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Lipid lamellar hydrogels are rare soft fluids composed of a phospholipid lamellar phase 

instead of isotropic fibrillary networks. The mechanical properties of these 

thermodynamic materials are controlled by defects, induced by local accumulation of a 
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polymer or surfactant. In this work, we present a new class of kinetically-trapped, lipid 

lamellar hydrogels, composed of one single glycolipid, self-organizing into a biphasic 

lamellar fluid. Small angle x-ray and neutron scattering (SAXS, SANS), polarized light 

microscopy, rheology and rheo-SAXS show a gel with elastic modulus > 104 Pa 

possessing rheo-thinning properties with second-scale recovery, making it processable 

into soft 3D materials like beads or fibers, outclassing the properties of existing synthetic 

lamellar hydrogels. The properties and easy preparation methods open new perspectives 

in using biobased lamellar hydrogels in additive manufacturing, pharmacology or tissue 

engineering. 

 

2D and 3D soft self-assembled materials, usually obtained from stimuli-responsive 

peptides, proteins and lipids,1–4 attract a large interest in the field of nanotechnology, for the 

increasing number of high-tech applications5 such as protective coating for cells,6 

regenerative medicine,7 lab-on-a-membrane prototyping,8 self-healing materials.9 Lipids can 

self-assemble into a variety of soft structures,10 possibly leading to isotropic (entangled fibers) 

or anisotropic (lamellar) structures, the latter being of particular interest.11 

Lamellar hydrogels,12 discovered in 1996 by Safinya and Davidson and composed of a 

phospholipid Lα phase stabilized by a polymer-grafted lipid, were the first example of an 

elastic 2D self-assembled material at small concentration (<10 wt%). Since then, lamellar 

hydrogels (LH) were obtained by polymer-stabilization,13 or by combining a lamellar phase 

with a gelator.14,15 The first polymer-free LH, based on surfactant mixtures or 

lipid/surfactants, are reported only in 2014.16,17 Nonetheless, LH are rare compared to more 

common self-assembled fibrillary network, and their out-of-equilibrium manipulation is not 

known. If LH are complex elastic fluids generated by defects,12 and of which the mechanical 
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properties are hard to control, their defectuous nature is also an opportunity in preparing new 

materials.18 

We have recently shown that a pH-responsive glucolipid (Figure 1) below 1 wt% 

undergoes a reversible phase transition from a predominant micellar phase to flat 

interdigitated lipid layers (IL, Figure 1)  from basic to neutral pH (transition pH ~7.8) at 

room temperature (RT).19,20 The corresponding monounsaturated glucolipid is entirely derived 

from glucose and vegetable oil, fermented by the yeast S. bombicola ΔugtB1,21 and lastly 

hydrogenated. The microorganism was specially engineered from the WT S. bombicola, 

known to produce the common sophorolipid biosurfactant. Deletion of the second 

glucosyltransferase (ugtb1) results in the direct production (as high as ~0.5 gL-1h-1) of 

glucolipids, up to then produced only by enzymatic conversion of acidic sophorolipids or by 

the microbial conversion of secondary alcohols glucosides.22,23 The acidic glucolipid, simple 

in structure, combines a packing parameter >0.5 with a melting temperature (Tm) above RT, 

thus favouring the spontaneous formation of infinitely flat lamellae over vesicles.20 

We show here that a phospholipid-free solution only containing glucolipid G-C18:0 

(Figure 1) in the form of IL spontaneously forms a hydrogel in the neutral-acidic pH range 

above 1 wt%. The hydrogel is not fibrous, as expected from other microbial glycolipids,24,25 

but falls in the rare category of LH. The gels reach elastic moduli as high as 10 kPa, 

controllable by the ionic strength, in a pseudo two-phase lipid-water system, in the absence of 

any additive. pH controls the carboxylic/carboxylate ratio,19,20 thus hiding an actual four-

phase (neutral and charged glucolipid, water, salt) system, becoming the first single-molecule 

lamellar hydrogel. The hydrogel contains highly defectuous lamellar regions having shear-

thinning properties with instantaneous (seconds) recovery of the elasticity, a property which 

we exploit to prepare millimeter-scale soft prototypes. Finally, the glycosylated nature of the 
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molecule defines a new class of lamellar glyco-hydrogel with potential interest in the 

biomedical field, cosmetics or food science. 

 

Figure 1 – Molecular structure of glucolipid G-C18:0 and its pH-dependent phase behavior at room 

temperature: a micelles-rich phase occurs at pH above 7.8 and a lamellar phase forms at pH below 7.8.19,20 

G-C18:0 glucolipid is derived from the fermentation broth of S. bombicola ΔugtB1 in the presence of 

glucose and vegetable oils. On the right-hand side, arrows superposed to the typical cryo-TEM images 

point at the typical infinite layered structure and stacking (pH ~6, CG-C18:0= 1 wt%).   
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Glucolipid G-C18:0 spontaneously forms lamellar hydrogels in water without additives 

G-C18:0 is a microbial glycolipid characterized by a single glucose moiety covalently 

attached to stearic acid. A combination of SAXS and cryo-TEM data reported earlier19,20 have 

shown the formation of a interdigitated layer (IL) exposing both the glucose and COOH/COO- 

moieties, where the COOH/COO- ratio depends on pH. Figure 1 displays a scheme of the 

supposed structure of a G-C18:0 layer characterized by hydrophilic (Th), hydrophobic (L) 

(total thickness, 2Th+L= 3.6 nm) and water layers (dw).19,20 Typical cryo-TEM images (and 

white arrows therein) recorded at pH ~6 (Figure 1) are presented to recall the infinitely wide 

structure of the G-C18:0 stacked layers.19,20    

G-C18:0 hydrogels, which can be formed by its simple dispersion in water at room 

temperature at concentrations above about 1 wt%. The equilibrium pH is generally below 4.5, 

and under these conditions G-C18:0 is insoluble in water. Hydrogels can then be obtained by 

combining adjustment of pH in the range between 5 and 7.5 and using sonication (in a 

classical bath) during 20 to 30 min. These conditions generally provide a viscous solution 

(Figure 2a1), which turn into a gel when salt (here, NaCl) is added to concentrations above 

20 mM. According to the amount of salt, hydrogels look homogeneous and do not recover 

immediately after vortexing (Figure 2a2), or they can display an opal-like appearance and 

fast recovery (Figure 2a3). 

In order to perform comparable rheology experiments, all samples studied in Figure 2 

were annealed through vortexing, heating at 70°C, above the Tm (Figure S 1) and cooling in 

the rheometer. This treatment promotes a gel-to-sol transition, where the sol is characterized 

by a fluid homogeneous solution containing small (10-50 μm) spherulitic inclusions (Figure 

S 2.e-f). The typical sol-to-gel transition upon cooling is measured in Figure 2g over 2h, 

during which both moduli (G´´>G´) have a steep increase, then oscillating at 25°C until 

G´>G´´. Gels are heterogeneous multiscale structures characterized by: 1) large (100-500 μm) 
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oriented lamellar domains (Figure 2d4-d5 and Figure S 2.g-j); 2) an aqueous matrix 

composed of interconnected lamellar domains below 5 μm in size (Figure 2d1, Video 1,2); 3) 

embedded spherulitic objects composed of folded lamellar domains of thickness less than 500 

nm (Figure 2d1, Figure 2d2 and Video 3). 

The typical frequency sweep (G´(ω) and G´´(ω), respectively represented by full and 

open symbols throughout this work) of (annealed) lamellar glyco-hydrogel prepared at pH 6.5 

for three ionic strengths are shown in Figure 2b. The typical range of G´ (ω= 6.28 rad.s-1) 

range between 102 Pa and 104 Pa when ionic strength ranges between ~50 mM and ~ 500 

mM, measured at pH 6 and pH 6.5 (Figure 2c). The magnitude of G´ falls in the same order 

as observed for polymer-stabilized Lα,g
26 and polymer-free lamellar hydrogels.16 Figure 2b 

also shows that G´ > G´´over the entire frequency range, an established criterion 

distinguishing gels from viscous liquids.27 The typical viscoelastic response of G-C18:0 

follows a power-law behavior over four orders of angular frequency magnitude. Both moduli 

scale as G´~ G0´
n´ and G´´~ G0´´

n´´, where G0´ and G0´´ are pre-factors at ω= 1 rad.s-1 and 

n´~n´´~ 0.23 the exponents. The distinctive power-law rheology response, reported for other 

soft materials,28 indicates a broad distribution of relaxation times,29 modeled for critical gels30 

and in soft glassy rheology.31 The latter in particular considers that viscoelasticity is 

controlled by disorder, metastability and local structural rearrangements between the 

mesoscopic elements.32 Thermal motion alone is not sufficient to reach complete relaxation 

and the system has to cross energy barriers, larger than typical thermal energies,32 and related 

to lamellar rearrangement in our case. G-C18:0 hydrogels satisfy all criteria of a soft (G´~ 

0.1-10 kPa) glassy material: weak power law of G´, G´´α n and aging behavior. However, a 

direct relationship between microstructure and mechanical response remains challenging.33 
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Figure 2 – a) Typical images of (a1) viscous and (a2, a3) gel solutions. Gel in a3 is denser and presents a 

stronger scattering than gel in a2. b) G´(ω) (full symbols) and G´´(ω) (open symbols) for CG-C18:0= 2.5 wt% 

as a function of [NaCl] (pH= 6.5, γ= 0.05%). c) Typical absolute values of G´ at pH 6 and 6.5 as a function 

of [NaCl] (ω= 6.28 rad.s-1, γ= 0.05%). d) Typical (d1, d2) confocal laser scanning microscopy (CLSM). 

