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Abstract 

To better understand lipid membranes in living organisms, the study of intermolecular forces 

using the osmotic pressure technique applied to model lipid membranes has constituted the 

ground knowledge in the field since four decades. However, the study of intermolecular forces 

in lipid systems other than phospholipids, like glycolipids, has gained a certain interest only 

recently. Even in this case, the work generally focus on the study of membrane glycolipids, but 

little is known on new forms of non-membrane functional compounds, like pH-responsive 

bolaform glycolipids. This works explores, through the osmotic stress method involving an 

adiabatic humidity chamber coupled to neutron diffraction, the short-range (< 2 nm) 

intermolecular forces of membranes entirely composed of interdigitated glucolipids. 

Experiments are performed at pH 6, when the glucolipid is partially negatively charged and for 

which we explore the effect of low (16 mM) and high (100 mM) ionic strength. We find that 

this system is characterized by primary and secondary hydration regimes, respectively 

insensitive and sensitive to ionic strength and with typical decay lengths of 𝜆𝐻1= 0.37 ± 0.12 

nm and 𝜆𝐻2=1.97 ± 0.78 nm. 
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Introduction 

Understanding the physical properties of biological membranes has long been a goal in 

biophysics and colloid science.1–3 Due to their complex composition and the evident difficulties 

to study them in-vivo,1 research is generally focused on the simplification of complexity by 

studying intermolecular forces in model lipid systems, and exploring both structural (electrical 

charges, bilayer flexibility, polar headgroup composition) and physicochemical (ionic strength, 

pH, temperature) parameters in both neutral and charged but also mixed compositions of neutral 

and charged phospholipids.1,4–11 

Interactions in lipid lamellar phases are governed by a balance between attractive and 

repulsive forces.12 Van der Waals attraction is counterbalanced by short- (< ~ 2 nm)13 and long-

range (> ~2 nm) repulsive forces,5,14,15 where steric and hydration forces are typical short-range 

interactions while electrostatic and entropic (undulation) forces are most common at longer 

distances. To this regard, osmotic stress experiments are typically employed to obtain pressure-

distance profiles,7,9,16–20 which can be faced to both classical DLVO theory and its deviations 

describing intermolecular forces and colloidal interactions.5,11,13,21 Agreement or deviation 

between experimental pressure-distance profiles contribute, in the end, to better understand a 

model systems and extrapolate to living organisms.5,10,13,19,22,23 

More recently, the quest of model lipid systems has drawn its attention away from 

classical phospholipids in profit of lipids characterized by a glycosylated headgroup, whereas 

glycolipids are minor but important components of biological membranes.4,20,24 To this regard, 

the understanding of molecular interactions in glycolipid membranes is still in its infancy, 

because of the interesting hydration properties of sugars25 and the broad variety of glycosidic 

headgroups. Stepping out of model lipid systems, a new class of entirely biobased compounds 

produced by microbial fermentation and characterized by a sugar headgroup, an aliphatic chain 

and a carboxylic acid end-group is gaining a large interest for its biobased origin, low 

cytotoxicity and potential applications as green amphiphiles.26,27 These bolaform microbial 

glycolipids have an unpredictable, although rich, phase diagramme, characterized by the 

molecular sensitivity to pH, which controls the carboxylic/carboxylate, COOH/COO-, ratio and, 

consequently, the electrostatic interactions.28–30 In a recent series of works, we have shown the 

ability of a single glucose bolaform lipid to form membranes in water at pH below 7 and 

composed of an interdigitated lipid structure.30–32 

This work aims at studying, for the first time, the short-range molecular interactions of 

a bolaform  glucolipid obtained by microbial fermentation, characterized by a single glucose 

moiety, a C18:0 chain and an end COOH group (GC18:0). This compound is known to self-
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assemble at acidic pH into an interdigitated lipid Pβ,i lamellar phase forming highly 

viscous/hydrogel solutions in water at concentrations above 1 wt% and T < 30°C.32 Under 

typical conditions in bulk (C = 1-5 wt%, pH = 6-7, [NaCl] = 10-100 mM), the lamellar period 

at room temperature varies between 25 and 15 nm.32  

We employ the osmotic stress technique inside an adiabatic humidity chamber8,33 to 

draw pressure-distance profiles in the distance range below 2 nm and from which steric and 

hydration forces can be classically looked at. An adiabatic humidity chamber provides an 

environment where the interlamellar spacing, 𝑑(100), can be controlled through relative 

humidity inside the chamber and easily adaptable to probe the interlamellar distance by using 

