s modulus during hydration and at long-term

Mature paste. The models are compared in figure 10 to
experimental results from Helmuth and Turk [65] on fully
hydrated pastes. The experimental Young’s and shear
modulus have been determined from flexural and torsional
natural frequencies measures on thin slabs specimens. The
range of w/c is from 0.3 to 0.8 and the paste samples were
aged from 6 to 24 months. The experimental data reported
by Helmuth and Turk [65] are given as a function of the to-
tal water content to the ignited weight ratio wt/ci at a late
stage of hydration. As explained in sec. 4.1.1, the initial
water to cement ratio w/c is deduced from wt/ci by (12).
Accordingly, the degree of hydration used for the models in
figure 10 corresponds to the maximum value when external
water is available, calculated from (11). Figure 10 also fea-
tures a resonance frequency measure of the Young’s mod-
ulus by Ulm et al. [40] on a cement paste with w/c = 0.5
cured in water during 5 months.

The engineering model is in a good agreement with
the experimental data of Helmuth and Turk [65]. For
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this model the hydrate moduli have been inferred from the
same reference, but for w/c = 0.4 only. The detailed model
provides a fair agreement with the data of Helmuth and
Turk [65] for w/c > 0.4, but overestimates these measures
for low w/c values. This discrepancy at low w/c could
be attributed to an overestimation of the actual hydration
degree by the ultimate value (11), or to an underestima-
tion of the ratio of LD-C-S-H to total C-S-H at low w/c
by relation (13).

Hydrating paste. Next, the models are assessed in figure 11
against experimental data on the Young’s modulus during
hydration, at early age [67] using ultrasound pulse velocity
and at later age [9] using a resonance frequency method.

The agreement with the data of Boumiz et al. [67] is
satisfactory at early age for w/c ranging from 0.3 to 0.6,
in particular for the detailed model.

However, at later age both models underestimate the
Young’s modulus measured by Haecker et al. [9], Ulm et al.
[40], in particular for largerw/c ratios. Note that for a sim-
ilar w/c ratio there is a divergence in the Young’s modulus
measured by [9, 40] on one side and Helmuth and Turk
[65] on the other side. An acknowledged limitation of the
present models is their inability to reproduce these differ-
ences since the simple hydration model on which they rely
does not take into account the precise cement composition.

Note that the experimental results used in figs. 10 and
11 have been obtained from dynamic methods (ultrasound
pulse velocity or resonance frequency) on water saturated
samples. Given the high-frequency and the low permeabil-
ity of cement paste, it is unlikely that the pore fluid pres-
sures induced by these measurements can be dissipated by
water escaping the sample. Hence the conditions can be
assumed to be undrained. In figs. 10 and 11, the model
results hence correspond to undrained moduli issued from
poromechanics (see [6, 17, 36, 46, 75]). At each scale,
the homogenized undrained bulk modulus kuhom and shear
modulus µu

hom are deduced from the drained ones khom
and µhom – which are computed as described in sec. 3 and
Appendix A – by:

kuhom = khom +Mb2 ; µu
hom = µhom (19)

where b is the Biot coefficient andM the Biot modulus [6].
When the solid phase is homogeneous with bulk modulus
ks, these poroelastic parameters are given by [6]:

b = 1− kdhom
ks

;
1

M
=
b − φ

ks
+

φ

kf
(20)

where φ is the porosity at this scale and kf = 2.3GPa is
the water bulk modulus.

5.2. Diffusion coefficient of cement paste

The ability of the models to reproduce the diffusion
coefficient of chloride ions into Ordinary Portland Cement
(OPC) pastes is then assessed against experimental data.

An experimental database on the chloride diffusion coeffi-
cient of mature OPC paste is constituted from 12 litera-
ture references, featuring 70 data points (see table 2) with
w/c ratios ranging from 0.23 to 0.8. The effective coeffi-
cients of diffusion obtained experimentally are shown on
figure 12 and scaled by the diffusion coefficient of chloride
ions in bulk waterDbulk = 2.1×10−9 at 25oC [83]. The ex-
perimental data exhibits an important scatter which may
mainly be attributed to the curing conditions and the type
of measurement (steady-state or non steady-state natural
diffusion, or steady state migration). Since the experimen-
tal database encompasses various curing conditions (see ta-
ble 2), the models are represented both at α = αmax given
by (11) and α = 80%αmax to be representative of experi-
mental conditions. Due to the two regimes for the ultimate
hydration degree in the model of Powers and Brownyard
[14] (see (11)), both models exhibit a break in curvature
at the critical water to cement ratio w/c = 0.36. This
feature is a modeling artifact which is not supported by
experimental data and could be overcome by resorting to
a more detailed hydration model.