Complementary CLSM videos (Video 1-3) are provided as Supporting Information. Polarized (d3, d4, d5) 

light microscopy (PLM) (scale bar: 100 μm) and images of lamellar glyco-hydrogels; d3 represents a 

typical viscous solution composed of CG-C18:0= 1 wt%, pH 6.5, [Na+]= 10 mM; d1, d2, d4, d5 represent a 

typical hydrogel composed of CG-C18:0= 2.5 wt%, pH 6.5, [Na+]= 150 mM. e) Evolution of the lamellar 

period d(100) as a function of ionic strength; the corresponding SAXS and SANS data are shown in Figure 

S 3. f) d/dideal ratio as a function of G-C18:0 volume fraction for different ionic strengths and pH values; 

dideal= δ/φ, being δ the membrane thickness (= 3.6 nm)20 and φ the lipid volume fraction. g) Time evolution 

of G´ (full symbols) and G´´ (open symbols) at 25°C for various ionic strengths (cooling rate: 5°C/min, CG-

C18:0= 2.5 wt%, pH= 6.5, ω= 6.28 rad.s-1, γ= 0.05%) after annealing (15 s vortex, loading, T= 70°C during 

10 min, heating rate: 10°C/min). h) Comparison of the time evolution of G´ (full symbols) and G´´ (open 

symbols) after annealing at T= 70°C and cooling at 25°C for a gel ([NaCl]= 33 mM, pH 6.5) and a viscous 
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solution ([NaCl]= 125 mM, pH 7) (cooling rate: 5°C/min, CG-C18:0= 2.5 wt%, ω= 6.28 rad.s-1, γ= 0.05%). All 

rheology measurements are performed in a plate-plate geometry at constant normal force of 0 N (initial 

gap 0.5 mm). 

SAXS (Figure S 3a) and SANS (Figure S 3c-e) experiments are recorded for samples 

at pH 7 and pH 6.5 and various NaCl concentrations. SAXS profiles measured at NaCl 

concentration below 250 mM bear a large oscillation above q= 1 nm-1 (Figure S 3a) and a -2 

slope below q= 1 nm-1; both features are typical of a lamellar form factor and they are 

analyzed in details (including fitting of SAXS data) for the same G-C18:0 sample 

elsewhere.19,20 One should note that due to a different contrast, the oscillation in SANS 

profiles is not visible. Additionally, both SAXS and SANS profiles are characterized by a 

broad peak below 1 nm-1 and indicative or a lamellar period, d(100). Whichever the pH or 

technique of analysis, the peak is prominent for G-C18:0 concentrations above 2.5 wt% and 

NaCl content above about 100 mM, while below these values the peak is extremely broad and 

hard to observe. Kratky plots (Iq2(q), eliminating the q2 dependence) in the insets of Figure S 

3c-e are presented to help visualizing the peak for all samples. 

Analysis of d(100) for all SAXS and SANS experiments shows that d(100) decreases with 

increasing ionic strength (Figure 2e), which proves that electrostatic repulsion controls the 

lamellar stacking.34 The lamellar spacing for low concentrations and low ionic strength is ~20 

nm, where larger spacing characterizes viscous fluids (Figure 2a1) and smaller spacings (< 

15 ~nm) are generally associated to gels (Figure 2a2,a3). In the excess of salt (1 M), a 

powder, characterized of condensed lamellae, precipitates, as also shown by diffraction peaks 

becoming sharper, more intense, and shifting above 1 nm-1 (Figure S 3a).  

The expected period for a lamellar phase is dideal=δ/φ, being δ the membrane thickness 

(here assumed to be 2Th+L=3.6 nm)20 and φ the lipid volume fraction. The glyco-hydrogels 

do not follow ideality (Figure 2f, d/dideal<1) below 10 wt% at any pH and ionic strengths, 
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suggesting that a second phase applies an additional osmotic pressure on the lamellae,35 

confirmed in this system by light microscopy discussed below.  

The elastic properties of lamellar hydrogels depend on structural defects in the 

lamellar phase. Gel formation in polyethyleneglycol(PEG)-stabilized Lα phase depends on the 

PEG volume fraction, which, segregating into curved membrane regions, become a nucleation 

site of the defects.12,26 Recently, Niu et al.16 have supposed the origin of the elastic properties 

in polymer-free LH to depend on the edge accumulation of negatively-charged SDS 

surfactant. Polarized light microscopy (PLM) was used to identify structural defects, like 

sheet-like texture or spherulitic inclusions, in LH.12,36 Typical PLM and CLSM images 

acquired on both viscous (Figure 2d3, Figure S 2.a-f) and gels (Figure 2 d1,d2,d4,d5, Figure 

S 2.g-h) samples show a biphasic medium (explaining the non-ideal lamellar swelling) 

respectively containing small (1-50 μm) and large (100-500 μm) birefringent domains. 

Polarized and confocal microscopy confirm the widely defectuous nature of the gel (Figure 2 

d1,d2,d5; Video 1,2), recalling both the typical sheet-like/whispy texture (Figure 17G in Ref. 

36) and spherulitic inclusions of LH. The latter are widely present in the gel and they are 

themselves composed of entangled lamellar domains (Figure 2 d1, d2; Video 3). A closer 

look to all data in our possession excludes a monophasic defectuous lamellar phase,12,26 but 

rather a complex multiscale material composed of large (hundreds of microns) interconnected 

defectuous lamellar domains embedded in an aqueous environment containing smaller 

lamellar domains and lamellar spherulitic inclusions.  

Time stability of the hydrogels over 24 h shows that weak gels (102 Pa) measured after 

2 h from annealing (blue symbols in Figure 2h) evolve towards stronger gels (103 Pa) after 24 

h, indicating that the evolution of the mechanical properties can occur on long time-scales. 

Quantitative observations up to 48 h (Figure S 4), and qualitatively over two weeks, show 

that initially viscous solutions systematically turn into gels, which eventually tend to scatter 
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light (whitening), to show syneresis and loose their mechanical properties after several days. 

The continuous evolution of the aspect and mechanical properties show that none of the 

lamellar glyco-hydrogels reach thermodynamic equilibrium, which makes it impossible to 

draw a consistent quantitative overview correlating mechanical properties and physico-

chemical parameters. For this reason, most of the experiments presented in Figure 2 are 

performed after an arbitrary lag time of two hours, at which the estimated concentration above 

which gelation is possible (here measured at pH = 6.7, ionic force 163 mM, Figure S 5) is in 

the order of 1 wt%. 

pH and salt are known to strongly affect charged lamellar systems but the impact of 

salt on the mechanical properties of lamellar glyco-hydrogels is particularly astonishing and 

never reported for lamellar gels. pH plays on the ionization degree of G-C18:0 and, as a 

consequence, on the charge density of the interdigitated layers (IL). We have noticed that at 

low ionic strength (<~100 mM), pH plays a marginal role on the mechanical properties. At 

higher ionic strength, where charge screening can cause precipitation (𝑑𝑤<1 nm), increasing 

pH promotes redispersion of the IL, most likely due to the introduction of negative charges in 

the membrane, allowing 𝑑𝑤 to increase again. . At constant pH, increasing the ionic strength 

promotes shrinking of 𝑑𝑤 in the 15 nm range and gel formation. 

Transmission of the constraints in lamellar systems are promoted by defects in the flat 

IL, which can only occur if the line tension becomes locally small, promoting IL bending. 

