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Abstract

We propose a framework for evaluating the quality of solar irradiance probabilistic fore-
casts. The verification framework is based on visual diagnostic tools and a set of scoring
rules mostly originating from the weather forecast verification community. Two types of
probabilistic forecasts are used as a basis to illustrate the application of these verification
approaches. The first one consists in ensemble forecasts commonly provided by national or
international meteorological centres. The second one originates from statistical methods and
produces a set of discrete quantile forecasts, the nominal proportions of which span the unit
interval. These probabilistic forecasts are evaluated for two selected sites that experience
very different climatic conditions. The first site is located in the continental US while the
second one is situated on La Réunion Island. Although visual diagnostic tools can help
identify deficiencies in generated forecasts, it is recommended that a set of numerical scores
be used to assess the quality of probabilistic forecasts. In particular, the Continuous Ranked
Probability Score (CRPS) seems to have all the features needed to evaluate a probabilis-
tic forecasting system and, as such, may become a standard for verifying solar irradiance
probabilistic forecasts and by extension probabilistic forecasts of solar power generation.

Keywords: probabilistic solar forecasting, evaluation framework, diagnostic tools, scoring
rules, CRPS, Ignorance Score

1. Introduction1

Forecasts of solar energy generation are of utmost importance for efficiently integrating2

solar power generation into existing power grids and to decrease associated costs. Indeed,3

power production from photovoltaic (PV) or solar thermal plants is highly variable since4

weather dependent. Therefore, accurate knowledge of the future production from solar5

power generation capacities is necessary to limit the needs for additional balancing services6

and potentially storage. Therefore, increasing the value of solar power generation through7

the improvement of solar irradiance or PV power forecasting models (both usually referred to8
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as “solar forecasting models”) is of paramount importance. In the realm of solar irradiance9

forecasting, Global Horizontal Irradiance (GHI) is a prominent key variable. Therefore, this10

work will use this variable to illustrate the application of the proposed evaluation framework.11

Numerous works have been devoted to the development of models that generate point12

forecasts of solar power generation, commonly referred to as deterministic forecasts. Some13

of these models can be found in (Reikard, 2009; Dambreville et al., 2014; Marquez and14

Coimbra, 2011; Coimbra et al., 2013; Huang et al., 2013; Lauret et al., 2015; Voyant et al.,15

2017; Pedro and Coimbra, 2015; Lorenz and Heinemann, 2012). Furthermore, error metrics16

dedicated to evaluating the accuracy of these deterministic forecasts, like Mean Bias Error17

(MBE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) together with18

skill-score measures (Hoff et al., 2013; Coimbra et al., 2013), are now quite standard and19

well accepted by the solar forecasting community.20

However, a forecast is inherently uncertain and in a context of decision-making faced by21

the grid operator, a point forecast plus an uncertainty (or, better say, prediction) interval is22

of genuine added value. Put differently, reliable probabilistic predictions may contribute to a23

more efficient integration of intermittent sources in the energy network (Morales et al., 2014).24

Contrary to the wind power forecasting community where probabilistic forecasting appears25

to be a mature subject (Morales et al., 2014; Iversen et al., 2016; Jung and Broadwater,26

2014; Pinson et al., 2007), probabilistic solar forecasting is still in its infancy (Hong et al.,27

2016) albeit some recent works (Zamo et al., 2014; Sperati et al., 2016; Alessandrini et al.,28

2015; Grantham et al., 2016; Ben Bouallègue, 2015; David et al., 2016; Golestaneh et al.,29

2016b) tend to moderate this statement.30

As mentioned by Pinson et al. (2007), the assessment of probabilistic forecasts is more31

complicated than for deterministic ones. Figures 1 and 2 show examples of GHI probabilis-32

tic forecasts. From the visual inspection of Figures 1 and 2, it is quite difficult to state33

whether the prediction intervals are good or not. To objectively assess the performance of34

probabilistic forecasts and the methods used to generate those, it is necessary to employ35

appropriate diagnostic tools and quantitative scores.36

According to Murphy (1993), goodness of weather forecasts can be characterized by three37

types namely consistency, quality and value. Consistency is related to the correspondence38

between forecasters’ judgment and their forecasts. Quality refers to the correspondence39

between forecasts and the observations and value is linked to the benefit (economical or40

others) gained from the use of these probabilistic forecasts in an operational context. In this41

work, we concentrate on the assessment of the quality of the models.42

Several attributes characterize the quality of probabilistic forecasts (Wilks, 2014; Jolliffe43

and Stephenson, 2003) but two main properties, i.e. reliability and resolution are used44

to measure the quality of the forecasts (Jolliffe and Stephenson, 2003). A third attribute45

namely sharpness can be used to evaluate how informative the forecasts are. In the weather46

forecasting verification community, several diagnostic tools are used to characterize these47

required properties of reliability, resolution and sharpness. One can cite among others the48

reliability diagram (Pinson et al., 2010; Wilks, 2014) and rank histogram (Hamill, 2001;49

Wilks, 2014) for assessing reliability. Regarding forecasts of continuous variable, there is50

currently no visual tool to assess resolution. The sharpness property can be evaluated51
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Figure 1: Example of probabilistic solar irradiance forecasts: 2 days of measured GHI at the Desert Rock
(NV) and associated day-ahead forecasts with prediction intervals provided by ECMWF-EPS (see section
3).
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Figure 2: Example of probabilistic solar irradiance forecasts: 2 days of measured GHI at Tampon and
associated 1-hour ahead forecasts with prediction intervals generated with the Quantile Random Forest
model QRF2 (see section 3).
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through the use of sharpness diagrams (Pinson et al., 2007; Gneiting et al., 2007).52

In addition to these tools that permit to visually assess the attributes of a forecasting53

system, a metric called continuous ranked probability score (CRPS) (Hersbach, 2000) is54

commonly used by the weather forecasting community to objectively quantify the overall skill55

of the probabilistic forecasts. The CRPS is a metric capable of addressing both reliability56

and resolution simultaneously. Indeed, the CRPS can be decomposed into three components57

namely reliability, resolution and uncertainty. This decomposition provides a detailed picture58

of the performance of the forecasting methods (Hersbach, 2000) and consequently may help59

in the ranking of the probabilistic forecasts. A scoring rule originated from the information60

theory called the logarithm or ignorance score metric has also been proposed for assessing61

the quality of weather probabilistic forecasts (Roulston and Smith, 2002; Pinson et al., 2012).62

Although solar probabilistic forecasting is not as mature as wind probabilistic forecasting63

(Hong et al., 2016), some recent works (Alessandrini et al., 2015; Sperati et al., 2016; Zamo64

et al., 2014; Grantham et al., 2016; David et al., 2016, 2018; Chu and Coimbra, 2017;65

Golestaneh et al., 2016b; Verbois et al., 2018) proposed to assess the quality of the models66

with some classical diagnostic tools originated from the weather verification community67

like rank histogram and reliability diagram. This literature review also revealed that the68

CRPS is a commonly used scoring rule. However, in our opinion, most of these works69

did not conduct a detailed analysis of how to use and interpret the verification tools. For70

instance, the CRPS formula proposed by (Hersbach, 2000) is restricted to ensemble forecasts71

but David et al. (2018) and Lauret et al. (2017) used it to compute the CRPS of discrete72

quantile forecasts. Moreover, most of the previous works that evaluated the overall skill73

of competing methods through the use of the CRPS did not attempt to have a detailed74

performance of the methods which is possible from the decomposition of the CRPS into75

reliability, resolution and uncertainty. Besides, to our best knowledge, the ignorance score76

is not currently used by the solar forecasting community.77

In addition, other metrics are proposed to assess the properties of prediction intervals78

such as Prediction Interval Coverage Probability (PICP), Prediction Interval Normalized79

Averaged Width (PINAW) (Khosravi et al., 2013; Chu and Coimbra, 2017; Lauret et al.,80

2017). PICP is related to the reliability of the probabilistic forecasts while PINAW gives81

a measure of the sharpness of the predictive distributions. However, as discussed below,82

these two metrics (PICP and PINAW) are not the most appropriate for measuring the83

quality of interval forecasts. It is also worth noting that a metric called coverage width-84

based criterion (CWC), which assesses the quality of the prediction intervals by combining85

PICP and PINAW has been proposed by (Khosravi et al., 2013). But as demonstrated by86

(Pinson and Tastu, 2014), this score can lead to possible misinterpretations of the results.87

Unfortunately, some researchers in the solar community (Scolari et al., 2016; Chu et al.,88

2015; Li et al., 2018) recently used this metric to assess the quality of their forecasting89

models. Furthermore, the CWC score has been recently cited in a reference paper (Yang90

et al., 2018) and a review paper (van der Meer et al., 2018).91

This is why, we think that now is the time to take stock on the evaluation metrics of92

solar probabilistic forecasts. The objective of this work is therefore to provide the forecasting93

solar community a comprehensive overview of diagnostic tools and scoring rules that can94
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be used to assess the performance of probabilistic forecasting methods. In particular, we95

propose an evaluation framework that may help the user to consistently evaluate the quality96

of the models. In others words, this paper aims at explaining how one should assess the97

quality of the probabilistic forecasts and how diagnostic tools and scores should be used and98

interpreted. In addition, we will propose a measure of resolution (through the decomposition99

of the CRPS) as this attribute is not currently assessed in the literature.100

In this paper, two types of GHI probabilistic forecasts are used to illustrate the pro-101

posed verification framework. The first one is the ensemble forecast commonly provided102

by Ensemble Prediction Systems (EPS) of the Numerical Weather Predictions (NWP) of103

meteorological utilities such as ECMWF. The second one, denoted by quantile forecasts,104

is based on statistical methods and produces a set of quantiles spanning the unit interval.105