X-ray or neutron diffraction, the latter employed in this work. At high 𝑅𝐻%, the lamellar phase 

is hydrated and the thickness of the water bilayer increases, generally above 2 nm, after which 

long-range forces, like electrostatic repulsion, overwhelms Van der Waals attraction. At low 

𝑅𝐻%, the intramembrane volume decreases as a result of dehydration, and Van der Waals 

attraction overwhelms electrostatic repulsion, pushing the lamellae together. On the contrary, 

short-range (< 1 nm) repulsive interactions in lamellar systems generally contain steric and 

hydration components counterbalancing the Van der Waals forces. Establishing a pressure-

distance relationship, 𝛱(𝑑𝑤), with 𝛱 being the osmotic pressure and 𝑑𝑤 the interlamellar water 

thickness, we will determine the nature, strength and decay length of the short ranges forces. 

 

 

Materials and methods 

Products. Acidic deacetylated C18:0 glucolipids (GC18:0) have been used from previously 

existing batch samples, the preparation and characterization (1H NMR, HPLC) of which is 

published elsewhere.31 Acid (HCl 37%) and base (NaOH) are purchased at Aldrich. MilliQ-

quality water has been employed throughout the experimental process. 

 

Preparation of hydrogels. Protocol of preparation and characterization of the lamellar phase 

from GC18:0 are reported elsewhere32 and were adapted for this work. GC18:0 sample is 

dispersed in water, followed by sonication and adjustment of pH to the desired value and ionic 

strength. We prepared two solutions of C= 1 wt% in D2O at pH = 6.2 and at [NaCl] = 16 mM 

and 100 mM. The pH is adjusted by using 1-5 µL of NaOH 1 M (0.1 M can also be used for 

refinement). The mixture is then sonicated between 15 and 20 min in a classical sonicating bath 

to reduce the size of the aggregated powder and until obtaining a homogenous, viscous, 

dispersion. To this solution, the desired volume of NaCl is added so to obtain a given total [Na+] 



4 
 

(= [NaOH] + [NaCl]) molar concentration. To keep the dilution factor negligible, we have used 

a 5 M concentrated solution of NaCl. The mixture is then sonicated again during 15 min to 20 

min and eventually vortexed two or three times during 15 s each. The solution can then be left 

at rest during 15 min to 30 min. The solution is highly viscous and it forms a gel at rest and it 

presents shear-thinning properties. The lamellar phase was thoroughly characterized with 

neutron scattering32 before depositing on a substrate for the adiabatic desiccation experiments.  

 

Adiabatic desiccation experiments using a humidity chamber. The GC18:0 solutions are 

dispersed on two separate 5 cm x 2 cm silicon wafers by simple drop cast (volume dropped: 

500 μL). To enhance homogeneous spreading of the solution onto the substrate, we have used 

a horizontal support levelled with a 2D spirit level. The silicon substrates were let dry in an 

oven at 40°C until a homogeneous coating was obtained. The samples were then introduced 

within a pressure chamber,34 provided at the beamline, and set under vacuum at T= 25°C. The 

temperature of the D2O water bath below the sample was modified to set chamber at the desired 

𝑅𝐻% value. The sample at [NaCl]= 16 mM was let equilibrating at 98 𝑅𝐻% before studying, 

where relative humidity was lowered. The sample at [NaCl]= 100 mM sample was let 

equilibrating at 10 𝑅𝐻% and humidity was then increased. 