This effect was achieved by PEG in LH, and we believe that salt has a similar role in the 

present lamellar glyco-hydrogels with negative charge density (pH>~5). It was shown before 

that charge and salt decrease the bending modulus and total bending energy of lipid IL.37 The 

Tm of G-C18:0 is at 37°C, close to RT (Figure S 1), consequently, when the electrostatic 

repulsion is partially screened and its contribution to the bending modulus38 is reduced, the IL 

is free to fluctuate and possibly bend, the curvature being stabilized by the negative charges. 
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This picture is also consistent with the idea that the glyco-hydrogel is a kinetically-trapped, 

out-of-equilibrium, phase. Addition of salt has an immediate impact on defect formation, 

reducing the percolation of water. Given the high viscosity, restructuring of the membrane 

becomes a long process and at constant pH and ionic strength, ion adsorption can occur with 

time, a phenomenon which was shown to be fast (hour) for divalent but slow (days) for 

monovalent cations.39,40 Slow but continuous ion adsorption to the IL increases the local ionic 

strength, thus promoting gel formation and long-term instability. 

This section ends with considerations on the nature of the lamellar phase. The typical 

d(100) from SAXS/SANS (Figure S 3) is broader than what is classically found in lamellar 

phases and could be interpreted as a nematic phase,41 or as a coagel-to-gel transition.42 The 

latter is excluded because fibrillary crystals are never observed and gel always forms below 

the lipid Tm. Then, if the density of defects (in PLM) is too high shown to exclude a nematic 

phase, other arguments support the lamellar phase: 1) WAXS experiments (Figure S 3.b) 

show the typical pattern of a lipid packing, most likely in the Pβ,i phase, as commented in the 

Supporting Information. 2) All cryo-TEM data show the systematic presence of flat sheets 

being “infinite” in the planar dimension, in contrast to a “finite” disk diameter in nematic 

phases. 3) SAXS data of glyco-hydrogels (e.g., pH 7, [NaCl]≤ 250 mM, Figure S 3.a) can be 

fitted with a lamellar form and structure factors,43 providing a high Caillé parameter (0.9) and 

small number of stacked lamellae (< 10), in agreement with soft lamellar systems with short-

range correlation rich in mono and divalent counterions.38–40 Analogous SAXS profiles are 

also reported for biomembranes.35 4) The evolution of d(100) with ionic strength and dideal at 

low lipid fractions are typical of lipid lamellar phases.34,35 5) PLM (Figure S 2.g-j) shows the 

typical whispy defectuous texture of lamellar a phase.  
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Mechano-structural characterization of G-C18:0 lamellar hydrogels using in-situ rheo-

SAXS  

In view of developing soft G-C18:0 hydrogels-based materials, it is crucial to 

understand the effect of three independent stimuli, pH, temperature and shear rate, on the 

mechanical and structural properties of the gels. pH, temperature and shear respectively affect 

the sol-gel transition, the membrane softening and the lamellar packing. The mechano-

structural characterization of G-C18:0 hydrogels is performed by combining rheo-SAXS 

(apparatus shown in Figure S 6), cryo-TEM and optical microscopy. 

Effect of pH. G-C18:0 has an apparent pKa of 8.4 ± 0.1 (Figure S 7) and micelle-to-

lamellar transition pH of about 7.8, below which the ionization degree is estimated to < 0.2 

(Figure S 7).19,20 Above pH 8, the solution is fluid, while below pH 8 the viscosity increases. 

Increasing and decreasing pH respectively promote gel-to-sol and sol-to-gel transitions and in 

the following we explore the latter on the mechanical and structural properties of the gel.  

Approaching the sol-to-gel transition by manual addition of HCl is a possible but 

tedious, uncontrolled, process due to local formation of gelly aggregates. For this reason, we 

employ glucono-δ-lactone (GDL)44 to reduce pH in a more homogeneous way. GDL, which 

hydrolyzes into gluconic acid, is an acidifier commonly used to prepare strong low-molecular 

weight gels without interfering with the self-assembly process.45 The time evolution of the 

viscoelastic properties during sol-gel shows a rapid increase of G´ and G´´ within the initial 

10 min, generally corresponding to a sharp pH drop, before a lag time spanning between 3 

and 4 hours, during which the slope G´(t) varies significantly (Figure 3c, recorded in a 

couette cell and Figure S 8 in a plate-plate geometry). After formation of the gels (G´> G´´), 

and at sufficiently long lag time, the moduli are practically constant (Figure S 8), and G´ can 

reach values up to 104 Pa. This value is astonishingly high for a lamellar hydrogels below 10 

wt%, especially if compared to the typical values of G´ at plateau found in polymer-stabilized 
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phospholipid and polymer-free lamellar hydrogels (G´< 103 Pa)16,26,46 or in onion (5 wt%, 𝐿𝛼
′ , 

G´~ 10 Pa) and onion+lamellar (15 wt%, 𝐿𝛼
′ +𝐿𝛼 , G´~ 102 Pa) phases found for nonionic 

surfactants in water.47 One should note that G´´> G´ at time below 250 min (Figure 3c) is an 

artifact due to the couette cell geometry, which does not impose a constant normal force, 

differently than the plate-plate geometry, where G´ is always higher than G´´ (Figure S 8). 

G´(ω) and G´´(ω) (Figure 3d) display the same dependency with the angular frequency as 

seen for the as-prepared hydrogels at constant pH and given ionic strength (Figure 2b), thus 

showing that the method of preparation does not affect the nature of the gel but only the 

plateau elastic modulus. Finally, 1H NMR experiments show that the fraction of G-C18:0 in 

the lamellar phase is practically quantitative (95 %) and stable over time (Figure S 9). 
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Figure 3 – a-c) GDL-driven sol-to-gel transition probed using rheo-SAXS (CG-C18:0= 5 wt%, initial pH 8.1, 

[GDL]= 100 mM). a) Selected SAXS profiles of the rheo-SAXS experiment in (b). Modelling of the SAXS 

data is shown in Figure S 10. Symbols ° and ¤ indicate the broad peak attributed to the lamellar stacking. 

b) Time evolution of water layer, dw, and IL membrane, (2Th+L), thickness derived from SAXS data 

analysis of rheo-SAXS data in (a). Blue symbols correspond to G´ in (c). c) Time evolution of G´ (full 

symbols), G´´ (open symbols) (ω= 6.28 rad.s-1, γ= 0.1%, constant gap 1 mm, couette cell geometry) and pH 

(red curve). The G´´> G´ at t> 50 min is an artifact most likely due to the constant gap of the couette cell, 

because no multiple cross-over exists in the cone-plate geometry with constant normal force (Figure S 8). 

The dotted line represents the G´ at 5 wt% presented in Figure S 8 and collected under constant normal 
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force. d) G´(ω)  (full symbols) and G´´(ω) (open symbols) measured for 2.5 wt% < CGC18:1 < 10 wt% 

measured after 720 min (γ= 0.1 %) from addition of GDL (initial pH 8.1). e) Time evolution of G´ (full 

symbols), G´´ (open symbols) of the same sample presented in (c) after reaching G´ at plateau at T= 25°C 

and upon application of a temperature ramp of 5°C/min from 25°C to 70°C. Temperature is held at 70°C 

for 60 min, then brought back to T= 25°C at 5°C/min (temperature profile is shown in blue). f) Selected 

SAXS experiments corresponding at rheology data (rheo-SAXS) presented in (e); numbers are related to 

the temperature profile in (e). d refers to the interlamellar distance. 

 

Figure 3a presents representative SAXS patterns recorded during the sol-to-gel 

transition (Figure 3c) from pH 8 min to pH 5. The SAXS profiles below 15 min are typical 

for a micellar phase and largely characterized for the G-C18:0 in a previous work.19 Below 

pH 8, the oscillation at q> 1 nm-1 and the broad peaks (indicated by symbols ° and ¤) at q< 1 

nm-1 respectively characterize the lamellar form factor and d-spacing, as discussed above. The 

numerical fit of the SAXS data corresponding to the lamellar phase (typical fits are shown in 

Figure S 10) provides the water layer, 𝑑𝑤 , and IL IL thickness (2Th+L, respectively 

hydrophilic shell thickness and hydrophobic core length).  