As explained in sec. 4.2, the engineering model would
strongly underestimate the diffusion coefficient at larger
w/c ratios if the capillary pores were assumed spherical.
This is a consequence of the very low aspect ratio of the
spheroids used to model the hydrates, which hinders the
capillary pore connectivity. To overcome this drawback,
the aspect ratio of the capillary pores in the engineering
model is calibrated to ωcp = 6 based on the experimental
data reported in table 2. This fitting step is acknowledged
as a limitation of the engineering model.

On the contrary, the detailed model is in good agree-
ment with the experimental results from the literature (see
figure 12), without any morphological adjustment. This
asset of the detailed model over the engineering model
likely lies in a finer description of the pore network into
three types (gel, small and large capillary pores).

Finally, both models are assessed against experimen-
tal data during hydration. Due to the long characteris-
tic time involved in the classical steady-state experiments,
few experimental data are available on the diffusion coeffi-
cient on non-mature pastes. Caré [91] measured a hydra-
tion degree of 81% and a chloride diffusion coefficient of
D = 5.65× 10−12m2/s for w/c = 0.45, where the detailed
model predicts D = 5.59 × 10−12m2/s and the engineer-
ing model D = 6.78 × 10−12m2/s. Using an electrically
accelerated test procedure, Halamickova et al. [95] report
diffusion coefficients of OPC for w/c = 0.4 and 0.5 and
hydration degrees in the range α = 0.45 to 0.60. The
difference in hydration degrees measured before and after
the accelerated test, which lasts 24 to 48 hours, is of 0.01.
As illustrated in figure 13, the detailed model is in excel-
lent agreement with these measures while the engineering
model predicts a too early decrease of the diffusion coeffi-
cient during hydration. Although one should be cautious
due to the scatter in experimental measurements of dif-
fusion coefficients, the better performance of the detailed
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Figure 10: Assessment of modeled elastic moduli against experimental data on mature cement pastes by Helmuth and Turk [65] and Ulm
et al. [40]. Thin full line: drained moduli for the detailed model.
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ref. abr. w/c DCl−(10
−12m2/s) T(oC) curing conditions

Page et al. [84] P81 0.40 2.60 [1.99–2.96] 25 60 days in saturated Ca(OH)2 sol.
0.50 4.47 [4.06–4.82]
0.60 12.4 [11.0–15.6]

Yu and Page [82] Y91 0.35 1.00 25 3 to 9 months in saturated Ca(OH)2 sol.
0.50 5.45
0.60 7.28

Ngala et al. [85] N95 0.40 3.95 [3.65–4.35] 25 10 weeks in 0.035mol NaOH sol.
0.50 7.80 [7.16–8.06]
0.60 12.6 [10.4–13.8]
0.70 21.5 [19.7–24.4]

Ngala and Page [86] N97 0.40 4.06 25 10 weeks in 0.035mol NaOH solution
0.50 7.84
0.60 12.7
0.70 21.4

Tang and Nilsson [87] T93 0.40 2.9 – –
0.60 9.4
0.80 21

MacDonald and Northwood [88] Mc95 0.40 2.56 [2.35–2.78] 23 8 weeks at 100% of R.H.,
0.50 6.81 [6.41–7.28] no saturation before testing
0.60 12.9 [12.3–13.8]
0.70 20.4 [17.7–21.9]

Castellote et al. [89] C01 0.40 3.65 25 1 month in water + 1 month in saturated Ca(OH)2 sol.

Hornain et al. [90] H95 0.55 11.3 20 60 days in water + 6 days in saturated Ca(OH)2 sol.

Caré [91] C03 0.45 5.65 21 1 month at 45oC sealed with aluminum sheet,

vacuum saturation in alkaline solution before testing
Huang et al. [92] H10 0.40 5.42 – –

0.50 8.24
0.60 12.0

Sun et al. [93] S11 0.23 1.03 25 60 days at >95% of R.H.,
0.35 4.12 48h vacuum water saturation before testing
0.53 10.6

Princigallo [94] P12 0.27 0.95 23 420 days in 90% saturated NaCl sol.
0.30 1.38
0.33 1.51

Table 2: Reference experimental measurements of the chloride diffusion coefficient in ordinary Portland cement pastes (average and [min–max]
are provided when several values are available).
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model is attributed to a finer representation of the pore
space across the scales.