Both types generate forecasts represented by predictive distributions that can be modelled106

either by a Cumulative distribution function (CDF) or a Probability distribution Function107

(PDF).108

Finally, note that in this paper, we restrict ourselves to the univariate context that corre-109

sponds to probabilistic forecasts that do not take into account spatio-temporal dependencies110

that are generated by stochastic processes like for instance cloud passing. The interested111

reader is referred to (Golestaneh et al., 2016a) who proposed a method to capture the112

spatio-temporal correlations in PV forecasts.113

The remainder of this paper is organized as follows. Section 2 defines the probabilistic114

forecast as the estimation of a predictive distribution of the variable of interest (GHI in115

our case). Section 3 presents the two sites that will serve as support for the application of116

the verification tools on quantile and ensemble forecasts while Section 4 lists the properties117

required for skillful probabilistic forecasts. Section 5 presents in details the verification tools118

and illustrates their application on quantile and ensemble forecasts. Finally, section 6 gives119

some concluding remarks.120

2. Nature of probabilistic forecasts of continuous variables121

Probabilistic forecasts correspond to the estimation of the statistical distribution of a122

future event. Thus, a probabilistic forecast may be defined as a cumulative distribution123

function (CDF) F of a random variable X, such that F (x) = Pr(X ≤ x). This CDF can be124

summarized by a set of quantiles. The quantile qτ , at probability level τ ∈ [0, 1], is defined125

as follow126

qτ = F−1(τ) = inf{x : F (x) ≥ τ}. (1)

A quantile qτ informs there is a probability τ that the event x materializes below that127

quantile qτ . From a set of quantiles, prediction intervals (PIs) can be deduced. PIs define the128

range of values within which the observation is expected to be with a certain probability i.e.129

its nominal coverage rate (Pinson et al., 2007). To completely determine a PI, it is necessary130

to choose the way it should be centered on the probability density function (Pinson et al.,131

2007). The most common way is to center the PI on the median. Consequently, there is132

the same probability of risk below and above the median. Therefore, a central PI with a133
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coverage rate of (1 − α)100% is estimated by using the α/2 quantile (q̂τ=α/2) as the lower134

bound and the (1− α/2) quantile (q̂τ=1−α/2) as the upper bound. More precisely, a PI with135

(1− α)100% nominal coverage rate is given by136

P̂ I(1−α)100% =
[
q̂τ=α/2, q̂τ=1−α/2

]
. (2)

In the realm of weather predictions, three ways to define this cumulative distribution137

are available: parametric CDFs, discrete estimates of a CDF via a non-parametric method138

and ensemble forecasts. Parametric CDFs are easy to set up and to assess. Nevertheless,139

regarding solar forecasts, they are seldom proposed in the literature because they suffer140

from a lack of calibration. Indeed, the distribution of future observations of the solar power141

can not be accurately reproduced by a single probabilistic law. David et al. (2016) gave an142

example with the GARCH model that assumes a Gaussian distribution.143

An alternative to the parametric approach is the generation of discrete estimates of a144

CDF. This non-parametric method allows defining a predictive CDF without any assumption145

on the distribution of the future event. The forecast is provided as a set of quantiles spanning146

the unit interval. This kind of probabilistic forecast is also called quantile forecasts (Pinson147

et al., 2007). The Global Energy Forecasting Competition 2014 (GEFCom 2014) (Hong148

et al., 2016) is a good example of this approach. Indeed, the solar forecasts were to be149

expressed in the form of 99 quantiles with various nominal proportions between zero and150

one. Widely used statistical models, like Quantile Regressions (QR) or Gradient Boosting151

Decision Trees (GBDT) can estimate these predictive distributions.152

The last type corresponds to ensemble forecasts classically generated by Numerical153

Weather Predictions (NWP) models. The distribution of the future event is given by an154

ensemble of members that are not directly linked to the notion of quantiles. For example, in155

the case of a NWP model, an ensemble forecast corresponds to a perturbed set of forecasts156

computed by slightly changing the initial conditions of the control run and of the modeling157

of unresolved phenomena (Leutbecher and Palmer, 2008). This ensemble prediction system158

(EPS) allows representing the uncertainties of the prediction scheme. Nevertheless, ensem-159

ble forecasts can be seen as discrete estimates of a CDF when they are sorted in ascending160

order. In the literature, different ways to associate these sorted members to cumulative161

probabilities are proposed. Considering M sorted members of an ensemble E = (e1, ..., eM),162

the most common definition in the domain of weather forecast assessment states that there163

is a probability of 1/M that the observation falls between two consecutive members ej and164

ej+1 (Anderson, 1996; Hersbach, 2000). If we assign a null probability for future events that165

fall outside the ensemble (i.e. xobs < e1 or xobs > eM), the predictive distribution can be166

seen as a piecewise constant function167

F̂ (x) =
M∑
k=1

αkH(x− ek). (3)

H is the Heaviside function which is 1 if the argument is positive and zero otherwise.168

The weight αk = 1/M corresponds to the jump of probability that happens when x = ek.169
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Figure 3: Different definitions of the CDF derived from an ensemble forecast (M = 4): (a) classical; (b)
non-uniform spacing of the cumulative probabilities and a linear interpolation between the members; (c)
uniform spacing and a linear interpolation between the members.

Figure 3(a) gives a visual representation of this classical definition of a CDF derived from170

an ensemble with 4 members (M = 4).171

In the case of continuous variable, as the solar irradiance (GHI), the shape of the CDF172

resulting from the preceding definition is obviously not realistic. Several works (Bröcker,173

2012; Roulston and Smith, 2002; Pinson et al., 2010) proposed alternative approaches to174

face this issue. Among others, these alternatives allow defining a continuous predictive175

distribution and non-null probabilities outside the ensemble. We briefly present two other176

ways to build a CDF from an ensemble forecast.177

First, Bröcker (2012) proposes to preserve a jump of 1/M between two members but to178

assign a probability mass of 1/2M for the events that fall outside of the ensemble. It results179

in a non-uniform partition of the probability space [0; 1]. Figure 3(b) gives an example of180

this definition for an ensemble with 4 members (M = 4) and a linear interpolation between181

the members. The tails of the distributions are bounded by e0 and eM+1. The choice of182

these limits are arbitrary. For continuous variables, Roulston and Smith (2002) proposed183

to use the minimum and the maximum of the climatology. Notice that this non-uniform184

definition amounts to consider each ensemble member i as a quantile with probability level185

τ(i) = i−0.5
M

.186

The second approach, described by (Pinson et al., 2010; Bröcker, 2012), assigns a prob-187

ability mass of 1/(M + 1) between two members and for the events that fall outside of the188

ensemble. Note that using this definition that an ensemble member can be interpreted as189

a quantile forecast by considering its rank within the ensemble. The probability level τ(i)190

associated with the member of rank i is defined as: τ(i) = i
M+1

. This approach leads to191

an uniform spacing of the cumulative probabilities. Figure 3(c) presents graphically the192

shape of the CDF when considering this last definition and a linear interpolation between193

the members. As for the non-uniform definition, the boundaries of the CDF, e0 and eM+1,194

are arbitrarily chosen (see appendix A for more details).195

Thus, when dealing with ensemble forecasts, three ways to build the CDF from the mem-196

bers are available. Unfortunately no definition can be favoured and each CDF construction197

has its pros and cons. The classic definition is the most used, specifically to compute the198

Continuous Rank Probability Score (CRPS, see section 5.3.1) with the methodology pro-199

posed by (Hersbach, 2000). As this commonly used definition assigns null probabilities to200
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the events that fall outside of the ensemble, it can not be used to derive scores like ignorance201

(see section 5.3.4). The uniform and the non-uniform definitions requires to arbitrarily fix202

the boundaries of the CDF. Therefore, they are user dependent. Nevertheless, they allow203

designing continuous CDF that contains all the possible events. Thus, the procedure used to204

verify the quality of ensemble forecasts can be exactly the same as for the parametric CDFs205

or for the predictive distributions summarized by discrete quantiles estimated by some kind206

of statistical method. Bröcker (2012) showed that the non-uniform definition corresponds207

to a minimization of the CRPS. But, considering this definition, the optimal shape of the208

corresponding rank histogram (see section 5.2.2) is not flat. Indeed for this visual verifica-209

tion tool, the height of the first and last ranks should be the half of the other ones. Finally,210

if the aim is to compare different forecasting models, whatever the chosen definition, the211

ranking will remain the same. Nevertheless, a unique framework has to be defined to allow212

the comparison of different works.213

3. Illustrative case studies214

Two sites will serve as benchmarks for the application of the different tools and scores215

described below. The first site, Desert Rock (USA), has an arid climate with a very sunny216

and stable sky. The second site, Tampon (Réunion island), is located in a tropical island217

and experiences a very variable sky. The experimental dataset corresponds to two consec-218

utive years of recorded data of global horizontal irradiance (GHI). Table 1 gives detailed219

information about the data. The solar variability, quantified by the standard deviation of220

the changes in the clear sky index σ∆kt∗ (Hoff and Perez, 2012), is the main difference221

between the two considered locations. We intentionally chose these two sites. Indeed, the222

solar variability is a key factor in the accuracy of deterministic forecasts. The higher the223

variability, the less accurate the forecasts are (Lauret et al., 2015). Finally, to build some224

of the models used in this work, we used the first year of data (2012) as training set and225

the second year of data (2013) as testing set. Therefore, all the metrics and visual tools226

presented hereafter are derived from the testing set.227

Two forecasting time horizons will be addressed in this work. First, intra-day forecasts228

with lead times ranging from 1 to 6 hours will be appraised. These forecast are provided229

by state of the art forecasting models that generate predictive distributions from a set230

of quantiles spanning the unit interval. Second, day-ahead probabilistic forecasts will be231

studied. Generated by Numerical Weather Predictions (NWP) models, they are provided232

as ensemble forecasts.233

3.1. Intraday quantile forecasts234

Regarding intraday quantile forecasts, the quality of four state-of-the-art probabilistic235

models will be appraised. In this paper, we will not give the details of the implementation236

of these models as they have already been described in previous works (David et al., 2018;237