The viscoelastic properties during the sol-to-gel transition can be divided into four 

regions (Figure 3b): I) t< 40 min: sharp increase of both moduli up to 102 Pa, pH reaches 

~6.5 and 𝑑𝑤 decreases from 22 nm to 18 nm: region I is characterized by an increase in the 

concentration of lamellae per unit volume due to the completion (t ~40 min, Figure S 9) of 

the micelle-lamellar transition; II) 50 < t/min < 170 is characterized by a pseudo-plateau, both 

moduli slowly increase with time, 𝑑𝑤 increases back to 22 nm before dropping towards 12 

nm. The reasons for such an oscillating behavior of 𝑑𝑤  are not clear, because they could 

depend on many coexisting factors like electrostatic repulsion due to an excess of negatively-

charged glucolipids in the IL, variation in the salt concentration at the membrane but also 

variations in the osmotic pressure between the lamellar domains and the bulk solution; III) 
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200<t/min<300 and IV) t>300 min are respectively characterized by a sharp increase and 

stabilization of G´ and G´´, with 𝑑𝑤~12 nm: lowering of pH reduces the charge density (less 

COO- groups) in the IL , resulting in closer lamellae.  

In summary, rheo-SAXS shows that the sol-to-gel process is characterized by a 

micelle-to-lamellar transition, as found before under dilute conditions.19 The hydrogel 

formation is a dynamic process passing through the assessment of the interlayer distance, 

dominated by 𝑑𝑤 (rather than the IL thickness), of which the fall below ~15 nm is strongly 

correlated to the improvement of the mechanical properties.  

 

Effect of temperature. Shear and fast heating above the Tm were employed in the experiments 

in Figure 2 to anneal the gels and allow comparable rheology experiments. To decorrelate the 

combined effects of temperature and shear, we study hereafter the effect of temperature on the 

mechano-structural properties of a G-C18:0 gel at rest by in-situ rheo-SAXS. 

Figure 3e quantifies the loss of the mechanical properties of a typical G-C18:0 

hydrogel at rest (C= 5 wt%, G´ at plateau ~ 104 Pa) of about one order of magnitude between 

25°C and 70°C. When temperature is decreased again to 25°C, the system recovers most of its 

mechanical properties after an equilibration time of 30 min to 60 min. Interestingly, 

temperature alone at rest, differently than pH, does not promote a gel-to-sol transition in the 

25°C-70°C range, because G´ > G´´ (at ω= 6.28 rad.s-1, γ= 0.1%) even at 70°C. Rheo-SAXS 

experiments show that the scattering profile of SAXS at 25°C is very similar to the profile at 

70°C, except for the a-peak at q= 0.43 nm-1 (d-spacing, 14.3 nm) at 25°C (profile 1 in Figure 

3f) becoming broader at 70°C (profile 4 in Figure 3f). Broadening indicates an increasing 

local disorder. Reversibility is also confirmed by the data collected after cooling at 25°C, 

where the peak recovers its original width (profile 6 in Figure 3f), although with slightly 

smaller d-spacing (12.8 nm). Softening of the gel characterized by the same IL structure could 



17 
 

be compatible features with formation of a vesicular-lamellar gels, known to have poorer 

mechanical properties than purely lamellar hydrogels.12,47,48 However, differently than 

expected, confocal microscopy seem to exclude the formation of vesicles but rather the 

enhancement of spherulitic domains of few micrometers in size composed of highly curved 

disordered lamellar sheets (Video 4,5, recorded at C= 2.5 wt%, pH 6 and T= 50°C). 

Temperature also promotes an increased fraction of condensed lamellae, as demonstrated by 

the systematic and irreversible increase in the intensity of c-peak at 2.03 nm-1. 

Macroscopically, it is not uncommon to observe a precipitate after heating and cooling. 

 In summary, temperature (in the absence of shear) promotes a reversible order-

disorder transition, characterized by the presence of spherulitic disordered lamellar 

aggregates, which soften the G-C18:0 hydrogel. The gel can be recovered with its original 

elastic properties upon cooling but precipitation of a dense lamellar phase could be expected. 

 

Effect of shear. Shear is a key processing parameter when working with gels and in the 

specific case of lamellar phases, two main non-equilibrium phase transitions under shear 

occur: shear-induced orientation49 or multi-lamellar vesicles (onion phase).50,51 The shear 

thinning flow behavior of a lamellar phase is generally explained by the gliding of the layers 

relative to each other due to screw dislocations, which slide under an applied shear to 

counterbalance the applied vorticity,52 or by layer tilting and dilation under shear flow, which 

could lead to a continuous production of dislocations.53 Rheo-SAXS and microscopy help 

picturing these phenomena when shear is applied to a G-C18:0 lamellar hydrogel. 

The decrease of dynamic viscosity, η, with shear rate, 𝛾̇, (Figure 4a) depicts a typical 

shear-thinning behavior of the lamellar hydrogel. η( 𝛾̇ ) profiles, recorded on G-C18:0 

hydrogels prepared in Figure 3c, display shear-thinning properties both during (t=120 min, 

G´~ 102 Pa) and after (t>300 min, G´~ 104 Pa) gelation but after 300 min, the zero-shear 
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plateau is two orders of magnitude higher and the shear thinning behavior is reversible (upon 

decrease in the shear rate, the system recovers its original viscosity). At t>300 min, the 

lamellae are isotropically oriented from zero-shear to well above 10 s-1, above which a mild 

orientation occurs up to 1000 s-1, in contrast to classical orientation under shear in lamellar 

systems.49 On the contrary, below 200 min (Figure 4a), lamellar orientation is more sensitive 

to shear: isotropic orientation at zero shear (pattern 1) is lost between 0.1 s-1 and 1 s-1 (pattern 

2), where the first order Bragg reflection now clearly appears, indicating a perpendicular 

alignment of the lamellae with respect to the shear direction (Figure 4b). Between 10 s-1 and 

100 s-1, the η(𝛾̇) profile is characterized by a jump (observed using plate-plate, cone-plate and 

couette cell geometries) and the SAXS pattern (3) shows a partial loss lamellar alignment, due 

to either a change in the orientation, from perpendicular to parallel, or to partial disordering. 

Optical differential interference contrast microscopy (DIC-M) and cryo-TEM performed on 

sheared G-C18:0 glyco-hydrogels show the presence of both aligned lamellae (DIC-M) and 

condensed structured spheroids (DIC-M and Cyo-TEM) (Figure 4c) and exclude the presence 

of an onion phase.50,51 
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Figure 4 - a) Evolution of viscosity η with shear rate 𝜸̇ recorded on G-C18:0 hydrogel prepared in Figure 

3c after 120 min (G´~ 102 Pa, red: ascending shear rate ramp; white: decreasing shear rate ramp) and 

after 300 min (G´~ 104 Pa, stars) at CG-C18:0= 5 wt% (constant gap 1 mm, couette cell geometry, [GDL]= 

100 mM). Images 1-3 are representative 2D SAXS patterns corresponding to 1-3 in the η(𝜸̇) profile. b) 

Scheme representing the rheo-SAXS geometry and the perpendicular orientation from the 2D SAXS 

pattern n°2. c) DIC-M and cryo-TEM images are recorded on the lamellar glyco-hydrogel (pH~6, CG-

C18:0= 5 wt% and CG-C18:0= 1 wt%, respectively) after shear. Shearing conditions are given on top of each 

micrograph. 

In summary, rheo-SAXS combined with microscopy show a transition from lamellar 

to structured spheroids, which, to the best of our knowledge, was never described in the 

literature on lipid IL. Such finding seems however in agreement with the predicted folding of 

a stiff flat system,54 predicted theoretically in the so-called crumpling transition,55 observed 

on graphene oxide sheets.56 Tm higher than RT and the possible Pβ,i phase characterizing G-

C18:0 hydrogels may explain the stiffness and such unexpected behaviour under shear, 

instead of a lamellar-to-vesicle transition, classically obtained in Lα phases. 
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Rheo-thinning and fast recovery are used to prepare kinetically-trapped soft anisotropic 

3D materials 

The kinetically-trapped state, heterogeneity, and responsivity to external stimuli of the 

lamellar glyco-hydrogels may seem a drawback when it comes to a precise control of the 

mechanical properties. However, hereafter we show that these characteristics can be exploited 

at one’s favour. Figure S 11 shows that a typical hydrogel (2.5 wt%, pH 6, [NaCl]= 123 mM) 

submitted to a series of step-strain (0.5 % <  < 100 %) cycles is able to recover about 25% of 

its initial elasticity after 30 s and between 60% and 80% after 30 min. If Na+ is replaced by 

divalent Ca2+, we have observed a general tendency to form a stiffer hydrogel faster with a 

delayed ‘negative’ aging (from gel to precipitate) from days to weeks. The interaction of Ca2+ 

divalent cations with lipid IL is a complex,57,58 but effective, faster,39,40 and somewhat a 

different59 phenomenon than monovalent cation adsorption. When a CaCl2 solution is added 

to a G-C18:0 lamellar glyco-hydrogel (2.5 wt%, prepared at pH ~6.7), the gel aspect becomes 

denser, strongly scattering and precipitation at [CaCl2]= 50 mM (Figure 5a). The addition of 

10 mM CaCl2 increases remarkably G´ and G´´ values by a decade, showing the discussed 

power law dependency of frequency for both moduli (Figure 5b). However, excess Ca2+ 

(here, 20 mM CaCl2) dramatically lowers the mechanical properties, confirming the data 

collected at high [Na+] (Figure 2b). After three cycles of step strain experiments, the G-C18:0 

lamellar glyco-hydrogels at 0, 5, 10 and 20 mM CaCl2 respectively recover 70 %, 77 %, 69 % 

and 31 % of their initial G´ values after 30 min, demonstrating their potential use in soft 

material engineering. 