5.3. Discussion

An acknowledged limitation of the present multi-scale
strategy is that microscale parameters difficult to obtain
by direct experiments have been determined by inverse
analysis. The inferred values of the microscale parame-
ters are inherently dependent on the model from which
they are obtained. As such, they should be used with cau-
tion in other contexts. This remark likely holds for earlier
models such as the diffusion coefficients in capillary pore
adopted in Pivonka et al. [51], Damrongwiriyanupap et al.
[52], the diffusion coefficients at the C-S-H scale found by
Bary and Béjaoui [17], Stora et al. [19], the solid C-S-H
particles elastic moduli and C-S-H platelets aspect ratios
in Sanahuja et al. [36], among others. For the present en-
gineering model, this concerns the aspect ratios adopted
for the hydrates and the capillary pores at level I. For the
detailed model, the diffusion coefficient adopted in the gel
pores, the elastic moduli of the solid C-S-H particles at
level 0 as well as the aspect ratio of the gel pores and
the LD-C-S-H gel particles at level Ia are likely depen-
dent on the adopted representation of the microstructure.
In particular, the coefficient of diffusion of chloride ions
in gel pores obtained by inverse analysis from the present
detailed model, equal to 5.3 × 10−11m2/s, corresponds to
the order of magnitude of the interlayer diffusion coeffi-
cients rather than that of near surface ones (see sec. 4.4).
This raises concerns on the validity of the representation
of C-S-H gel as a mix of impervious solid bricks and gel
pores adopted in the detailed model, which is likely still
too simplistic with regards to the variety of shapes that
C-S-H may exhibit [59].
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Figure 13: Chloride diffusivity during hydration as a function of
water to cement ratio and experimental data by Halamickova et al.
[95]

However, the two models of microstructures considered
in this paper have successfully passed the tests of elastic-
ity and chloride diffusivity. To gain further confidence in
them, additional tests would be their application to the
diffusion of other species and to other physical properties
such as the electrical conductivity or the permeability.

Future developments of the detailed model should rely
on a more sophisticated hydration model in order to re-
fine the distinction between the different types of hydrates
and to model blended cements, as recently investigated by
Lavergne et al. [96]. This distinction would allow to tackle
the effect of pathologies of cement paste such as leaching
or carbonation on its effective properties. In addition the
chloride binding effect is not considered in the diffusivity
problem. The chemical absorption of chloride ions by the
formation of Friedel’s and Kuzel’s salt could also affect at
long term the diffusion coefficient of cement paste.

6. Conclusion

A new paradigm to multiscale modelling is proposed in
this work: instead of a model dedicated to the estimation
of a single material property, we endeavoured to develop
a unified multiscale model of both stiffness and diffusion
coefficient of Portland cement paste based on the same mi-
crostructure description via a hierarchy of Eshelby-based
homogenization schemes.

Such paradigm entails several assets. First assump-
tions on microstructure description have to be realistic
from both the point of view of the pore network and of the
solid skeleton, which is here made possible thanks to the
ability of the self-consistent scheme to handle bi-continuity
of the pore and solid phase. Second, microstructure pa-
rameters necessary to describe the morphology across the
scales and the development of hydration are shared for
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the estimation of several material properties, which allows
to cut down the number of model parameters required to
bridge the gap between the macroscopic properties of ce-
ment and the physical chemistry of its hydration.

Two versions of the model have been developed: a
detailed one and a simplified, engineering one. The two
of them can successfully estimate both chloride diffusivity
and elastic moduli of ordinary Portland cement paste dur-
ing hydration as well as ultimate values for a wide range
of water to cement ratio. The key to the detailed model
is the consideration of three types of pores (gel, small and
large capillary pores) at three scales to finely describe the
connectivity of the pore network and the percolation of the
solid phase. In turn the pragmatic engineering model re-
lies on a very limited set of microstructure parameters and
its outputs can be computed efficiently. The two models
perform similarly against experimental databases on dif-
fusion and stiffness, except on the chloride diffusion prop-
erties at intermediate hydration stages, where the detailed
model provides a better agreement with experimental ob-
servations than the engineering model. Their ability to be
transposed to the estimation of other physical properties
such as resistivity, permeability and strength is an inter-
esting prospect which remains to be assessed.
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Appendix A. Self-consistent estimate of the diffu-

sion and stiffness of a porous mate-

rial with spheroidal particle shapes

Appendix A.1. Diffusion

Basis. In what follows, it is convenient to introduce a basis
(E1(n),E2(n)) for transverse isotropic symmetric second
order tensor w.r.t. a direction given by a unit vector n:

E1(n) = n⊗ n ; E2(n) = 1− n⊗ n (A.1)

where 1 is the second order identity tensor. The tensors
n ⊗ n and 1 − n ⊗ n are orthogonal and idempotent for
the dot product.