Pedro et al., 2018). In addition, we recall that the goal here is to illustrate the application238

of the proposed evaluation framework and not to have a detailed evaluation of these models.239
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Table 1: Main characteristic of the solar measurements

Desert Rock
(USA)

Tampon
(Réunion)

Provider SURFRAD PIMENT
Position 36.6N, 116.0W 21.3S, 55.5E
Elevation 1007m 550m
Cimate type Arid Insular tropic
Period of record 2012-2013 2012-2013
Annual solar irradiation 2.105 MWh/m2 1.712 MWh/m2

Solar variability 1-h (σ∆kt∗) 0.146 0.241
Mean GHI (Testing set) 548 W/m2 458 W/m2

Uncertainty component of the CRPS 29.1% 33.1%

The selected models are based on two quantile regression techniques namely the quantile240

regression forest (QRF) and the Gradient Boosting (GB) techniques. Briefly, the proposed241

techniques estimate directly the set of quantiles from a regression model Y = f(X) that242

relates the response variable Y (here GHI for lead time h = 1, 2, · · · , 6 hours) to a set of243

predictor variables (X). Two variants of regression models with different sets of predictor244

variables are built. For the first variant described in (Lauret et al., 2017), the vector of245

explanatory variables X consists of the actual measurement plus five past ground measure-246

ments while the second one takes as additional inputs two geometrical solar features related247

to the course of the sun in the sky namely the cosine of the zenith angle (cos(SZA)) and248

the cosine of the hour angle (cos(HA)). The adding of the two variables originates from249

the following reasons. First, some authors (Grantham et al., 2016; Lorenz and Heinemann,250

2012) showed a clear dependency of the forecasting error in relation to SZA. Second, we251

expect that the hour angle will bring some information regarding the asymmetry of the sky252

conditions between mornings and afternoons. This may be hold particularly for site like Le253

Tampon that experiences such a dichotomy between mornings and afternoons. Table 2 lists254

the acronyms of the resulting four quantile regression models.255

Table 2: Acronyms related to the four quantile regression models

Quantile regression techniques Variant 1 Variant 2

Quantile Regression Forest QRF1 QRF2
Gradient Boosting GB1 GB2

3.2. Day-ahead ensemble forecasts256

The day-ahead ensemble predictions are provided by the Integrated Forecasting System257

(IFS) of the European Centre of Medium-Range Weather Forecasts (ECMWF). We will258

denote these ensemble forecasts as “ECMWF-EPS”. They consist in 50 perturbed members.259

The temporal resolution is of 3 hours and the spatial resolution is of 0.2◦ in both longitude260
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and latitude. Consequently, 3h GHI (in Wh/m2) times series recorded on-site are compared261

with the nearest ECWMF pixel. In addition, we also propose a post-processed version of262

the original ECMWF-EPS forecasts. Indeed, the ensemble prediction systems of the NWP263

models commonly suffer from a lack of spread (Leutbecher and Palmer, 2008). To face264

this issue, Sperati et al. (2016) proposed a simple approach, named Variance Deficit (VD),265

to calibrate the ensemble forecasts. Their method spreads the initial ensemble forecasts266

by correcting their variance. The correction factor is evaluated from a training set. The267

calibrated ensemble forecasts will be denoted by “ECMWF-EPS + VD”.268

4. Required properties for a skillful probabilistic system269

As mentioned in the introduction, two main attributes (reliability and resolution) char-270

acterize the quality of probabilistic forecasts (Pinson et al., 2007). The evaluation of these271

two attributes can be complemented by a sharpness assessment.272

4.1. Reliability273

Reliability or calibration refers to the statistical consistency between the forecasts and274

the observations. In other terms, the nominal coverage rate of the prediction intervals should275

be equal to the empirical one (e.g. a 90% PI should cover 90% of the observations). The276

reliability property is an important prerequisite as non reliable forecasts would lead to a277

systematic bias in subsequent decision-making processes (Pinson et al., 2007).278

4.2. Resolution and sharpness279

Resolution measures the capacity of a forecasting model to issue forecasts that are case-280

dependent. This important property, which is not easy to catch, is commonly not considered281

by the solar forecasting community. To understand concretely what resolution is, we will282

first define the climatological forecast (i.e. climatology). Imagine a distribution built from283

all the available past data of the parameter to forecast. The climatological forecast uses284

this unique distribution to forecast any future events. A high resolution forecasting system285

generates forecasts that differ from the climatology and, as a consequence, forecasts that are286

significantly different from each other. Climatological forecasts are perfectly reliable though287

having no resolution. Consequently, a skillful probabilistic forecasting system should issue288

reliable forecasts and with high resolution.289

Sharpness evaluates how informative the forecasts are. Practically, sharpness refers to290

the concentration of the predictive distributions (Pinson et al., 2007; Gneiting et al., 2007)291

and can be measured by the average width of the prediction intervals. Unlike the two292

previous attributes, sharpness is a function of the forecasts only and does not depend on293

the observations. Consequently, a forecasting system can produce sharp forecasts yet being294

useless if those probabilistic forecasts are not reliable.295

Unlike resolution and reliability, the sharpness property can be intuitively assessed. As296

an example, the first day of Figure 1 well illustrates an extremely sharp forecasts with297

narrow prediction intervals. Conversely, the second day of Figure 2 shows a example of a298

low sharpness forecast with large predictions intervals.299
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It must be emphasized here that these two components (sharpness and resolution) have300

different interpretations according a meteorologist’s point of view or a statistician’s point301

of view. In the meteorological literature (Wilks, 2014; Jolliffe and Stephenson, 2003), the302

sharpness property refers to the ability of a forecasting system to generate forecasts that are303

able to deviate from the climatological value of the variable to predict (also called predictand)304

whereas from a statistical point of view the sharpness property relates to the concentration305

of the predictive distributions (Pinson et al., 2007; Gneiting et al., 2007).306

Similarly, from a meteorological point of view, resolution measures the ability of a fore-307

casting system to produce predictive distributions conditioned by the value of the predictand308

(i.e. forecasts that are case-dependent) (Pinson et al., 2007). From a statistical point of309

view, resolution amounts to evaluate the capacity of the forecast system to produce different310

density forecasts depending on the forecast conditions (i.e. the predictive distributions are311

not only conditioned by the value of the predictand) (Pinson et al., 2007). For instance, the312

prediction intervals may exhibit increasing widths with increasing forecast horizon. Also,313

regarding the solar irradiance (GHI), the width of the PIs may vary according the sun’s314

position in the sky - see for the instance the work of (Grantham et al., 2016). In this work,315

we will not provide such a conditional assessment. Instead, we will propose a measure of316

resolution through the decomposition of the CRPS. From a meteorological perspective, it is317

also worth noting that, for perfectly reliable forecasts, sharpness is identical to resolution.318

In this work, we will clearly distinguish the definition of sharpness and resolution. That is to319

say, sharpness will refer to the concentration of the prediction intervals while resolution will320

quantify the ability of the forecasting system to generate conditional predictive distributions.321

Finally, it must be noted that reliability can be improved by means of statistical techniques322

also called calibration techniques (Gneiting et al., 2005), whereas this is not possible for323

resolution.324

5. Presentation and application of the verification tools325

5.1. Proposed evaluation framework326

Diagnostic tools are used to visually assess the quality of probabilistic forecasts, while327

numerical scores are used to quantify the skills of a forecasting system and to rank competing328

prediction methods. Tables 3 and 4 summarize the diagnostic tools and scoring rules used to329

evaluate probabilistic forecasts generated either by ensemble methods or quantile techniques.330

Regarding pros and cons, and also the most common approaches already used in other fields331

(i.e. weather forecast verification and wind power forecasting), we propose to differentiate332

the methodologies and the tools to assess the quality of quantile forecasts and ensemble333

prediction systems (EPS).334

Considering quantile forecasts, we advise to visually assess the quality of the forecasts335

using reliability diagrams with consistency bars. Then, to use the CRPS and its related336

decomposition as described in appendix C to quantify the overall performance of the methods337

and to measure the reliability and the resolution components.338

For ensemble forecasts, we propose to use the rank histogram including consistency bars339

and the CRPS as defined by (Hersbach, 2000) (see appendix B) to respectively qualify and340
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Table 3: Visual diagnostic tools.
Diagnostic

tool
Initially designed

for
Pros Cons Remarks

Reliability
Diagram

(RD)