Processing of soft self-assembled materials is of a great importance and a lot of work 

has been devoted to fibrillary soft materials,60 while shaping of lamellar systems is generally 

performed on polymeric materials,61 because the engineering of lamellar hydrogels was not 

mature enough up to now. Based on the shear-thinning properties of G-C18:0 lamellar glyco-
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hydrogels and the kinetic trapping effect of Ca2+, we are able to prepare shape-defined soft 3D 

materials by either continuous (fibers) or dropwise (beads) extrusion of a 2.5 wt% G-C18:0 

lamellar glyco-hydrogel into a CaCl2 solution (Figure 5d).62 PLM (Figure 5) performed on 

the beads and fibers confirm the expected heterogeneous, highly defectuous, lamellar 

structure of the Ca2+-trapped gels, in analogy analogous to PLM images recorded on lamellar 

glyco-hydrogels with high NaCl content (Figure 2.d and Figure S 2.g-h). 

 

 

Figure 5 – a) G-C18:0 (2.5 wt%, pH ~ 6.7) lamellar glyco-hydrogels at increasing CaCl2 concentration. b) 

G´(ω) (full symbols) and G´´(ω) (open symbols) performed on samples in a) (γ = 0.05 %, lag time 2 h). c) 

Three cycles of step-strain experiments (ω= 6.28 rad.s-1, destructuring at γ=100 % during 2 min followed 

by recovery at γ= 0.05 % during 30min) performed on samples in a). G´ is represented by full symbols. d) 

Soft G-C18:0 lamellar glyco-hydrogel materials obtained by extruding a rheo-thinning hydrogel in a 

CaCl2 (1 M) solution. PLM microscopy (Brigth Field, BF, and Crossed Polarizers, CP) images show the 

biphasic and defectuous nature of the kinetically-trapped hydrogels. 
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In summary, we show that a new pH-responsive glucolipid obtained in large amounts 

from glucose and vegetable oils from the microbial fermentation of the modified yeast S. 

bombicola ΔugtB1 is able to form lamellar rheo-thinning glyco-hydrogels in water in the pH 

range between 5 and 7.5 and ionic strength between 10 mM and 500 mM. Hydrogels are 

composed of a biphasic medium composed of water and large interconnected domains (100-

500 μm) of kinetically-trapped lamellar phase controlled by electrostatic interactions. The 

mechanical properties depend on both the high density of defects, as expected, but also on the 

multiscale structure where lamellar domains of several hundred microns coexist with domains 

of few microns and disordered spherulitic inclusions composed of entangled lamellar sheets 

of thickness less than 500 nm. pH and shear enhance sol-gel transitions, ionic strength below 

~500 mM consolidates the hydrogel, while temperature at rest weakens the mechanical 

properties through order-disorder transitions. Interestingly, homogeneous pH variations can 

promote gels with elastic moduli as high as Gˈ~104 Pa. We exploit the sensitivity to pH and 

ionic strength to prepared 3D soft lamellar materials by a simple extrusion process in a Ca2+ 

solution. This work shows the huge potential of new biobased compounds, the key to a future 

biobased economy, having functional, stimuli-responsive, properties that outclass the best 

standards in the field. Considering the biocompatibility of the glucolipid and large production 

potential, we expect novel applications in medicine, tissue engineering and, at the same time, 

the astonishing mechanical properties of the lamellar glyco-hydrogels should stimulate 

research in the field of complex fluids and biophysics, including 3D printing.   
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Supplementary Information Text 

 

Materials and Methods 

Chemicals. The microbial monunstaurated glucolipid G-C18:1 has been produced at a 

production rate of ~ 0.5 gL-1h-1 in a bioreactor system using a modified strain (ΔugtB1) of the 

yeast Starmerella bombicola1 and according to the experimental conditions described in ref. 2. 

The fully saturated G-C18:0 (Mw = 462.6 g.mol-1), used in this work, was obtained from 

GC18:1 by a catalytic hydrogenation reaction, described in ref. 2. The NMR, HPLC and LC-

MS analyses of G-C18:0 can be found in ref. 2. Glucono-δ-lactone (GDL, Mw = 178.14 g.mol-

1) was purchased from Sigma Aldrich. 18:1 Liss Rhod PE (Mw= 1301.7 g.mol-1, λabs= 560 nm, 

λem= 583 nm), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B 

sulfonyl) (ammonium salt), is purchased by Avanti® Polar, Inc 

General method to prepare G-C18:0 hydrogels. Hydrogels are prepared by dispersing the G-

C18:0 sample in water followed by sonication and adjustment of pH to the desired pH value 

and ionic strength. In detail, a given amount of G-C18:0 (in wt%) is dispersed in a given 

volume of milliQ water (generally 1 mL). The pH of the mixture is generally between 3.5 and 

4.5, according to the sample concentration. The pH is then adjusted in the range 5.5 - 7.5 

using 1-20 µL of NaOH 1 M (0.1 M can also be used for refinement), according to 

concentration and desired pH. The mixture is then sonicated between 15 and 20 min in a 

classical sonicating bath to reduce the size of the aggregated powder and until obtaining a 

homogenous, viscous, dispersion. To this solution, the desired volume of NaCl is added so to 

obtain a given total [Na+] {= [NaOH] + [NaCl]} molar concentration. To keep the dilution 

factor negligible, we have used a 5 M concentrated solution of NaCl. The mixture is then 

sonicated again during 15 min to 20 min and eventually vortexed two or three times during 15 

s each. The solution can then be left at rest during 15 min to 30 min. This procedure is 

generally enough to obtain a stable hydrogel. However, to reduce the impact of gel history, 

measurements done in Figure 2 and Figure S 3 have been performed after 2 hours following 

an annealing cycle: vortexing of the gel during 15 s at room temperature, loading of the fluid 

solution in the rheometer, heating from 25°C to 70°C (above Tm) at 10°C/min, rest at T= 70°C 

during 10 min, cooling to T= 25°C at 10°C/min.  

 

Other methods to prepare G-C18:0 hydrogels. The method given above, although by far the 

easiest most efficient and reproducible approach, is not unique in preparing G-C18:0 
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hydrogels, of which the synthesis is highly versatile. Below, we provide other equivalent 

methods, which were developed to be adapted to specific analytical or experimental 

conditions. The two crucial parameters are the final pH and total ion concentration, and it 

seems that the process through which these parameters are fixed is not important. However, 

the process may influence the homogeneity of the solution and to this regard it is not excluded 

that the absolute value of the elastic modus at plateau may depend on the process. 

- Sample preparation method for rheo-SAXS experiments (Figure 3 and Figure 4 in 

the main text). In-situ rheo-SAXS analysis is a powerful technique to probe the 

mechano-structural properties of the hydrogels and it was used here to study, among 

other, the sol-to-gel transition which occurs between basic and acidic pH. For this set 

of experiments, we have developed a complementary method to prepare the 

hydrogel. A given amount of G-C18:0 (in wt%) is first dispersed in 1 mL of water 

and sonicated for few minutes to break the aggregated powder. The pH of the 

solution is then raised under stirring with few μL (generally between 2 and 30, 

according to the amount of sample) of 5 M NaOH until pH ~9-10 is reached. The 

solution becomes a partially clear sol at basic pH, (pH > 8) as discussed in a previous 

work.2 The sol-to-gel transition is then studied using an in situ acidification using 

glucono δ-lactone (GDL). A given amount of GDL is weighted in a vial, to which the 

basic G-C18:0 solution is added. Mixing is achieved by vortexing for approximately 

10 to 20 seconds and the sample is allowed to stand still (no additional vortexing, 

sonication, stirring) with gelation taking place over several hours at room 

temperature. For the rheo-SAXS experiments, the G-C18:0 solution at basic pH is 

immediately placed in the couette cell after mixing with GDL. A constant GDL: G-

C18:0 molar ratio of 1.08:1 is selected. Indeed, to prepare G-C18:0 solutions of 10, 

25, 50 and 100 mg.mL-1, concentrations of GDL of 3.56, 8.9, 17.8 and 35.6 mg.mL-1 

were selected,  respectively.  