 

Neutron diffraction: neutron diffraction experiments were carried out as described in ref. 47 on 

the D16 instrument at the Institut Laue-Langevin (ILL; Grenoble, France), using a wavelength 

λ= 4.5 Å (Δλ/λ= 0.01) and a sample-to-detector distance of 900 mm.35 The focusing option 

provided by the vertically focusing graphite monochromator was used to maximize the incident 

neutron flux at the sample. The intensity of the diffracted beam was recorded by the millimeter-

resolution large-area neutron detector (MILAND) 3He position-sensitive detector, which 

consists of 320 × 320 xy channels with a resolution of 1 × 1 mm2. Data analysis was performed 

using the ILL in-house LAMP software (www.ill.eu/instruments-support/computing-for-

science/cs-software/all-software/lamp).36 The lamellar spacing 𝑑(100) was obtained by a fitting 

the (100) peak position with a Gaussian profile. The classical I vs 2θ profile for each 𝑅𝐻% is 

obtained by summarizing each integrated 2D image measured at a given value of omega. 

Intensities on the detector surface were corrected for solid angle and pixel efficiency by 

normalization to the flat incoherent signal of a 1 mm water cell. The samples were held 

vertically in a dedicated temperature-controlled humidity chamber and aligned on a manual 4-

axis goniometer head (Huber, Rimsting, Germany) embedded in the humidity chamber. The 

chamber was mounted on the sample rotation stage, where the lipid multilayer stacks were 
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scanned by rocking the wafers horizontally. The sample temperature in the chamber was 

maintained at 25°C during the measurements, and the humidity was varied by changing the 

temperature of the liquid reservoir generating the water vapor from 10°C to 24°C, leading to 

relative humidities ranging from to 10% to 94%. Each sample was investigated from low to 

high hydration by increasing the humidity step by step without opening the chamber at any time 

during the humidity scan. After each change in relative humidity, the sample is equilibrated 

between 30 min to 2 h, where equilibration is followed through the evolution of the (100) 

diffraction peak position in time. Equilibration time was considered to be long enough when 

the peak position reached a plateau. After equilibration, the rocking curve (omega scan between 

-1° and 8° with 0.05°) was recorded. 

Results and discussion 

 The functional glucolipid GC18:0 is obtained by hydrogenation31 of the 

monounsaturated GC18:1 compound, produced by fermentation of glucose and fatty acids by 

the yeast S. bombicola ΔugtB1.37,38 The phase behaviour of this compound in water below 

concentrations of 10 wt% depends on pH and it was shown that it undergoes a micellar-to-

lamellar transition at room temperature when pH is decreased from 10 to 5.30–32 We have 

previously shown by small angle X-ray scattering that the membranes at acidic pH are 

composed of interdigitated GC18:0 molecules containing a mixture of COOH and COO- groups 

and of overall thickness of about 3.6 nm.30–32 GC18:0 solutions at pH between 6 and 7 and ionic 

strength between 10 and 100 mM are highly viscous, possibly gels, with shear-thinning 

properties.32 A typical GC18:0 bulk solution at concentration of 1 wt% is used in this study.  

 

Figure 1 : Molecular structure of bolaform glucolipid GC18:0: headgroup is composed of D-glucose and the 

backbone is composed of a C18:0 fatty acid, with a free COOH group at the opposite end of the glucose 

moiety. GC18:0 is obatined by hydrogenation of the corresponding GC18:1 compound obtained by 

pH 7.8

vegetable
oils

sugar

S. bombicola
∆ugtB1
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fermentation of sugar and vegetable oil with the yeast S. bombicola ΔugtB1. The GC18:0 lipid undergoes a 

micelles-to-lamellar phase transition and the latter is formed of interdigitated GC18:0 molecules. 

 

The GC18:0 solution, prepared in D2O to enhance the contrast with neutrons, is drop-

cast and allowed to dry on a silicon wafer, while the lamellar spacing is probed using neutron 

diffraction in a 𝜃-2𝜃 configuration, with the relative humidity (𝑅𝐻%) varying between 98% 

and 10% (Figure 2a). The repeating lamellar period, 𝑑(100), is traced against relative humidity, 

𝑑(100)(𝑅𝐻%) (Figure 2b), and eventually converted into a 𝛱(𝑑(100)) relationship (Figure 2b) 

using the following expression equalizing pressure and 𝑅𝐻%,8 

𝛱 = −(
𝑘𝑏𝑇

𝑉𝑤
) 𝑙𝑛 (

𝑅𝐻%

100
) 

with 𝛱 being the osmotic pressure, 𝑘𝑏 the Boltzmann’s constant, 𝑇 the temperature in degrees 