Reliability assessment
of quantile
forecasts

-Departure from perfect reliability
(ideal diagonal line) easily visualized
- Easy to build

Finiteness of the data and possible presence of
serial correlation in sequence of observations/forecasts
can cause deviations from the ideal line even for
reliable forecasts. This issue can be mitigated by plotting RD
with consistency bars

Can be used for Ensemble if members
are assigned specific probability levels
(uniform/non uniform CDF - see section 2)

Rank
Histogram

(RH)

Reliability assessment
of Ensemble

forecasts

- Easy to build
- Statistical consistency of the ensemble
quickly checked (flat RH)
- Easy detection of deficiencies in ensemble
calibration such as bias, under or over-dispersion

- As for RD, sensitivity to the finiteness of the data
(Need to draw RH with consistency bars)
- Caution: a flat RH does not imply a reliable forecast

Can be extended to quantile forecasts
if quantiles are evenly spaced

PIT histogram
(PIT)

Reliability assessment
of quantile
forecasts

- Departure from perfect reliability
easily assessed
- Calibration of predictive CDF
easily checked (flat PIT histogram)
- Like RH, easy detection of calibration deficiencies

- Subject to the finiteness of the data
(plot with consistency bars advised)
- Need to specify the number of histograms bins.
- Require the computation of the predictive CDF
- Interpolation needed between the discrete quantiles
to estimate the value the CDF attains at the observation.
- As for RH, a flat PIT is not a sufficient condition
to state that a forecast is reliable

Can be used for Ensemble (uniform CDF)

Sharpness
diagram

Ensemble
and quantile

forecasts

- Easy to build
- Sharpness is an intuitive property that
permits to asesss the concentration
of the predictive distributions.

- Sharpness diagrams must be interpreted with care because
they are only relevant if the associated forecasts are reliable.
- Sharpness can only contribute to a qualitative evaluation of
the probabilistic forecasts.

- Even if narrow PIs are preferred, sharpness cannot
be seen as a property to verify the quality of probabilistic
forecasts but more like the consequence of a high resolution.
- Can be used for Ensemble (uniform/non uniform CDF)

Table 4: Scoring Rules
Scores Pros Cons Remarks

CPRS

CRPS has the same dimension as the variable
to predict and can be normalized. Therefore,
it permits comparisons between different
datasets.
For deterministic forecasts, CRPS turns to be
the MAE (Mean Absolute Error). Thus, the
performance of a probabilistic method can be
compared against a deterministic one.
Decomposition of the CRPS into reliability
and resolution provides additional insight into
the performance of a probabilistic model.
As a non-local score, CRPS is a robust score.

No analytic formulae except for specific distributions (Gaussian,
Student’s t, ...) - See R package scoringRules for details.
CRPS averages over the complete range of forecast thresholds.
Consequently, deficiencies in different parts of the distributions
(e.g. the tails of the distribution) can be hidden.

Specific formulae for Ensemble forecasts
proposed by Herbasch (see Appendix A).
Can be calculated through numerical integration (see Equation 6)
but requires interpolation of uniform/non uniform CDF.
Can be also computed through integration of the
Brier Score (see Appendix C)

Ignorance
Score

Easy to compute especially for Ensemble
forecasts.

No detailed information regarding the performance
of a forecasting system as IGN cannot be
decomposed into reliability and resolution.
No sites’ comparisons can be carried out as IGN
cannot be normalized.
As a local score, and as such, sensitive to the form of
the predictive PDF, IGN is less robust than the CRPS.
IGN cannot be applied to predictive PDF with null
probabilities.

Specific formula for Ensemble forecasts proposed
by Roulston assuming a linear interpolation of the
CDF between the members (see Equation 12).
Otherwise, requires computation of the predictive PDF to
estimate the value the PDF attains at the observation
(requires interpolation of uniform/non uniform CDF).

Quantile
Score

QS permits to obtain detailed information
about the forecast quality of specific quantiles
that are of great interest for the user.
QS can be decomposed into reliability
and resolution.

Score restricted to a specific quantile.
Cannot be used to rank different forecast
methods considering their overall performance.

QS can reveal deficiencies in different parts of the
predictive distribution (e.g. tails of the distribution)

Interval
Score

Very easy to compute.
IS has the same dimension as the variable
to predict and can be normalized.

Cannot be decomposed into reliability and resolution. Designed specifically for interval forecasts
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quantify the performances of the EPS. Indeed, these two tools does not require additional341

assumptions (i.e. to define the nature of the distribution and its boundaries) and they are342

already widely used.343

For both type of forecasts, ignorance score (IGN), interval score (IS), quantile score (QS)344

and sharpness diagrams can complement the characterization of the forecasting methods.345

However, sharpness diagrams must be interpreted with care because they are only relevant346

if the associated forecasts are reliable.347

Finally, if interval score, quantile score and sharpness diagrams are computed for ensem-348

ble forecasts, it is important to clearly indicate the assumption done to obtain the quantiles349

(e.g. uniform or non-uniform spacing).350

In the following sections, we will present in detail the verification tools. Throughout the351

description, we will provide illustrations of the application of these tools to quantile and352

ensemble forecasts.353

5.2. Diagnostic tools354

5.2.1. Reliability diagram355

The reliability diagram is a graphical verification display used to evaluate the reliability356

of the probabilistic forecasts. In this paper, we follow the methodology defined by (Pinson357

et al., 2010) that is especially designed for predictive distributions summarized by quantile358

forecasts. More precisely, quantile forecasts are reliable if their nominal proportions are equal359

to the proportions of the observed value. It means that, over an evaluation set of significant360

size, (statistically) the difference between observed and nominal probabilities should be as361

small as possible (Pinson et al., 2010). Notice that for ensemble forecasts, the uniform CDF362

or non uniform CDF (see section 2) must be chosen before applying this methodology.363

This representation is attractive since the deviations from perfect reliability (i.e. the364

diagonal line) can be easily visualized (Pinson et al., 2010). Nonetheless, due to the finite365

sample of pairs of observation/forecast and also due to possibly serial correlation in the366

sequence of forecasts and observations, it is possible that observed proportions are not367

exactly along the diagonal, even if the forecasts are perfectly reliable. (Pinson et al., 2010).368

In other words, reliability diagrams can be misinterpreted since even for perfectly reliable369

forecasts, deviations from the ideal diagonal case can be observed.370

To deal with the issue of limited number of pairs of observation/forecast, Bröcker and371

Smith (2007a) built reliability diagrams with consistency bars. In addition, Pinson et al.372

(2010) have proposed consistency bars taking into account the combined effect of serial cor-373

relation and limited data. Interpretation of reliability diagrams with consistency bars is374

that one cannot reject the hypothesis of the quantile forecasts being reliable if the observed375

proportions lie within the consistency bars. In practice, adding consistency bars to the relia-376

bility diagrams may reinforce the user’s (possibly subjective) judgment about the reliability377

of the different models.378

Finally, some preceding works (Chu and Coimbra, 2017; Lauret et al., 2017) proposed379

to evaluate the reliability component of a probabilistic system by calculating the prediction380

interval coverage probability (PICP) (Khosravi et al., 2013). PICP permits one to assess381

the empirical coverage probability of the central prediction intervals. However, this metric382
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is not suitable to assess the reliability of probabilistic forecasts because as noted by Pinson383

et al. (2007), both quantiles that define the prediction interval may be biased. In other384

words, PICP it is not sufficient to check if the nominal coverage of the intervals is respected.385

It is also necessary to verify that both quantiles defining the PI are unbiased.
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Figure 4: Reliability diagrams related to the intra-day quantile forecasts. (a) Site of Desert Rock (b) Site
of Le Tampon. Consistency bars for a 90% confidence level around the ideal line are individually computed
for each nominal proportion.

386

In order to visually assess the reliability of quantile forecasts, Figures 4(a) and 4(b) plot387

the reliability diagrams (averaged over all the forecasting horizons) for the two selected sites.388

Consistency bars for a 90% confidence level are individually computed for each nominal pro-389

portion. From the visual inspection of the reliability diagrams of Desert Rock, one can390

possibly state that the GB1 and GB2 models are reliable as the observed proportions of all391

quantiles lie within the consistency bars. Conversely, for QRF1 and QRF2 models, observed392

proportions of some quantiles lie outside the consistency bars. In particular, quantile fore-393

casts generated by the QRF2 model should not be considered reliable. In addition, notice394

the particular signature of the QRF2 model that corresponds to an over dispersed predic-395

tive distribution (i.e. an underconfident model). For the site of Le Tampon, it seems that,396

except the GB2 model, all the other models lead to possible reliable quantile forecasts since397

all of their observed proportions lie within the consistency bars. At this stage, the visual398

reliability assessment related to Le Tampon is not conclusive. This is why we recommend399

in a second step the use of proper score like the CRPS (and its related decomposition) to400

quantify objectively the performance of the methods. This will permit a clear cut ranking401

of the different models.402

5.2.2. Rank histogram403

The rank histogram is a graphical display initially designed for assessing ensemble fore-404

casts (Wilks, 2014). But, it can be extended to quantile forecasts by assuming that all405
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evenly spaced forecasted quantiles form an ensemble. Rank histograms permit to assess the406

statistical consistency of the ensemble, that is, if the observation can be seen statistically407

just like another member of the ensemble (Wilks, 2014). A flat rank histogram is a neces-408

sary condition for ensemble consistency and shows an appropriate degree of dispersion of409

the ensemble. Put differently, the flatness of the rank histogram indicates that the ensemble410

members are statistically indistinguishable from the observations (Wilks, 2014). An under-411

dispersed ensemble (i.e. ensemble dispersion consistently too small) leads to a U-shape rank412

histogram and shows that the observation will often be an outlier in the distribution of413

ensemble members. EPS, such as ECMWF-EPS, are known to suffer from a lack of spread.414