- Sample preparation method to develop soft materials (Figure 5 in the main text). 

A rheo-thinning G-C18:0 hydrogel (CG-C18:0= 2.5 wt%, pH~6.7, V= 10 mL) is first 

prepared by pH-jump method using HCl. The hydrogel is then divided in five vials 

(V= 1.9 mL per each) and different volumes of CaCl2 solution ([CaCl2]=1 M) are 

added. The final volumes are then adjusted to 2 mL using Milli-Q-grade water and 

the mixtures are vortexed during 30 sec to achieve a complete homogenization. The 

final CaCl2 concentrations are (0, 5, 10, 20 and 50 mM). 
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Small Angle X-ray Scattering (SAXS). All SAXS experiments are performed at 25°C at the 

DUBBLE BM26B beamline at the ESRF synchrotron facility (Grenoble, France).3,4 Dialyzed 

samples (please refer to the preparation of the hydrogel section) have been analysed during 

the run SC4639 using a beam at 11.93 KeV and a sample-to-detector distance of 2.10 m. 

Samples are prepared ex-situ and they are analysed directly by setting them in front of the x-

ray beam. The signal of the Pilatus 1M 2D detector (172 x 172 μm pixel size), used to record 

the data, is integrated azimuthally with  PyFAI to obtain the I(q) vs. q spectrum (𝑞 =

4𝜋 sin 𝜃
𝜆⁄ , where 2θ is the scattering angle) after masking systematically wrong pixels and 

the beam stop shadow. Silver behenate (d(100) = 58.38 Å) and α-Al2O3 (d(012) = 3.48 Å) are 

respectively used as SAXS and WAXS standards to calibrate the q-scale. Data are not scaled 

to absolute intensity. 

 

Rheo-SAXS. Experiments coupling rheology and SAXS have been performed during the 

SC4778 run using a beam energy of 12.65 KeV and a sample-to-detector distance of 3.23 m, 

where silver behenate is used as q-calibration standard. A MCR 501 rheometer (Anton Paar, 

Graz, Austria) equipped with a Couette polycarbonate cell (gap 1 mm) was coupled to the 

beamline and controlled through an external computer in the experimental hutch using the 

Rheoplus/32 V3.62 software. A radial scattering configuration, where the beam passes the 

sample along the velocity gradient direction, was used. The rheology and SAXS acquisitions 

are synchronized manually with an estimated time error of less than 5 s. Due to standard 

security procedures, the first rheo-SAXS experimental point is systematically acquired with a 

delay of about 3-4 minutes. The experimental setup is shown on Figure S 6. SAXS signal 

acquisition and processing is the same as above. Data are not scaled to absolute intensity. 

 

Small Angle Neutron Scattering (SANS). SANS experiments have been performed at the D11 

beamline of Institut Laue Langevin (Grenoble, France). Four q-ranges have been explored and 

merged using the following wavelengths, λ, and sample-to-detector (StD) distances. 1) ultra-

low q: λ= 13.5Å, StD= 39 m; 2) low-q: λ= 5.3Å, StD= 39 m; 3) mid-q: λ= 5.3Å, StD= 8 m; 4) 

high-q: λ= 5.3Å, StD= 1.4 m. All samples are prepared in 99.9% D2O (using NaOD and DCl 

solutions, as well) to limit the incoherent background scattering. Solutions are analyzed in 

standard 1 mm quartz cells. Direct beam, empty cell, H2O are recorded and boron carbide 

(B4C) is used as neutron absorber. All samples are thermalized at 70°C during 10 min then 

cooled down at 25°C. Analysis is performed after 2 h from cooling. The background sample 
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(D2O) signal was subtracted from the experimental data. Absolute values of the scattering 

intensity are obtained from the direct determination of the number of neutrons in the incident 

beam and the detector cell solid angle. The 2-D raw data were corrected for the ambient 

background and empty cell scattering and normalized to yield an absolute scale (cross section 

per unit volume) by the neutron flux on the samples. The data were then circularly averaged 

to yield the 1-D intensity distribution, I(q). The software package Grasp (developed at ILL 

and available free of charge) is used to integrate the data, while the software package 

SAXSUtilities (developed at ESRF and available free of charge) is used to merge the data 

acquired at all configurations and subtract the background. 

 

Analysis of the SAXS data. The lamellar phase formed by the G-C18:0 glucolipid has been 

previously characterized by SAXS and it was described by two symmetrical hydrophilic 

regions, containing the glucose and COOH moieties, separated by an interdigitated layer of 

the C18 chain.2 The corresponding structural parameters are: thickness of the hydrophilic 

region: Th= 1.4 nm; length of the hydrophobic core: L= 0.8 nm. The total thickness of the 

bilayer is then (2Th+L)= 3.6 nm, where the error coming from the fitting procedure of the 

corresponding SAXS data is estimated to about 10%. Unless otherwise stated, we use these 

values to characterize the lamellae. 

The rheo-SAXS experiments performed in this work have been analysed in a similar way: we 

combined a core-shell bicelle form factor model,a as in ref. 2, with a Lorentzian peak,b to 

account for the presence of the broad low-q interaction peak. We used the SasView 3.1.2 

software. For the core shell bicelle form factor, we use a large value of the bicelle radius (R= 

100 nm), thus mimicking a large flat object, analogous to a lamella. The rim radius is set to 

zero. The solvent Scattering Length Densities (SLD) are adjusted as in ref. 2: the SLD value 

of H20 is 9.4.10-4 nm-1 while the core SLD is set to 8.3.10-4 nm-1, which represents a typical 

value for an aliphatic chain. The SLD of the hydrophilic region is set 10.9.10-4 Å-1. Due to the 

fact that we do not employ an absolute scale, the SLD values cannot be quantitatively 

exploited. Finally, Th, L and the scaling factor (the latter is varied because our data are not in 

absolute scale) are the only variables. The Lorentzian peak is controlled by the full width at 

half maximum and the peak position, which are qualitatively estimated at the beginning of the 

fit and allowed to vary for refinement.  

                                                           
a http://www.sasview.org/docs/user/models/core_shell_bicelle.html 
b http://www.sasview.org/docs/user/models/peak_lorentz.html 

http://www.sasview.org/docs/user/models/core_shell_bicelle.html
http://www.sasview.org/docs/user/models/peak_lorentz.html
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Selected data (Figure S 3.a) were also fitted using a core-shell lamellar form factor, in toto 

equal to the previous approach, combined with the structure factor described by Nallet et al.5 

for a lyotropic lamellar phase, where the lamellae are assumed to be randomly distributed in 

solution.c If the structural parameters of the lamellae (shell thickness and core length) are not 

affected by this approach and fit quality is the same as the one presented in Figure S 10, this 

model has the advantage to correlate, through the Caillé parameter η and the number of 

lamellar plates, N, the structure (amplitude, width, position) of the peak describing the 

interlamellar distance to the elastic properties of the lamellar phase: 

η =  
𝑞0

2𝑘𝑏𝑇

8𝜋√𝐾𝐵̅
           Eq. 2 

where q0 is the peak position, kb is the Boltzmann constant, T is the temperature, K is the 

bilayer bending rigidity, 𝐵̅  the bulk compression modulus. The Caillé parameter η is a 

measure for the bilayer fluctuations via the analysis of the Bragg diffraction peak of the 

lamellar phase. From a qualitative point of view, large values of η characterize soft 

membranes, while small values of η are encountered in stiff membranes.6 Upon use of this 

model, η, N, thickness and length of, respectively, the hydrophilic and hydrophobic regions, 

are the variable parameters, while the SLD’s are adjusted as described above. 

 

Rheology. Rheology experiments are carried out using a MCR 302 rheometer (Anton Paar, 

Graz, Austria) equipped with a Peltier temperature system which allows accurate control of 

the temperature by the stainless steel lower plate and with a solvent trap to ensure minimal 

evaporation of water during the measurements.  

- Oscillatory rheology. These experiments are performed using titanium or a stainless 

steel sandblasted upper plate (diameter 25 mm). The gap (0.5 or 1 mm) and the normal 

force (NF= 0 N) are controlled during the experiments. After loading, samples are 

allowed to stand at rest for at least two hours before analysis. A dynamic strain sweep 

is first conducted at an angular frequency (ω= 6.28 rad.s-1) by varying the shear strain 

(γ) from 0.001 to 100 % in order to determine the linear viscoelastic regime (LVER). 