Kelvin, 𝑉𝑤 the water molar volume and 𝑅𝐻% the relative humidity. The thickness of the 

interlamellar water layer, 𝑑𝑤, is commonly obtained by subtracting the membrane thickness 

from 𝑑(100). Under high humidity conditions, above 80%, the (100) reflection settles at about 

2𝜃= 4°, corresponding to 𝑑(100) of about 6 nm, while below 50%, the (100) reflection shifts 

towards 2𝜃= 6°, corresponding to 𝑑(100) between 4.1 and 4.5 nm. The 𝑑(100)(𝑅𝐻%) profiles in 

Figure 2b show that salt has no influence in the d-spacing values at relative humidity below 

40%. On the contrary, an important mismatch in d-spacing values between the 16 mM and 100 

mM system occurs above 𝑅𝐻%= 40%, where 𝑑(100) is larger at lower salt concentration. These 

data confirm the trend observed in bulk for the same material by mean of neutron scattering,32 

and where the interlamellar spacing was found to vary from 22 nm to 10 nm when salt 

concentration increases from 50 mM to about 300 mM. Similar trends were also found for other 

lipid lamellar phases by when increasing salt concentration.39,40  

 

Eq. 1 
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Figure 2: a) Evolution of the neutron diffraction patterns as a function of relative humidity, 𝑹𝑯%, measured 

on a GC18:0 solution (bulk data: C= 1 wt%, pH 6.2 ± 0.3, [NaCl]= 16 mM) drop-cast on a silicon (111) 

substrate. b) Evolution of the 𝒅(𝟏𝟎𝟎)-spacing with 𝑹𝑯%, and plot of the corresponding 𝜫(𝑹𝑯%) relationship 

with NA being the Avogadro’s number, Kb the Boltzmann constant, T the temperature in Kelvin degrees 

and Vm the water molar volume.  

 

In order to establish a pressure-distance, 𝛱(𝑑𝑤), relationship, 𝑑(100) must be converted into the 

thickness of the water layer between the lamellae, 𝑑𝑤, by mean of Eq. 2, where 3.6 nm is the 

thickness of the interdigitated layer of GC18:0 measured by SAXS at concentrations below 10 

wt%.30–32 The interaction terms contained in the expression of Π(dw), also known as the 

equation of state of the lamellar system, are shown in Eq. 3 and it contains both attractive (Van 

der Waals, VdW) and repulsive (steric, hydration, electrostatic, entropic, respectively St, Hyd, 

El and Entr) contributions. 

 

𝑑𝑤(𝑅𝐻%) = 𝑑(100)(𝑅𝐻%) − 3.6 𝑛𝑚 

 

𝛱(𝑑𝑤) = 𝛱𝑉𝑑𝑊 + 𝛱𝑆𝑡 + 𝛱𝐻𝑦𝑑 + 𝛱𝐸𝑙 + 𝛱𝐸𝑛𝑡𝑟 

 

The lin-lin plot (Figure 3a) of the Π(dw) curves suggests a double exponential decay, confirmed 

by the log-lin plots in Figure 3b-d and where the frontier between the two regimes is at 4.2 nm 

< 𝑑(100) < 4.5 nm (0.5 nm < 𝑑𝑤 < 0.7 nm). The pressure below which the interlamellar distance 

is constant is generally referred to the disjoining pressure, it is commonly observed in osmotic 

stress experiments for water thicknesses above 2-3 nm and it can be described by the necessary 
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force to overcome hydration forces.16,21,41 In the present system, the disjoining pressure is set 

at about 1 kbar and identified by the grey symbols at about 2.5 nm in Figure 3b-d. Hydration 

forces are generally found at interlamellar distances below 1 nm and they are characterized by 

a single exponential decay with a decay length, λ, between 0.2 – 0.4 nm.9,11,41 In the same range 

of 𝑑𝑤, one can measure repulsive steric forces, corresponding to excluded volume steric 

interactions between polar groups, and with characteristic decay lengths smaller than 0.2 nm.16 

A crude double exponential fit of the 𝛱(𝑑(100)) curves in Figure 3d yields λ1 ~ 0.3 nm and λ2 ~ 