As a consequence the resulting rank histograms (Figures 5(a) and 6(a)) exhibit a U-shape.415

Conversely, an over-dispersed ensemble (i.e. ensemble dispersion consistently too large)416

gives a hump shape rank histogram and indicates that the observation may too often be in417

the middle of the ensemble distribution.418

In addition, rank histograms can also detect deficiencies in ensemble calibration or relia-419

bility (Wilks, 2014). For instance, some unconditional biases can be revealed by asymmetric420

(triangle shape) rank histograms. Furthermore, overpopulation of the smallest (resp. high-421

est) ranks will correspond to an overforecasting (resp. underforecasting) bias. Such a bias422

can be observed in figures 5(b) and 6(b). Indeed the calibration with the VD method reduces423

the under-dispersion but an overforecasting bias appears for both sites as a large number of424

the smallest ranks remain above the consistency bars. It must be stressed that one should425

be cautious when analyzing rank histograms. Indeed, as shown by (Hamill, 2001), a perfect426

flat rank histogram does not state that the corresponding forecast is reliable. Further, when427

the number of observations is limited, consistency bars can also be calculated with the pro-428

cedure proposed by (Bröcker and Smith, 2007a). To build a rank histogram, it is necessary429

to find the rank of the observations when pooled within the ordered ensemble and then plot430

the histogram of the ranks. For an ensemble of M members, the number of ranks of the431

histogram is M + 1. The histogram of verification ranks will be uniform with theoretical432

relative frequency of 1
M+1

if the consistency condition is met.433

Finally, the two case studies (Figures 5 and 6) show that forecasts calibrated with the434

VD method are more reliable than the original ones. But as a large part of the ranks falls435

outside of the consistency bars the resulting forecasts can not be considered reliable.436

5.2.3. PIT histogram437

Although being at this stage redundant with the reliability diagram, we also present here438

the PIT histograms in order to discuss possible issues related with the use of this graphical439

tool. PIT histograms may help to assess the calibration property by verifying whether the440

observations can be seen as random samples of the predictive distributions (Gneiting et al.,441

2007). PIT histograms assess calibration of cumulative predictive distributions checking442

whether the observations can be considered as random samples of these distributions. Con-443

trary to rank histograms, PIT histograms require the computation of the predictive CDF.444

The PIT is the value that the predictive CDF has for a particular observation. PIT values445

can be calculated over a testing set of observations and one can then plot the histogram446

of the PIT values. Similarly to rank histograms, a flat PIT histogram is a necessary but447
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Figure 5: Rank histograms for Desert Rock with consistency band for a 90% confidence level of raw ECMWF-
EPS (a) and ECMWF-EPS calibrated with Variance Deficit (VD) method (b).
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Figure 6: Rank histograms for Le Tampon with consistency band for a 90% confidence level of raw ECMWF-
EPS (a) and ECMWF-EPS calibrated with Variance Deficit (VD) method (b) .
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not sufficient condition to state that a forecast is reliable. As for rank histograms, depar-448

tures from flatness is a sign of conditional biases in the forecasts or over/under-dispersion.449

Like rank histograms, consistency bars can be added to PIT histograms to see how much450

deviation from the ideal uniform line can be seen as acceptable, in view of sample size.
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Figure 7: Assessment of the reliability of the intra-day quantile forecasts with PIT diagrams, (a) Site of
Desert Rock (b) Site of Le Tampon.

451

Figure 7 shows the PIT histograms (averaged over all the lead times) related to the two452

sites. Following the preceding reliability analysis which possibly stated that, except the GB2453

model, all models were reliable for the site of Le Tampon (see Figure 4(b)), one may expect454

corresponding flat PIT histograms for the GB1, QRF1 and QRF2 models (Figure 7(b)).455

However, this is not the case. We suspect that this may come from the fact that one needs to456

specify the number of histograms bins to plot the PIT histogram. In addition, interpolation457

is needed between the discrete quantiles to estimate the value the CDF attains at the458

observation. This may motivate the choice of reliability diagrams against PIT histograms459

for assessing calibration. However, it is worth noting that, in accordance with the reliability460

diagram, the PIT histogram of the QRF2 method for Desert Rock confirms that this model461

corresponds to an over-dispersed forecasting system (i.e. too wide predictive distributions).462

5.2.4. Sharpness diagram463

A probabilistic forecast is sharp if prediction intervals are shorter on average than pre-464

diction intervals derived from näıve methods, such as climatology or persistence.465

Similarly to Pinson et al. (2007), we propose to assess the sharpness of the predictive466

distributions by calculating the mean size of the central prediction intervals denoted by δ̄α467

for different nominal coverage rates (1− α)%.468

This leads to a graphical verification display called δ-diagrams. For an evaluation set of469

N forecasts, δ̄α is given by470

δ̄α =
1

N

N∑
i=1

(
q̂τ=1−α/2 − q̂τ=α/2

)
. (4)
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Notice that Gneiting et al. (2007) proposed a diagnostic approach to evaluating proba-471

bilistic forecasts that is based on the paradigm of maximizing the sharpness of the predictive472

distributions subject to calibration. In the proposed evaluation framework,sharpness dia-473

grams take the form of box-plots of the width of the prediction intervals.474

As mentioned above, some researchers in the solar forecasting community used the475

PINAW metric to measure sharpness. This metric is the average width of the (1− α)100%476

prediction interval normalized by the mean of variable x to predict (e.g. here GHI) for477

a testing set of N pairs of forecasts/observations. For a specific nominal coverage rate478

(1− α)100%, PINAW reads as479

PINAW(α) =

∑N
i=1

(
q̂τ=1−α/2 − q̂τ=α/2

)∑N
i=1 x

. (5)

However, even if it can be interesting to compare the performance of forecasting methods480

at different locations, it must stressed that the sharpness is a property of the forecasts only481

and as such can not depend on the mean of the observations.482

For quantile forecasts, Figures 8(a) and 8(b) plot the δ̄α diagrams of the four models483

for different coverage rates. It must be noted that the δ̄α values have been averaged over484

all the lead times. One may first notice that prediction intervals are wider for the site of485

Le Tampon than for Desert Rock. As discussed in (Lauret et al., 2017), the variable sky486

conditions experienced by the site of Le Tampon have an impact on the shape of the predic-487

tive distributions. Conversely, the site of Desert Rock that experiences higher occurrences488

of clear and stable skies exhibits narrower prediction intervals.
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Figure 8: Sharpness diagrams of intra-day quantile forecasts for coverage rates ranging from 20% to 80%
(a) Site of Desert Rock (b) Site of Le Tampon.

489

For both sites, it appears that the GB2 model leads to the lowest δ̄α values for all the490

forecasting horizons albeit the difference with the other models is less pronounced for the site491

of Desert Rock. At this point, the sharpness evaluation may favor the GB2 model for both492
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Figure 9: Sharpness diagrams for coverage rates ranging from 0% to 100% of ECMWF-EPS and ECMWF-
EPS + VD for Desert Rock (a) and for Le Tampon (b).

sites. However, while the GB2 model may possibly generate reliable forecasts for the Desert493

Rock site, this may not be the case for Le Tampon site. If one attempts to select the best494

approach for both sites by combining the two previous separate reliability and sharpness495

assessments, the picture is less clear. Hence evaluating separately reliability and sharpness496

and drawing conclusions on the sole examination of either one of these diagnostic tools may497

be misleading.498

Regarding ensemble forecasts, as none of the ensemble forecasts are reliable (see 5.2.2,499

there is normally no need to lead further investigations about the sharpness of the prediction500

intervals. Indeed, a comparison of the sharpness of the forecasts could lead to a misunder-501

standing. Nevertheless, we do it for this study case to illustrate this issue. Figure 9 shows502

sharpness diagrams for coverage rates ranging from 0% to 100%, for the two sites and for503

the two considered ensemble forecasts. To compute the mean size of the central prediction504

interval δ̄α, we assume an uniform spacing of the quantiles derived from the ensemble (see505

section 2). As shown by Figure 9, predictions intervals (PIs) of original ECMWF-EPS fore-506

casts are narrower than the calibrated ones. This is the consequence of the under-dispersion507

and therefore of the low reliability of the ECMWF-EPS forecasts. So, in this case, even508

if narrow PIs are prefered, sharpness diagrams should not be used as criteria to assess the509

quality of the forecasts. In the next section, we will use the CRPS and its related decompo-510

sition into reliability and resolution in an attempt to assess objectively and quantitatively511

the properties required for a skillfull probabilistic system.512

5.3. Scores513

Numerical scores provide summary measures for the evaluation of the quality of prob-514

abilistic forecasts (Gneiting and Raftery, 2007). Scoring rules are based on the predictive515

distribution of the forecast and on the observed value of the variable of interest. Scores516

may help to rank competing probabilistic models. Scores are required to be proper (Bröcker517

and Smith, 2007b; Gneiting and Raftery, 2007). A score is said to be proper if it insures518
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that the perfect forecasts should be given the best score value. If it is not the case, one519

could then hedge the score, by finding tricks that permit to get better score values without520

attempting to issue better forecasts. More generally, employing a score that is not proper521

makes that one can never be sure of the validity of the results from an empirical comparison522

or benchmarking of rival approaches (Pinson and Tastu, 2014). The scoring rules proposed523

in this work (CRPS, Ignorance score, Interval score, quantile score) are proper. However,524

this is not the case of the CWC score discussed in section 1 as demonstrated by (Pinson and525