Eshelby tensor. Next, we consider a spheroidal inclusion
in an isotropic matrix, and denote ω its aspect ratio (axial
length divided by transverse length) and n the unit vec-
tor indicating the direction of its axis of revolution. For
diffusion problems, the Eshelby tensor of such a spheroid
can be expressed in the basis (E1(n),E2(n)) as:

S(n, ω) = S1(ω)E1(n) + S2(ω)E2(n)

with







S1(ω) = 1− 2S2(ω)

S2(ω) =
ω2

ω2 − 1

1− g(ω)

2

(A.2)

where

g(ω) =















arccosh(ω)

ω
√
ω2 − 1

if ω > 1 (prolate)

arccos(ω)

ω
√
1− ω2

if ω < 1 (oblate)
(A.3)

Self-consistent estimate. We consider a two phase mate-
rial with isotropic diffusion coefficients D1 and D2 and
volume fractions f1+f2 = 1. The particles of each phase i
are modeled as spheroids of aspect ratios ωi. An isotropic
distribution of spheroid orientation is assumed for both
phases. In that case, the self-consistent estimate Dsc of
the effective diffusion coefficient is isotropic and owing to
the properties of the basis (E1,E2), the transposition of
(4) to diffusion problems amounts to:

2
∑

i=1

fi(Di−Dsc)
2
∑

c=1

[

(Dsc + Sc(ωi)[Di −Dsc])
−1

Ec(n)
]

= 0

(A.4)
where • denotes the averaging operation over all orienta-
tions of n. For an isotropic distribution of orientations:

Ec(n) = mc1 with mc = c/3 (c = 1, 2) (A.5)

The tensorial equation (A.4) can be projected on the di-
rection 1 and reduces to the single scalar equation:

2
∑

i=1

fi(Di −Dsc)
2
∑

c=1

mc (Dsc + Sc(ωi)[Di −Dsc])
−1 = 0

(A.6)
After rearrangement, (A.6) leads in the general case to a
quartic polynomial in Dsc:

aD4
sc + bD3

sc + cD2
sc + dDsc + e = 0 (A.7)

which can be solved using Cardano’s method as follows:

p =
8ac− 3b2

8a2
; q =

b3 − 4abc+ 8a2d

8a3

∆1 = 2c3 − 9bcd+ 27b2e + 27ad2 − 72ace

∆0 = c2 − 3bd+ 12ae ; Φ = arccos

(

∆1

2
√

∆3
0

)

S =
sign(q)

2

√

−2

3
p+

2

3a

√

∆0 cos(Φ/3)

Dsc =
−b
4a

− S +

√

S2 − p

2
+

q

4S

(A.8)

Appendix A.2. Elasticity

Walpole basis. Any transverse isotropic fourth order ten-
sor L w.r.t. a direction given by a unit vector n, with
minor symmetries, can be decomposed in Walpole basis
(Ec(n))c=1,..,6 as L =

∑6

c=1 LcEc(n) (see e.g. [18]). For
example, the components in Walpole basis of the fourth
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order identity tensor I, the spherical projector J and the
deviatoric projector K are:

I = [1, 1, 1, 1, 0, 0]W ; J = [2/3, 1/3, 0, 0, 1/3, 1/3]W

K = [1/3, 2/3, 1, 1,−1/3,−1/3]
W

(A.9)
The tensors J and K are orthogonal and idempotent for
the double contraction product.

The double contraction product and the inverse are
expressed on the components in Walpole basis as:

L : M = [L1M1 + 2L6M5, L2M2 + 2L5M6, L3M3,

L4M4, L5M1 + L2M5, L6M2 + L1M6]
W

L
−1 =

[

L2

∆
,
L1

∆
,
1

L3

,
1

L4

,−L5

∆
,−L6

∆

]W

with ∆ = L1L2 − 2L5L6

(A.10)
For an isotropic distribution of orientations n, the av-

erages over all orientations n of the tensors of Walpole
basis are isotropic and given by:

Ec(n) = acJ+ bcK (c = 1, ..., 6)

a1 = 2a2 = a5 = a6 =
2

3
; a3 = a4 = 0

b2 = 2b1 = −b5 = −b6 =
2

15
; b3 = b4 =

2

5

(A.11)