2 nm. If λ1 is compatible with typical hydration decay lengths, λ2 is excessively larger and 

cannot be explained with classical short-range repulsion forces (steric and hydration). At the 

same time, the pressure range of (1 ±0.5) kbar reached between 1 and 2 nm is also excessively 

high for classical long-range forces such as electrostatic or entropic.33,42 Tentative calculations 

of 𝛱𝐸𝑙(𝑑𝑤) for 𝑑𝑤 above 0.7 nm and for any pressure regime identified in ref. 5 yields values 

below 1 bar, that is three orders of magnitude smaller than what we experimentally measure 

here. Similar values are obtained for 𝛱𝐸𝑛𝑡𝑟 calculated using the classical Helfrich formula15,43 

using typical bending modulus values in the order of 10-20 kBT. In both cases, the calculated 

values for the pressure for 𝑑𝑤 > 0.7 nm are at least 2 orders of magnitude smaller than what we 

find experimentally in Figure 3, as also shown in 44. 
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Figure 3: a-b) Various representations of the pressure-distance plots derived from the osmotic stress 

experiments in b). Models (1) through (4) are respectively used to fit panels c) – f). Grey-filled values identify 

the disjoining pressure and they are not included in the fits.   

 

The considerations above show that if the 𝛱𝑆𝑡 , 𝛱𝐸𝑙, 𝛱𝐸𝑛𝑡𝑟 terms of  can be neglected against 

𝛱𝐻𝑦𝑑, one term accounting for the pressures at 𝑑𝑤 > 0.7 nm is most likely missing, and its 

nature is exponential. Described long ago,10,22,45 secondary hydration forces are commonly 

observed in charged lamellar systems in the presence of an electrolyte, and the typical reported 

λ is contained between 1 and 3 nm,10,13,21,22,41,44,45 values which are in perfect agreement with 

λ2 measured in this system. Long-range hydration forces are commonly accepted as deriving 

from short-range repulsion due to ion exclusion from a surface hydration layer, and longer range 

repulsion arising due to ionic dispersion interactions. In all cases, they have been clearly 

identified in lamellar systems at salt concentrations from the mM to the M range. In the systems 

in Figure 3, we study two concentrations of NaCl, 16 mM and 100 mM in bulk gel. 𝑑(100) in 

the gel prior to its use in the humidity chamber (or in the ice-templating device) is ~20 nm.32 
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After partial dehydration in the humidity chamber, 𝑑(100) ~4 nm, a factor five in shrinking and 

corresponding to a five-fold increase in the initial NaCl concentration. The final estimated 

[NaCl] in the interlamellar volume after dehydration varies between 80 mM and 500 mM, 

which are high enough to expect secondary hydration forces.21,41,44 Under these circumstances, 

Eq. 3 can be simplified to Eq. 4, where the steric, electrostatic and entropic terms can be 

neglected while a second hydration term is introduced. 

 

𝛱(𝑑𝑤) = 𝛱𝑉𝑑𝑊 + 𝛱𝐻𝑦𝑑1 +𝛱𝐻𝑦𝑑2 

 

Pressure-distance plots have been fitted using four different models. The discussion 

below presents each model separately, giving the advantages and disadvantages, and to 

establish an average value of the strength and length on the hydration interactions, we present 

and use of all of them. 

Model (1). This model uses equation Eq. 4 to fit the Π(𝑑𝑤), where the expressions of 

Π𝑉𝑑𝑊 is given in Eq. 5, while the primary and secondary hydration components, ΠHyd1 and 

ΠHyd2, of the hydration pressure (Eq. 6, linearized in Eq. 7) are given in Eq. 8 and Eq. 9, 

respectively. Model (1) is the most rigorous approach, but, in order to reduce the number of 

terms in the fit to only four (ΠH1, ΠH2, 𝜆𝐻1, 𝜆𝐻2), it supposes to calculate the Π𝑉𝑑𝑊 term. To 

do so, one must calculate the Hamaker constant, 𝐻, but also a good estimation of 𝑇ℎ and  , 

respectively the thickness of the hydrophilic and length of the hydrophobic regions of the 

membrane, and to assume that the value of 3.6 nm, used to calculate 𝑑𝑤, for the bilayer 

thickness is also a good estimation. At room temperature, these parameters can either be 

calculated or measured. The Hamaker constant was calculated for a generic lipid bilayer to be 