Tastu, 2014).526

In addition to the property of propriety, a score can be local or non-local. A score is said527

to be local if it depends only on the value of the predictive distribution at the observation,528

not on other features of the functional form of the predictive PDF.529

While different proper scores have been proposed in the literature (Bröcker and Smith,530

2007b; Gneiting and Raftery, 2007), we focus here on proper scoring rules for probabilistic531

forecasts of continuous variables and particularly on the following scores: CRPS, Interval532

score, quantile score and Ignorance Score.533

Finally, it must noted that, in the following, the different figures plot the relative counter-534

parts of the CRPS, Interval Score and Quantile Score. These relative metrics are normalized535

by dividing the absolute values by the mean of the GHI for the considered testing period536

(see Table 1).537

5.3.1. Continuous Rank Probability Score (CRPS) and its decomposition538

The CRPS measures the difference between the predicted and observed cumulative dis-539

tributions functions (CDF) (Hersbach, 2000). The formulation of the CRPS is540

CRPS =
1

N

N∑
i=1

∫ +∞

−∞

[
F̂ i
fcst(x)− F i

xobs
(x)
]2
dx, (6)

where F̂fcst(x) is the predictive CDF of the variable of interest x (e.g. GHI) and Fxobs(x) is a541

cumulative-probability step function that jumps from 0 to 1 at the point where the forecast542

variable x equals the observation xobs (i.e. Fxobs(x) = 1{x≥xobs}). The squared difference543

between the two CDFs is averaged over the N forecast/observation pairs. The CRPS score544

rewards concentration of probability around the step function located at the observed value545

(Wilks, 2014). In other words, the CRPS penalizes lack of resolution of the predictive546

distributions as well as biased forecasts. In addition, for deterministic forecasts, the CRPS547

turns to be the MAE (Mean Absolute Error). This fact permits to compare directly the548

performance of a probabilistic model against a deterministic one or equivalently evaluate549

the added value brought by a probabilistic approach (Ben Bouallègue, 2015). Notice that550

the CRPS is negatively oriented (smaller values are better) and the same dimension as the551

forecasted variable.552

For ensemble forecasts, Hersbach (2000) proposed a method to compute the CRPS using553

the classical definition of the CDF (see section 2 and figure 3(a)). In the realm of weather554

predictions, his method is widely used and at least embedded in one R-package (NCAR-555

Research applications laboratory, 2015). Appendix B summarizes the Hersbach’s method556

to compute the CRPS for ensemble forecasts.557
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As mentioned above and as a proper score (Gneiting and Raftery, 2007), CRPS can be558

further partitioned into the two main attributes of probabilistic forecasts namely reliability559

and resolution. The decomposition of the CRPS leads to560

CRPS = RELIABILITY + UNCERTAINTY −RESOLUTION. (7)

The reliability term provides an estimation of the forecast biases while the resolution561

term quantifies the improvement that results from issuing probability forecasts that are case562

dependent. The uncertainty term cannot be modified by the forecast system and depends563

only on the observations variability (Wilks, 2014). As the CRPS is negatively oriented, the564

goal of a forecast system is to minimize (resp. maximize) as much as possible the reliability565

term (resp. the resolution term). This decomposition of the CRPS may lead to a detailed566

picture of the performance of the forecasting methods.567

Regarding the calculation of these different terms, two possibilities exist. The first one568

is based on the work of (Hersbach, 2000) and as such best suited for ensemble forecasts rep-569

resented by the classical definition of the CDF. Appendix B gives the formulaes to calculate570

the three terms. The second possibility makes use of the fact that CRPS is the integral of571

the Brier Score over all the predictand thresholds. The Brier score is a proper score used572

to evaluate probabilistic forecasts of binary predictands (Wilks, 2014). Appendix C gives573

all the details regarding this second method. As the CRPS has the same unit as the vari-574

able to predict, it can be normalized by the mean (e.g. mean GHI) or the maximum (e.g.575

installed capacity) of the variable to forecast. The normalized CRPS permits to carry out576

comparisons between different datasets (e.g. different locations).577

Figures 10(a) and 10(b) plot the relative CRPS of the quantile forecasts in relation578

with the forecast horizon for the two considered sites. As expected, the performance of579

the models decreases as the lead-time increases (i.e. the lower the CRPS, the better the580

model). One also may note that the site of Le Tampon, which experiences variable sky581

conditions compared to Desert Rock, yields higher CRPS values. The interested reader is582

referred to (Lauret et al., 2017) where more details are given regarding the impact of the583

sky conditions on the quality of the probabilistic forecasts. As shown by Figures 10(a) and584

10(b), the two non linear models that include the two solar geometric predictors namely585

zenith angle and hour angle (i.e. GB2 and QRF2 models) perform clearly better than the586

variant 1 models regardless the site. Thus, it appears that adding the two solar geometric587

variables brings a clear improvement and especially for a site like Le Tampon which is known588

to experience a morning/afternoon sky asymmetry. Unlike the previous separate analysis of589

reliability and sharpness, CRPS establishes a clear-cut ranking of the models. However, some590

inconsistencies appear with the reliability analysis which showed that the the QRF2 model591

(resp. the GB2 model) was non reliable for Desert Rock (resp. for Le Tampon). Therefore,592

in order to gain a better understanding of the CRPS results, we use the decomposition of593

the CRPS depicted in Appendix C. This decomposition, detailed in Appendix D, shows594

that the reliability component makes a small contribution to the CRPS and that the higher595

quality of the variant 2 models comes from the resolution attribute.596

We close this subsection related to the CRPS with the CRPS skill score (CRPSS). In a597

similar manner that scores have been proposed to evaluate the skill of deterministic forecasts598

21



Forecast Horizon (h)
1 2 3 4 5 6

C
R

P
S

  (
%

)

5.5

6

6.5

7

7.5

8

8.5

9

9.5

GB1
QRF1
GB2
QRF2

(a)

Forecast Horizon (h)
1 2 3 4 5 6

C
R

P
S

  (
%

)

14

15

16

17

18

19

20

21

22

23

24

GB1
QRF1
GB2
QRF2

(b)

Figure 10: Relative (in % of mean GHI) CRPS of the different intraday methods (a) Site of Desert Rock
(b) Site of Le Tampon. The CRPS metric clearly shows the superiority of the variant 2 (GB2 and QRF2)
models and particularly for Le Tampon.

(Coimbra et al., 2013), (Pedro et al., 2018) used the CRPSS to gauge the performance of599

their probabilistic forecasting models against a reference easy-to-implement method i.e. the600

persistence ensemble (PeEn). In that case, the CRPSS reads as CRPSS = 1− CRPSnew method

CRPSPeEn
.601

In this study, as our primary goal is to verify solar irradiance probabilistic forecasts and602

not to compare and rank forecasting models, we do not detail the implementation of the603

PeEn model. The interested reader should refer to (Pedro et al., 2018). However, as noted604

by (Yang, 2019), the previous definition of the CRPSS may lead to some misinterpretations605

of the skill score as the CRPS of the PeEn model varies according to certain parameters606

(e.g. number of members of the ensemble, forecast lead time, etc.). To address this issue,607

Yang (2019) proposed, instead of PeEn, a new baseline model called the complete-history608

PeEn (CHPeEn) model that gives a nearly constant CRPS.609

Another way to avoid a CRPSS that depends on the implementation of the reference610

model, and to benefit from the decomposition of the CRPS mentioned above, is to use the611

uncertainty part of the CRPS as the baseline value. The uncertainty component corresponds612

to the CRPS of the climatology and is only sensitive to the observations variability and613

therefore, for a given location and temporal resolution of the data, does not depend on any614

other kind of parameters. Notice that, for meteorologists, when computing skill scores, the615

baseline model is commonly climatology.616

5.3.2. Interval Score (IS)617

Following Winkler (1972), Gneiting and Raftery (2007) proposed a proper score to specif-618

ically assess the quality of central (1 − α)100% prediction interval forecasts. This scoring619

rule called Interval Score (IS), averaged over the N pairs of forecasts and observations, is620
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Figure 11: Relative (in % of mean GHI) Interval Score (IS0.2) (for 80% central prediction interval) of the
different intraday methods (a) Site of Desert Rock (b) Site of Le Tampon. This simple and very easy-to-
compute scoring rule shows also that the variant 2 models outperform the variant 1 models.