A value of strain within the LVER is then applied in the following dynamic angular 

frequency sweep between 100 and 0.01 rad.s-1. Frequency time sweep experiments are 

also performed to monitor the gelation kinetic of the G-C18:0 samples by slow 

acidification. Briefly, the glucolipid basic solution is mixed with the appropriate 

amount of GDL and the final mixture is vortexed for 20 seconds and immediately 

                                                           
c http://www.sasview.org/sasview/user/models/model_functions.html#lamellarpshgmodel 

http://www.sasview.org/sasview/user/models/model_functions.html#lamellarpshgmodel
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loaded on the bottom plate. Dynamic oscillatory time sweep experiments are then 

performed by applying a constant angular frequency (ω = 6.28 rad.s-1) and a shear 

strain (γ) within the LVER (0.05 - 0.1 %) and data are collected during 720 minutes at 

25 °C. A delay of 3-5 minutes occurs between the moment of mixing and the 

beginning of the measurement. To monitor the gelation of the G-C18:0 upon thermal 

annealing, the elastic (G´) and viscous (G´´) moduli are recorded during temperature 

heating ramps from 20 to 70 °C at a rate of 10 °C/min. The sample is initially 

vortexed, then loaded and held at 70 °C for 10 min and then cooled from 70 to 25 °C 

at a rate of 10 °C/min and finally held at 25°C during two hours. These temperature 

variation experiments are performed using an oscillation angular frequency (ω= 6.28 

rad.s-1) and a strain (γ = 0.05%). Afterward, an angular frequency sweep (100 – 0.01 

rad.s-1) was performed using a shear strain, γ= 0.05%, within the LVER.  

- Shear viscosity. Steady-shear viscosity is determined using a cone-and-plate geometry 

(diameter 25 mm, angle 1° and truncation 50 µm) and a plate-and-plate geometry 

(diameter 25 mm, gap = 0.5 mm) by increasing the shear rate (γ) from 10-3 to 103 s-1. 

Compared to plate-plate geometry, cone-plate configuration guarantee a uniform shear 

of the sample, however the small imposed gap (truncation 50 µm) could lead to 

preferential aggregation of the lamellar structure (3-4 nm of thickness but few µm of 

length (Llamellar) in the center of the geometry (Llamellar > gap x 10).  Here we presented 

therefore the data obtained used the plate-plate geometry. Except for thermal 

annealing experiments, all rheological characterizations are conducted at 25 °C, unless 

otherwise mentioned. 

 

Sample imaging. 

Light Microscopy. Images of G-C18:0 samples, at rest or after shear, are acquired in 

bright field and polarized light mode (PLM) using a Nikon DS-Ri1 through crossed polarizers 

and in a differential interference contrast mode (DIC-M) using a Zeiss AxioImager D1 

microscope.  

 

Cryogenic Transmission Electron Microscopy (Cryo-TEM). These experiments were 

carried out on an FEI Tecnai 120 twin microscope operating at 120 kV equipped with a Gatan 

Orius CCD numeric camera. The sample holder was a Gatan Cryoholder (Gatan 626DH, 

Gatan). On both microscopes, Digital Micrograph software was used for image acquisition. 

Cryofixation was done on a homemade cryofixation device. The solutions were deposited on 
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a glow-discharged holey carbon coated TEM copper grid (Quantifoil R2/2, Germany). Excess 

solution was removed and the grid was immediately plunged into liquid ethane at −180 °C 

before transferring them into liquid nitrogen. All grids were kept at liquid nitrogen 

temperature throughout all experimentation. 

Nuclear Magnetic Resonance (NMR): time-resolved 1H solution NMR experiments are 

acquired on a Bruker Avance III 300 spectrometer using a 5 mm 1H-X BBFO probe. Number 

of transient is 16 with 5 s recycling delay. Experiments are carried out as follows: a 5 wt% 

solution prepared in D2O (500 μL) at pD ~11 is mixed with 100 mM GDL at RT, inserted in a 

standard 5 mm NMR tube and immediately introduced in the NMR spectrometer. The entire 

process before requires about 6 min from the moment of mixing to first acquired 1H NMR 

scan. Absolute values of the peak area as a function of time are obtained using the integration 

and relaxation moduli of the Topspin™ 3.5 pl7 version of the software. We have observed 

that phasing problems due to change in pH may affect the peak of residual H2O. Since this is 

the most intense peak, poor phasing can affect the baseline in the vicinity of the sugar CH 

region between 3 ppm and 4.5 ppm. This unavoidable fact strongly affects the actual value of 

the peak area. For this reason, we mainly present the time-resolved evolution of the aliphatic 

peak area, contained between 0.8 ppm and 3 ppm. Peak area normalization is performed with 

respect to the spectrum recorded before adding GDL, when the entire G-C18:0 population is 

detected in the micellar phase. The integrated signal corresponds to the molar fraction of G-

C18:0 in the soluble micellar phase, defined XM. The fraction of G-C18:0 in the lamellar 

phase, XL, is simply obtained by 1-XM, according to the assumption that the mobility in the 

lamellar environment is so slow that becomes “invisible” to solution NMR. This hypothesis is 

commonly verified in many self-assembled hydrogels.7,8 

Differential Scanning Calorimetry (DSC): DSC is performed using a DSC Q20 apparatus 

from TA Instruments equipped with the Advantage for Q Series Version acquisition software 

(v5.4.0). Acquisition is performed on a G-C18:0 dry powder sample (~ 10 mg) sealed in a 

classical aluminium cup and using an immediate sequence of heating (from 10°C to 90°C) 

and cooling (from 90°C to 10°C) ramps both at a rate of 1°C/min. 

Confocal Laser Scanning Microscopy (CLSM): CLSM was performed with a LeicaSP8 

Tandem Confocal system. Samples were excited with the dye specific wavelength (561 nm) 

and the emission was detected between 580 and 620 nm using a photomultiplier tube (PMT) 

detector. CLSM images were analyzed using Fiji (Fiji is just ImageJ)9 and 3D construction 
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was performed using the 3D Stack mode of Fiji. Temperature variation (T= 50°C) was 

performed with temperature controller modulus of the microscope. The hydrogel (CG-C18:0= 

2.5 wt%, pH 6) was prepared following the general method described above. A volume of 4 

μL of an ethanolic solution of 18:1 Liss Rhod PE (C= 53 mg/mL) was added to 1.5 mL of the 

hydrogel to reach an approximate molar ratio of G-C18:0/Liss of 500. Liss is a water 

insoluble, rhodamine-containing, lipid and it is largely used to mark lipid bilayers. It is 

generally considered not to interfere with the bilayer assembly at Lipid/Liss ratio above 200. 

We did not observe any variation in the gel physical aspect after addition of Liss.  
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Figure S 1 – Differential Scanning Calorimetry (DSC) thermogram of the native G-C18:0 powder 

acquired at 1°C/min 
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Figure S 2 – Bright Field and PLM (scale bar: 100 μm) of a set of G-C18:0 samples at pH 6.5 in water. 

Samples are prepared in flame-sealed flat capillary of 200 μm thickness, as in ref. 10. Exact conditions are 

given on top of each series of images. All images are recorded after 24 h from preparation. All samples are 

kept at room temperature ~ 23°C, except in images e)-f), in which samples are kept at T= 60°C. The 

subscript CP refers to the corresponding image on the immediate left acquired using crossed polarizers. 

The physical state of the sample are explained in red for each series of images. Images in c)-d) and e)-f) 

refer to the same sample, although in e)-f) the sample has been placed at T= 60°C. Images in i) and j) 

highlight the gel sample. Arrows 1 through 3 correspond to anisotropic regions with different orientations 

and arrow 4 to spherulitic domains. 