𝐻= 5.1.10-21 J at room temperature,46 the structural parameters of the GC18:0 interdigitated 

layer (IL) were estimated from the fit of SAXS data30–32 and were assumed here to be  𝑇ℎ= 1.3 

nm,  = 0.8 nm and the total thickness, (2𝑇ℎ+ )= 3.6 nm. In summary, model (1) is the most 

rigorous but it is based on the hypothesis that variations in the Van der Waals terms of the 

pressure are negligible across the temperature range explored in this work. 

 

Π𝑉𝑑𝑊 =
𝐻

6𝜋
(
1

𝑑𝑤
3
−

2

(𝑑𝑤(𝑅𝐻%) + 2𝑇ℎ +  )3
+

1

(𝑑𝑤(𝑅𝐻%) + 2(𝑇ℎ +  ))
3) 

 

Π(𝑑𝑤)𝐻𝑦𝑑 = ΠH𝑒
−
𝑑𝑤(𝑅𝐻%)

𝜆𝐻  

Eq. 4 

Eq. 5 

Eq. 6 



11 
 

 

 𝑜𝑔(Π𝐻𝑦𝑑) = Log(ΠH) −
0.434

𝜆𝐻
𝑑𝑤(𝑅𝐻%) 

 

Π(𝑑𝑤)𝐻𝑦𝑑1 = ΠH1𝑒
−
𝑑𝑤(𝑅𝐻%)

𝜆𝐻1     ; 𝑑𝑤 < 0.74 ± 0.11 𝑛𝑚 

 

Π(𝑑𝑤)𝐻𝑦𝑑2 = ΠH2𝑒
−
𝑑𝑤(𝑅𝐻%)

𝜆𝐻2      ; 𝑑𝑤 > 0.74 ± 0.11 𝑛𝑚 

 

 Model (2). In model (2), we make the hypothesis that the contribution of the Van der 

Waals term is negligible across the entire 𝑑𝑤 range and the hydration terms, that is Π𝑉𝑑𝑊<< 

ΠHyd1 + ΠHyd2 in Eq. 4. This hypothesis holds for a system that does not follow the DLVO 

theory at small water thickness, as this seems to be the case for lamellar lipid phases dominated 

by two hydration regimes.44 Under this hypothesis, one can represent the pressure-distance 

curves in a log-lin plot (Figure 3b), and in particular the hydration component (Eq. 6) can be 

linearized into Eq. 7. If the two hydration regimes are distinct enough, one can independently 

fit the short- and long-distance domains of the pressure-distance curves with equations Eq. 8 

and Eq. 9 and extract the four parameters (ΠH1, ΠH2, 𝜆𝐻1, 𝜆𝐻2), as this was classically done in 

lamellar systems governed by two hydration regimes.10,13,22 

Model (3). In model (3) we employed exactly the same approach as in model (2), but 

the Van der Waals contribution is not neglected anymore: Π𝑉𝑑𝑊 is calculated exactly as in 

model (1) and subtracted to Π(𝑑𝑤). The resulting term is plotted against 𝑑𝑤 in a log-lin scale 

(Figure 3c) and the (ΠH1, ΠH2, 𝜆𝐻1, 𝜆𝐻2) terms are extracted from linear fits according to 

equations Eq. 8 and Eq. 9. This approach, to which the attractive DLVO contribution is 

accurately subtracted, was classically used by Pashley in the early studies of the double 

hydration regime.10,13,22 Model (3) is analogous to model (1), except for the mathematical 

treatment, which is simplified in model (3). 