defined by621

ISα =
1

N

N∑
i=1

(
U i − Li

)
+

2

α

(
Li − xiobs

)
1xiobs<Li +

2

α

(
xiobs − U i

)
1xiobs>U i , (8)

where Li and U i represent respectively the α/2 lower quantile q̂τ=α/2 and the 1−α/2 upper622

quantile q̂τ=1−α/2. As shown by Equation 8, the IS rewards narrow prediction intervals but623

penalizes (with the penalty term that depends on α) the forecasts for which the observation624

xobs is outside the interval.625

Figure 11 shows the IS score for the 80% central prediction interval. Again, variant 2626

models perform better than the other models. In our opinion, this easy-to-calculate score627

can advantageously complete the set of proper scores available to the user.628

5.3.3. Quantile Score (QS)629

Some users may be interested by the performance of some specific quantiles ( e.g. over-630

forecasting or underforecasting) and particularly those related to the tails of the predictive631

distribution. Quantile Score (QS) permits to obtain detailed information about the fore-632

cast quality at specific probability levels. A noted by (Bentzien and Friederichs, 2014), the633

CRPS averages over the complete range of forecast thresholds through integration of the634

Brier Score (see Appendix C). As a consequence, deficiencies in different parts of the distri-635

bution, e.g. the tails of the distribution, might be hidden. Bentzien and Friederichs (2014)636

recommend to extend the verification framework by calculating QS for different probability637

levels. Notice also that, Bentzien and Friederichs (2014) proposed a decomposition of the638

QS into its reliability and resolution components.639

QS is based on an asymmetric piecewise linear function ψτ called the check or pinball loss640

function. The check function was first defined in the context of quantile regression (Koenker641

and Bassett, 1978) and is given by642
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Figure 12: Relative (in % of mean GHI) Quantile Score of the different intraday methods (a) Site of Desert
Rock (b) Site of Le Tampon. QS permits to assess the performance of specific quantiles. For Desert Rock,
the lowest quantiles are more penalized than the highest ones while for Le Tampon the intermediate quantiles
exhibit higher scores.

ψτ (u) =

{
τu if u ≥ 0

(τ − 1)u if u < 0,
(9)

with τ representing the quantile probabilty level.643

QS is given by the mean of the check function applied to the N pairs of observations xiobs644

and quantile forecasts for a specific probability level τ , q̂iτ . QS reads as645

QS =
1

N

N∑
i=1

ψτ
(
xiobs − q̂iτ

)
. (10)

QS is negatively oriented (i.e. the lower, the better). Finally, notice that Bröcker (2012)646

showed that the CRPS can be seen as a weighted sum of quantiles scores applied to the647

quantiles derived from the non-uniform CDF.648

Figure 12 plots the quantile score in relation with the probability levels ranging from649

0.1 to 0.9. Again, this detailed analysis of the performance of the models favors the variant650

2 models (and particularly for Le Tampon site). Figure 12(b) reveals a symmetric pattern651

and shows that the highest quantiles and lowest quantiles are rather well estimated for Le652

Tampon. Conversely, regarding the site of Desert Rock, an asymmetric pattern is observed653

as the lowest quantiles are more penalized. This is possibly due to the high occurrences of654

clear skies experienced by Desert Rock.655

5.3.4. Ignorance Score (IGN)656

Initially proposed by (Good, 1952), this score is cited under various names: log score657

(Gneiting and Raftery, 2007), divergence (Weijs et al., 2010) or ignorance score (Roulston658
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Figure 13: Ignorance Score of the different intraday methods (a) Site of Desert Rock (b) Site of Le Tampon.
The IGN score favors clearly the QRF2 model. Notice that the unit of this score is the bans and therefore
cannot be normalized by the mean of the irradiance of the testing period.

and Smith, 2002). Considering N verification pairs of probabilistic forecasts given by their659

PDF f̂ i(x) and outcomes xiobs, the ignorance (IGN) is defined as follow660

IGN = − 1

N

N∑
i=1

log
(
f̂ i(xiobs)

)
. (11)

This strictly proper score is appealing because it gathers interesting properties like ad-661

ditivity and locality (i.e. the score depends “only on the value of the probabilistic forecast662

at the verification” (Bröcker and Smith, 2007b)). Like the CRPS, the IGN is a negatively663

oriented score (smaller values are better). Based on the log function, this score is strongly664

affected by the large errors, when the observations fall far away from the highest forecasted665

probabilities. Equation 11 provides a simple way to compute the ignorance score from con-666

tinuous PDFs of parametric distributions or from predictive distributions (i.e. derived from667

discrete estimates, see section 2).668

Notice that (Tödter and Ahrens, 2012) proposed a generalization of the IGN with an669

approach similar to Hersbach’s work (Hersbach, 2000) about the CRPS. They introduced670

a non-local version of the IGN for binary events and a new score called the Continuous671

Ranked Ignorance score (CRIGN) by analogy to the CRPS. For ensemble forecasts, no clear672

definition of the CDF to use to compute these non-local scores is provided. Thus, the CRIGN673

will not be addressed in this work.674

Regarding quantile forecasts, Figure 13 plots the ignorance score of the four models.675

This scoring rule confirms the superiority of the variant 2 models although the QRF2 model676

appears to be the best performer. For this particular application, the ignorance score can677

complement the CRPS analysis and may increase the user’s confidence to select the QRF2678

method.679

Considering ensemble forecasts, Roulston and Smith (2002) proposed a simple approach680

25



to compute the IGN. They used the “uniform” definition of the CDF derived from an681

ensemble forecast (see section 2 and figure 3(c)) combined with a linear interpolation of682

the probabilities between two consecutive members. Then, they applied Equation 11 to the683

corresponding PDF that is the first derivative of the CDF (see appendix A for more details).684

Thus, the ignorance score of an outcome xobs that lies between two consecutive members685

[ek; ek+1] of an ensemble forecast with M members is given by Equation 12. We propose here686

a slightly different formulation of the IGN defined in the article of (Roulston and Smith,687

2002). They defined the IGN using the binary logarithm (or log base 2) classically proposed688

by the field of information theory. We prefer here to use the common logarithm function (or689

log base 10) to coincide with the general framework of the IGN (see Equation 11) mainly690

used in the literature. For ensemble forecasts, IGN is given by691

IGN = log(M + 1) + log∆Xk, (12)

where692

∆Xk = ek+1 − ek if 1 < k < M
∆X0 = e1 − e0

∆XM = eM+1 − eM .
(13)

[e0; eM+1] is the a priori interval on which the outcome xobs is expected to be. Roulston693

and Smith (2002) proposed to use the minimum and the maximum of the climatology as694

boundaries of this interval. One can notice that this formulation of the IGN assigns the695

highest probabilities to the smallest differences between consecutive members. For a verifi-696

cation dataset of N forecast-realization pairs, the ignorance score corresponds obviously to697

the arithmetical mean as in Equation 11. Notice that, unlike the CRPS, the ignorance score698

cannot be decomposed into reliability, resolution and uncertainty.699

In what follows, we show that the IGN score, as a local score, can be a less robust score700

than the CRPS. Tables 5 and 6 give the IGN, the CRPS and its decomposition for the tested701

ensemble forecasts. For Le Tampon and regarding both scores, the calibration brings an702

improvement. The decomposition of the CRPS highlights that the calibration increases the703

reliability but reduces the resolution. Regarding the site of Desert Rock, the two scores give704

an opposite ranking. The IGN assigns a better score to the calibrated ensemble. Conversely,705

the CRPS better rates the initial ECMWF forecasts. The decomposition of the CRPS shows706

that the increase in reliability, resulting from the calibration, does not counter-balance the707

reduction in resolution. Figure 14 illustrates this difference of scoring for a clear sky that has708

been forecasted and occurred. The original ECMWF forecast (blue line) already contains709

the observation (black line) and the associated CDF is very sharp. So, the IGN and the710

CRPS are already relatively low. The VD method (red dashed line) spreads the CDF and711

the observation falls close to the median of the calibrated CDF where the probability mass712

is the highest. As it is a local score that depends only on the probability at the observation,713

the IGN is slightly improved. Conversely, the CRPS, which takes into account the spread714

of the CDF, increases significantly. Considering the large number of clear sky conditions715

that are forecasted and observed at Desert Rock, the results obtained for this specific case716
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Table 5: Scores for Desert Rock

CRPS (%)
CRPS decomposition (%)

IGN
Reliability Resolution Uncertainty

ECMWF-EPS 6.97 1.77 37.9 43.1 9.67
ECMWF-EPS + VD 7.37 0.97 36.7 43.1 7.84

Table 6: Scores for Le Tampon

CRPS (%)
CRPS decomposition (%)

IGN
Reliability Resolution Uncertainty

ECMWF-EPS 25.1 6.03 23.5 42.6 9.13
ECMWF-EPS + VD 23.1 2.41 21.9 42.6 7.89

can be extended to a whole year. We can conclude that the VD calibration method spreads717

blindly the ECMWF forecasts, even when it is not necessary. As it is a local score, the IGN718

is not able to catch and to quantify such a behavior of forecasting models. Consequently, it719

seems less robust than the CRPS.720
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Figure 14: Illustration of the evolution of the CRPS and of the IGN between original and calibrated forecasts:
case where these two scores give contradictory information. The CDFs are plotted using the classical
definition for ensemble forecasts (see section 2).