Eshelby tensor. The Eshelby tensor S0(n, ω) of a spheroidal
inclusion of aspect ratio ω and axis orientated along n,
in an isotropic matrix of Poisson’s ratio ν0 is transverse
isotropic. Its components [S0,c(ω)]c=1,...,6 in Walpole ba-
sis are expressed as a function of S′

0,c(ω) = (1− ν0)S0,c(ω)
which is given by:

S′

0(ω) = [F0 + 2F1, (1− ν0)(1 − 2F0) + 4F1

(3/2− 2ν0)F0 + F1, (1− ν0)(1 − F0)− 4F1

ν0(1− 2F0)− 2F1, ν0F0 − 2F1]
W

(A.12)
where, with the notation introduced in (A.3):

F0(ω) =
ω2[1− g(ω)]

2(ω2 − 1)
; F1(ω) =

ω2[(2ω2 + 1)g(ω)− 3]

8(ω2 − 1)2

(A.13)

Self-consistent estimate. We consider a two phase mate-
rial with isotropic stiffness tensors Ci = 3kiJ + 2µiK and
volume fractions fi. The particles of each phase i are mod-
eled as spheroids of aspect ratios ωi and their distribution
of orientation is isotropic. The self-consistent estimate Csc

of the effective diffusion coefficient is then isotropic and ad-
mits the decomposition Csc = 3kscJ+ 2µscK. By applica-
tion of (A.11), the tensorial equation (4) can be projected
onto the basis (J,K), and the self-consistent estimate of
the effective moduli is the positive solution to the coupled

system:



























2
∑

i=1

fi(ki − ksc)
6
∑

c=1

acA
i
sc,c = 0

2
∑

i=1

fi(µi − µsc)
6
∑

c=1

bcA
i
sc,c = 0

(A.14)

where Ai
sc,c are the components in Walpole basis of the

inverse of I+ Ssc(n, ωi) : (
ki

ksc

J+ µi

µsc

K− I). These compo-
nents, which are independent of n, can be readily deter-
mined from (A.9), (A.10) and (A.12).

Appendix B. Self-consistent approach to the per-

colation of a porous medium in both

diffusion and elasticity

Let us consider a two-phase material comprising a pore
space with zero stiffness and a solid phase with zero dif-
fusion coefficient. The shapes of the solid particles and of
the pores are accounted for by spheroids of aspects ratios
ωs and ωp. The aspect ratio ω here denotes the ratio of
the axial to the transverse radii of the spheroids, so that
ω > 1 corresponds to a prolate (elongated) particle, ω < 1
to an oblate (flat) particle and ω = 1 to a sphere. For each
phase, we consider the case of an isotropic distribution of
the orientation of the spheroids.

The resolution of (4) in the elastic case (see Appendix A.2)
indicates that there is a so-called (elastic) percolation poros-
ity φe above which the self-consistent estimate of the ho-
mogenized stiffness is zero. Similarly in diffusion prob-
lems (see Appendix A.1), there is a (diffusion) percolation
porosity φd below which the self-consistent estimate of the
homogenized diffusion coefficient is zero. The percolation
porosity φe is representative of the solid phase connectiv-
ity, while φd is representative of the pore phase connec-
tivity. These two percolation porosities are reported in
figure B.14. Since φd < φe, bi-continuity of the solid and
pore phases is accounted for in the porosity range ]φd, φe[
[33]. At fixed solid aspect ratio, fig. B.14a indicates that
the pore connectivity increases with the elongation or the
flattening of the pores; spherical pores lead to the poorest
pore connectivity. There is an asymmetry in the effect of
the shape of the solid phase on the pore connectivity: flat
solid particles hinder fluid transport much more effectively
than elongated ones. In turn, fig. B.14b indicates that the
solid phase connectivity follows the opposite trend: flat or
elongated solid particles lead to a better solid connectivity
than spherical ones, and flat pores reduce much more solid
connectivity than elongated pores. However one should
take care that φd 6= 1− φe upon phase interchange.
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[22] J.-F. Barthélémy, Effective permeability of media with a dense
network of long and micro fractures, Transp. Porous Media 76
(2009) 153–178.

[23] T. Mori, K. Tanaka, Average stress in matrix and average elastic
energy of materials with misfitting inclusions, Acta Metallurgica
21 (5) (1973) 1605–1609.

[24] Y. Benveniste, A new approach to the application of Mori-
Tanaka’s theory in composite materials, Mech. Mater. 6 (1987)
147–157.

[25] A. Norris, A differential scheme for the effective moduli of com-
posites, Mechanics of Materials 4 (1985) 1–16.
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