Model (4). The drawback of models (1)-(3) is the plot of the pressure against the water 

thickness, 𝑑𝑤, being calculated using equation Eq. 2 and supposing a good estimate for the 

membrane thickness. We use the value of 3.6 nm determined by modelling SAXS profiles in 

bulk, but it is well-known that fitting of SAXS curves generally requires more than one free 

variable and acceptable fitting can occur with more than one set of variable. Although we 

believe that a membrane thickness of 3.6 nm is the best estimate, one must consider an error of 

Eq. 7 

Eq. 8 

Eq. 9 
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least ± 0.2 nm, which may have a strong impact on the pressure-distance profiles at low relative 

humidity, when it becomes comparable with the value of 𝑑𝑤. In model (4), pressure data are 

plot in a log-lin representation against the interlamellar distance, 𝑑(100), (Figure 3d) and then 

assume that (ΠH1, ΠH2, 𝜆𝐻1, 𝜆𝐻2) are simply extracted from a double linear fit according to 

equations Eq. 8 and Eq. 9. One should note that we have neglected the Van der Waals 

contribution, as in model (2), and that in model (4) only the slopes, then 𝜆𝐻1, 𝜆𝐻2, are 

significant, while the pressure values at the intercept, ΠH1, ΠH2, are not. 

 

Table 1: Values of the hydration pressure (𝜫𝑯) and decay lengths (𝝀𝑯) in the primary and secondary 

hydration regimes. Data are obtained from the fit of the osmotic stress experiments in Figure 3a-d applying 

models (1)-(4) to the low- (16 mM) and high-salt (100 mM) regimes. Assumptions: Model (1) : parameters 

for 𝚷𝐕𝐝𝐖 (Eq. 5): 𝑯 = 5.1.10-21 J; 𝑻𝒉= 1.4.nm; 𝑳= 0.8.nm. Model (2) : 𝜫(𝒅𝒘[𝑹𝑯%]) − 𝜫𝑽𝒅𝑾 with 𝜫𝑽𝒅𝑾  

𝜫𝑯𝒚𝒅𝟏; 𝜫𝑯𝒚𝒅𝟐; Model (3) : 𝜫(𝒅𝒘[𝑹𝑯%]) − 𝜫𝑽𝒅𝑾 with 𝜫𝑽𝒅𝑾  𝜫𝑯𝒚𝒅𝟏; 𝜫𝑯𝒚𝒅𝟐; Model (4) : 

𝜫(𝒅(𝟏𝟎𝟎)[𝑹𝑯%]) − 𝜫𝑽𝒅𝑾 with 𝜫𝑽𝒅𝑾  𝜫𝑯𝒚𝒅𝟏; 𝜫𝑯𝒚𝒅𝟐. This model if fit against 𝒅(𝟏𝟎𝟎)[𝑹𝑯%] 

Model 

N° 
Method Equation [Na+] / mM 𝜫𝑯𝟏/kbar 𝝀𝑯𝟏/nm 𝚷𝐇𝟐/kbar 𝝀𝑯𝟐/nm 

(1) Fit (Lin-Lin) Eq. 4 
16 1.26.103 0.07 ± 20% 1.81 2.98 ± 20% 

100 37.5 0.13 ± 10% 1.61 1.59 ± 10% 

(2) 
Linear fit (Log-

Lin) 

Eq. 8 16 17.0 ± 40% 0.28 ± 20% 2.04 ± 15% 2.53 ± 20% 

Eq. 9 100 5.94 ± 7% 0.45 ± 10% 1.80 ± 12% 1.43 ± 10% 

(3) 
Linear fit (Log-

Lin) 

Eq. 8 16 17.3 ± 40% 0.28 ± 20% 2.04 ± 15% 2.50 ± 20% 

Eq. 9 100 6.05 ± 7% 0.45 ± 10% 1.81 ± 2% 1.42 ± 10% 

(4) 
Linear fit (Log-

Lin) 

Eq. 8 16 7.93.106 0.28 ± 20% 8.47 2.52 ± 20% 

Eq. 9 100 1.66.104 0.45 ± 10% 8.47 1.42 ± 10% 

        

 Average all    0.29 ± 0.15  2.05 ± 0.64 

 
Average (Fit 

Log-lin) 
   0.37 ± 0.12  1.97 ± 0.78 

 