6. Conclusions721

In this work, we proposed a framework for evaluating solar probabilistic forecasts. Two722

types of solar probabilistic forecasts namely ensemble forecasts and quantile forecasts were723
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used to illustrate the evaluation framework. This latter is based on visual diagnostic tools724

and scoring rules originally designed by the weather forecast verification community. For725

both types of probabilistic forecasts (quantile and ensemble forecasts), we proposed to follow726

the same approach to assess the quality of the models albeit some diagnostic tools are more727

appropriate depending on the type of forecast.728

The proposed approach consists in first evaluating the reliability attribute. Graphical729

displays such as reliability diagrams and rank histograms with consistency bars, respectively730

for quantile forecasts and ensemble forecasts, are efficient, easy-to-build graphical tools ded-731

icated to this purpose. Once the reliability attribute checked, a sharpness analysis can be732

conducted. However, in our opinion, even if sharpness is an intuitive property that can be733

visually assessed with diagrams, it can only contribute to a qualitative evaluation of the734

forecasting methods. More generally, visual diagnostic tools cannot allow one to objectively735

conclude on a higher quality of a given model. Therefore, we recommend to systematically736

compute an overall score i.e. the CRPS which, in our opinion, might be a standard in assess-737

ing probabilistic forecasts of continuous variable. This proper score allows allows ranking738

models and its relative counterpart (i.e. CRPS normalized by the mean irradiance) permit739

to carry out sites’ comparisons. Furthermore, the decomposition of the CRPS into reliability740

and resolution may provide additional insight into the performance of a forecasting system.741

Also, we recommend to complement the CRPS scoring rule with a set of proper scores like742

interval score, ignorance score and quantile score. For instance, quantile score may provide743

detailed performance of the models at specific parts of the predictive distributions. Re-744

garding the ignorance score, although it can advantageously complement the CRPS results,745

attention should be paid to its use, as its locality makes it less robust than the CRPS.746

Finally, when dealing with ensemble forecasts, dedicated verification tools, such as rank747

histograms and the CRPS proposed by (Hersbach, 2000), can be used without any additional748

assumptions. Indeed, they assume a classical definition of the underlying CDF and it is749

not necessary to define the CDF boundaries. However, care must be taken while deriving750

quantiles, prediction intervals and associated metrics from ensembles. As several possibilities751

are available, it is important to clearly state which one is used (e.g. uniform or non-uniform752

spacing). The authors of this paper have a preference for the uniform spacing because it753

defines the quantiles such that the members of the ensemble can be seen as a predictive754

distribution.755

In terms of perspectives, applications related for example to energy management system756

or simply micro-grids should greatly benefit from the evaluation framework proposed in757

this work. More precisely, the verification tools (and particularly scoring rules like CRPS)758

should help selecting the best probabilistic forecasts in order to optimize the operation of759

the energy management system and consequently increase the economical benefit of the760

associated energy systems.761

This work focused on the forecasting of the solar irradiance. However, the proposed762

methodology and associated tools can be extended to the evaluation of probabilistic forecasts763

of solar power generation.764
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7. Appendices765

Appendix A “Uniform” definition of the CDF and PDF derived from an en-766

semble forecast767

Let E = (e1, ..., eM) be an ensemble forecast with M members ek, k = 1, ...,M . The768

uniform definition of the resulting Cumulative Distribution Function (CDF) assigns a prob-769

ability mass of 1/(M + 1) between two consecutive members and for the events that fall770

outside of the ensemble range. The tails of the CDF are bounded by e0 and eM+1 (see771

figure 3(c)). Considering a linear interpolation between the consecutive members and the772

two limits defined above, the analytic formulation of the CDF F̂k(x) corresponding to the773

“uniform” definition is774

F̂k(x) =
x+ (k∆Xk − ek)

(M + 1)∆Xk

, (14)

where775

∆Xk = ek+1 − ek with k = 0, ...,M. (15)

The corresponding Probability Density Function (PDF) f̂k(x) is the first derivative of776

the CDF defined above i.e.777

f̂k(x) =
dF̂k(x)

dx
=

1

(M + 1)∆Xk

. (16)

Appendix B Hersbach’s method to compute the CRPS from ensemble fore-778

casts779

Here, we reproduce the methodology proposed by (Hersbach, 2000) to compute the CRPS780

and its decomposition. Let E = (e1, ..., eM) be an ensemble forecast with M members ek,781

k = 1, ...,M and xobs the observation. It is important to notice that Hersbach assumes a782

classical definition of the CDF obtained from the ensemble (see figure 3(a)). Thus, the CRPS783

could be seen as the sum of areas defined by the members E, the square of their associated784

cumulative probability pk and the position of the observation xobs. One then have785

CRPS =
M∑
k=0

αkp
2
k + βk(1− pk)2, (17)

with786

pk =
k

M
. (18)

The values of α and β are determined with the position of the observation xobs when787

pooled within the sorted members. Table 7 gives the values of α and β for all the possible788

cases. Some care must be taken for k = 0 and k = M . Indeed, the corresponding intervals789

(i.e. (−∞, e1] and [eM ,+∞)) contribute to the CRPS only if the observation falls outside790
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Table 7: Determination of α and β

0 < k < M αk βk
xobs > ek+1 ek+1 − ek 0

ek+1 > xobs > ek xobs − ek ek+1 − xobs
xobs < ek 0 ek+1 − ek

k = 1,M (Outliers) αk βk
xobs < e1 0 e1 − xobs
xobs > eM xobs − eM 0

the range of the ensemble (see second part of table 7 about the outliers). Finally, considering791

a verification dataset of N forecast-realization pairs, the overall CRPS corresponds to the792

mean of the CRPS obtained for each individual forecast i.e. CRPS = 1
N

∑N
i=1CRPSi.793

Considering ensemble forecasts, the decomposition of the CRPS has no sense for a single794

forecast-realization pair. Indeed, such case has null uncertainty and resolution. Therefore,795

the decomposition of the CRPS proposed by Hersbach is based on the mean values ᾱk =796

1
N

∑N
i=1 α

i
k and β̄k = 1

N

∑N
i=1 β

i
k. The components of the CRPS are797

REL =
M∑
k=0

ḡk[ōk − pk]2, (19)

798

UNC =

∑N
i=1

∑i
j=1 |xiobs − x

j
obs|

N2
, (20)

799

CRPSpot =
M∑
k=0

ḡkōk(1− ōk), (21)

800

RES = UNC − CRPSpot, (22)

with801

ḡk = ᾱk + β̄k, (23)
802

ōk =
β̄k

ᾱk + β̄k
. (24)

Appendix C Decomposition of the CRPS through decomposition of the Brier803

score804

Hersbach (2000) showed that the CRPS can be calculated through the integration of the805

Brier Score over all possible values of the predictand. The Brier Score (BS) is a scoring806

rule used for the prediction of the occurrence of a specific event. Usually, such an event is807

characterized by a threshold value x . The event happened if xobs ≤ x and not happened if808

xobs > x. One can then have809

CRPS =

∫
BS(x)dx =

∫
REL(x)dx−

∫
RES(x)dx+

∫
UNC(x)dx, (25)
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Table 8: Contingency Table for threshold x

Probability pk
Event occurred

xobs ≤ x
Event not occurred

xobs > x
0 n0 n̂0

· · · · · · · · ·
i nk n̂i
· · · · · · · · ·
1 nM n̂M

with810

REL(x) =
M∑
k=0

gk(x)[ok(x)− pk]2, (26)

811

RES(x) =
M∑
k=0

gk(x)[ok(x)− o(x)]2, (27)

812

UNC(x) = o(x)[1− o(x)]. (28)

In our case, the integration over x of the different components ranges for values of GHI from813

0 to the maximum of the climatology.814

For each value of the predictand x , terms necessary to compute the Brier Score compo-815

nents can be calculated from a 2x2 contingency table (see Table 8). In other words, the joint816

distribution of forecasts and observations for M+1 forecast probabilities can be summarized817

in a (M + 1) x 2 contingency table.818

The total number of pairs of forecasts/observations N (i.e. the sample size) is given by819

N =
∑M

k=0 nk +
∑M

k=0 n̂k.820

gk(x) =
lk
N
, (29)

with lk = ni + n̂k821

ok(x) =
nk
lk

(30)

822

o(x) =
M∑
k=0

gk(x)ok(x). (31)

Figure 15 shows the components of the CPRS through the decomposition of the Brier823

Score.824

Appendix D Results of the CRPS decomposition for the intraday models825

First, it should be noted that the uncertainty part is given in Table 1. Figure 16 shows826

the resolution part of the CRPS which confirms the lack of resolution of the different models827

as the forecast horizon increases. Regarding resolution, the statements made regarding the828
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Figure 15: CRPS components through decomposition of the Brier Score (BS) - The area under each curve
corresponds to the related CRPS component. Integration of BS(x) for all threshold values x gives the CRPS

CRPS still hold i.e. the two non-linear models (GB2 and QRF2) that include the solar829

geometric predictors lead to better resolution.830

Figure 17 plots the reliability component of the CRPS. Surprisingly, the reliability do831

not show a tendency to increase with the lead time. Indeed, we expect the reliability term832

to increase with increasing forecast horizon (we recall that the reliability term is negatively833

oriented i.e. a lower reliability value corresponds to a more reliable forecasts). However,834

in agreement with the reliability assessment, the GB2 model exhibits the lowest reliability835

for the site of Desert Rock while for Le Tampon, low reliability values are obtained with836

the QRF1 model. Nonetheless, it must be noted that the reliability component weakly837

contributes to the CRPS and that the higher quality of the probabilistic forecasts generated838

by the variant 2 models originates from the resolution attribute.839
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