 

 PLM is commonly used as a complementary technique to XRD to distinguish the 

typical defect textures in lamellar phases, lamellar gels, nematic phases and coagels.10–13 

Unfortunately, PLM is mostly reliable when the density of defects is small and they can be 

isolated. Figure S 2 presents a broad series of bright field and PLM (indicated with the CP 

subscript) image recorded on typical fluid, viscous and gel samples composed of G-C18:0 at 

pH 6.5. At a first glance it is possible to exclude the presence of coagels (lack of typical 

fibrilar crystals)13 and, most likely, of a defectless lamellar phase (absence of oily streaks).10 

In detail, liquid samples are generally characterized by small strongly birefringent circular 

domains of approximate size of 1-10 μm at 1 wt% and room temperature (Figure S 2a-b) and 

10-50 μm at 2.5 wt% (30 mM NaCl) at T= 60°C (Figure S 2e-f). These inclusions recall the 

spherulites in ref. 10 and they are dispersed in a non-birefringent medium. Nevertheless, the 

nature of these domains is most likely not the same; temperature is known to induce a 

lamellar-to-vesicle transition in this compound2 and the 10-50 μm spherulitic domains in the 

sample at T= 60°C (2.5 wt%, 30 mM NaCl, Figure S 2e-f) correspond to vesicular 

compartments, probably multilamellar, given their strong birefringency. 

Upon increase in viscosity (2.5 wt%, 30 mM NaCl, RT, Figure S 2c-d) and up to gel 

formation (2.5 wt%, 150 mM NaCl, RT, Figure S 2g-h), the medium becomes more and 

more characterized by larger irregular birefringent domains of whispy texture (typical size of 

100-500 μm) coexisting with strongly birefringent spherulitic inclusions of smaller size (1-50 

μm). Even if the high density of defects makes a clear-cut attribution risky, we must 

nonetheless note that such description recalls the fluid-gel transition line in lamellar gels than 

a nematic phase.10 However, the lamellar gels were characterized by a monophasic lamellar 

domain, while Figure S 2i-j clearly puts in evidence the strong heterogeneity of the G-C18:0 

gels. 1-labeled arrows show oriented defectuous lamellar domains similar to the whispy 

textures both in bright field and PLM. These domains are connected to defectuous 
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birefringent, although disordered, domains (arrows N° 3) through a continuous change in 

orientation (arrows N° 2). Finally, 4-labelled arrows point at spurious small (< 10 μm) 

spherulitic domains. The entire set of PLM experiments show that the G-C18:0 lamellar 

glyco-hydrogel is not composed of a simple defectuous single lamellar phase, as found in ref. 

10, but rather composed of large (hundreds of microns) interconnected defectuous lamellar 

domains dispersed in water.  
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Figure S 3 – a) SAXS profiles acquired for a G-C18:0 solution (5 wt%) at pH 7 at various NaCl 

concentrations; b) background (water)-containing (left-hand side) and background-subtracted (right-

hand side) WAXS profiles of samples studied in a); c-d) SANS profiles acquired on samples prepared at 

pH 6.5 and various NaCl concentrations at (c) 1 wt%, (d) 2.5 wt%, (e) 5 wt%. Insets: Kratky plots 

[I.q2(q)] 

 

Attribution of the lipid mesophase type of lamellar phase is done using the WAXS 

portion of the x-ray scattering data (Figure S 3b). The WAXS data show a sharp peak at 14.9 

nm-1: in the absence of salt, the peak is so broad that it can hardly be detected, unless 

background (water, characterized by the classical peaks at 20 and 27 nm-1) is subtracted. 

Above [NaCl]= 1 M, the peak is intense and sharp. All experiments are performed at room 

temperature, below the Tm, thus suggesting an ordered packing of the lipids within the 

bilayers. It is then expected that G-C18:0 forms a Lβ,i phase (interdigitation comes from the 

bolaform nature of G-C18:0). A classical Lβ is commonly characterized by an intense, well-

defined, peak between 14.9 nm-1 and 15 nm-1 (𝑑-spacing of 4.2 nm),14–16 signature of the 

parallel packing of the acyl chain within the hydrophobic region of the bilayer. The collapsed 

phase is certainly in the form of Lβ,i. On the contrary, in the swollen region, the same peak is 

very broad; according to the water-containing profiles (b), the shoulder at 14.9 nm-1 should be 

attributed to a Lα phase, characterized by a liquid-like order of the acyl chain. However, the 
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expected 𝑞0 should rather be at 14.7 nm-1 (𝑑-spacing of 0.46 nm),14–16 a smaller value than 

what we do observe experimentally. The last possibility, probably the most plausible, is 

represented by the Pβ phase, which is characterized by a single peak with a corresponding 𝑑-

spacing around 4.2 nm and a width larger than the Lβ phase (although not as large as in the 

Lα).
14,16  
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Figure S 4 – Time evolution of Gˈ (full symbols) and Gˈˈ (open symbols) (ω= 6.28 rad.s-1 and γ= 0.05 %) 

for G-C18:0 (CG-C18:0 = 5 wt%, pH= 6.7, [NaCl]= 167 mM) after 1h30 and 48 h from thermal annealing. 

Plate-plate geometry (25 mm), imposed normal force (NF = 0 N) and initial gap (0.5 mm). 
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Figure S 5 – Shear thinning profiles showing the evolution of viscosity with shear rate at different G-C18:0 

concentrations at pH= 6.7 ± 0.1 and [NaCl]= 163 mM. Plate-plate geometry (25 mm) and an imposed gap 

of 0.5 mm are used  
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Figure S 6 – Rheo-SAXS apparatus used at the BM29B beamline at ESRF synchrotron (Grenoble, 

France). A MCR 501 rheometer (Anton Paar, Graz, Austria) equipped with a Couette polycarbonate cell 

(imposed gap = 1 mm) is employed. A radial configuration is used during the Rheo-SAXS study.  
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Figure S 7 – Experimental determination of the apparent pKa of glucolipid G-C18:0 by titration using 

NaOH in water at T= 25°C (titrated volume: 1.8 mL). The ionization degrees are estimated using the 

Gibb’s free energy rule applied to lamellar phases composed of fatty acids17 

Estimating the ionization degree, α, for fatty acids as a function of pH is a long-date challenge 

which faces the problem of liquid-solid transition and coexistence of multiple phases. The 

problem of calculating α is in fact the problem of estimating the pKa. For stearic acid (which 

composes the fatty backbone of G-C18:0), the molecular pKa measured in organic solvents is 

between 4.9 and 5,18 but this value varies between 5 and 7.6 when stearic acid is contained in 

a micellar environment in water.19 In this work, we use the method of Cistola et al.17, who 

applied the Gibb’s phase rule to the titration curve of selected fatty acids below and above the 

melting temperature of the aliphatic chain. The advantage of this approach is multiple: 1) it is 

simple; 2) it has been used on the micelle-to-lamellar phase transitions of fatty acids in water; 

3) it can be applied on our own experimental data (the titration curve) on a similar system. For 

the detailed description of the method, one can refer to ref. 17. In this work, the region 

between points A and B in Figure S 7 satisfies the condition of invariance (F= 0), where 

composition is fixed, while the region below B (pH= 8.3) is characterized by one degree of 

freedom (F= 1), where composition of the lamellar phase can vary. α is estimated between pH 

5 and pH 8.3, where α= 0.5 at B. 
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Figure S 8 – Sol-to-gel transition promoted by pH (use of GDL) through time-resolved G´ (full symbols) 

G´´ (open symbols) as a function of G-C18:0 concentration (initial pH 11, ω= 6.28 rad.s-1, γ = 0.1%, 

Normal Force = 0 N, initial gap 1 mm), plate-plate geometry (25 mm), [GDL]= 100 mM at CG-C18:0= 5 and 

10 wt%) 
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Figure S 9 – Time evolution of the molar fraction of G-C18:0 glucolipid (CG-C18:0= 5 wt%) in the lamellar 

phase upon acidification (initial pH 11, [GDL]= 100 mM, solvent: D2O). XL= 1-XM, where XM, the micellar 

fraction, is obtained by the normalized integral of the 1H NMR signal of G-C18:0 in the interval 3 < δ/ppm 

< 0.8. 1H NMR is only sensitive to the compound in the micellar environment. 
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Figure S 10 – Typical fits of selected SAXS profiles acquired during the GDL hydrolysis in a G-C18:0 (5 

wt%, initial pH 8.1) solution (Figure 3a in the main text). The fitting strategy has been described in the 

Materials and Methods section of the paper.  
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Figure S 11 – Time evolution of Gˈ (full symbols) and Gˈˈ (empty symbols) with the imposed shear strain 

(γ) at angular frequency (ω= 6.28 rad.s-1). Logarithmic increase of the shear strain (4.10-3 < γ < 100 %) 

during 10 min followed by a recovery at γ = 0.5 % (upper limit of the LVER) during 30 min, followed by 6 

cycles of step strain experiments (γ = 100% during 2 min followed by γ = 0.5 % during 30 min (during the 

first 5 cycles) and 300 min in the last cycle. Plate-plate geometry (25 mm) and an imposed normal force 

(NF = 0 N) with an initial gap (0.5 mm) are used. 
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