Table 1 summarizes the (ΠH1, ΠH2, λH1, λH2) parameters obtained from the application 

of models (1)-(4) on the pressure-distance curves obtained from the humidity chamber 

experiments performed on two GC18:0 (C = 1 wt%, pH = 6.3 ± 0.3) lamellar hydrogel samples 

at salt concentrations in the gel (prior to deposition onto the sample holder), [NaCl] = 16 mM 

and 100 mM. The following observations must be done: 

a) Agreement between our values and literature. The values of 𝜆𝐻1 and 𝜆𝐻2, averaged 

over all models, are respectively 0.29 ± 0.15 and 2.05 ± 0.64. These values, despite 
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the error (discussed here below) are characteristics for the short- and long-range 

decay lengths found in lamellar lipid systems characterized by primary and 

secondary hydration:21,44 the values of the decay lengths are not dependent of the 

model used. 

b) Impact of the model. Hydration forces are known to be very sensitive to salt 

concentration, and for this reason we run two experiments at [NaCl] = 16 mM and 

100 mM. These values are the “bulk” values, and one should consider a five-fold 

increase in concentration in the humidity chamber, as already commented above. 

When using models (2)-(4), 𝜆𝐻1 and 𝜆𝐻2 are highly homogeneous at each salt 

concentration, e.g., 𝜆𝐻1= 0.28 nm and 𝜆𝐻2= 2.52 nm at [NaCl] = 16 mM. On the 

contrary, model (1) provides values of the decay length 𝜆𝐻1, which are smaller by a 

factor three in the short range hydration respect to the values obtained using models 

(2)-(4). Estimation of the longer decay lengths 𝜆𝐻2 are also slightly different 

between (1) and (2)-(4), but still comparable within the error. The poor results of 

model (1) are particularly visible in the values of the pressure, whereas models (2)-

(3) provide ΠH1 in the order of several kbar, while model (1) provides an 

exceedingly high value of 103 kbar, which is not realistic. The above illustrates how 

the large error in the average values are mainly directed by the poor estimates 

obtained from model (1). 

c) Impact of salt concentration. Figure 3a-d show that salt has little influence at small 

distances (typically below water thickness of 0.7 nm), where the data at 16 mM and 

100 mM are practically superimposed. Nonetheless, the limited number of 

experimental points recorded provide two distinct values of 𝜆𝐻1, respectively 0.28 

nm at 16 mM and 0.45 nm at 100 mM (analysis is here limited to models (2)-(4) 

only). Nonetheless, these values are still comparable within the error, providing an 

average 𝜆𝐻1= (0.37 ± 0.12) nm. This value and its small dependence on salt 

concentration are both in strong agreement with primary hydration forces, generally 

related to enthalpic adsorption energy of water layers.21,41,44 When it comes to 

secondary hydration at larger distances, Figure 3a-d show a strong impact of the 

initial salt concentration on the pressure-distance profiles. The corresponding decay 

length, 𝜆𝐻2, are in worst agreement among themselves 𝜆𝐻2= (1.97 ± 0.78) nm, with 

a relative error of about 40%, and they highlight the strong impact of salt. These 

aspects are in agreement with the literature data on secondary 
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hydration,10,13,21,22,41,44,45 of which the origin was attributed to the competition 

between water bound to the counterions and water bound to the bilayer surface.41 

 

Conclusion. 

We have used four models to fit the pressure-distance curves of the GC18:0 lamellar phase. We 

have explored the short-range regime at water thicknesses below 3 nm. This regime is nicely 

probed by the humidity chamber apparatus and we have tested two different salt concentrations, 

a low-salt ([NaCl]= 16 mM) and a high-salt ([NaCl]= 100 mM) regime. These concentrations 

are intended to in the bulk system, before deposition on the sample holder, after which the local 

salt concentration experience up to a five-fold increase in between the lamellar domains. The 

experimental data are nicely modeled using a double exponential, rendering the primary and 

secondary hydration, the latter due to the hydration of the counterions. Whichever model is 

used, the interdigitated layers in the sample experience two hydration regimes with decay 

lengths at about 0.3 nm and 2 nm, as expected from the literature. Both the choice of the model, 

the amount of salt and the limited number of points generate an expected, although mild, 

dispersion in the hydration pressures and decay lengths. Alltogether the models provide a 

consistent set of data for both the primary and secondary hydration regions. Furthermore, 

exploring the low-salt and high-salt regimes allow us to take into account the same GC18:0 gels 

used in the ice-templating device. 
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