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Abstract 

Lipid lamellar hydrogels are rare soft fluids composed of a phospholipid lamellar phase instead 

of fibrillar networks. The mechanical properties of these materials are controlled by defects, 

induced by local accumulation of a polymer or surfactant in a classical lipid bilayer. Herein we 

report a new class of lipid lamellar hydrogels composed of one single bolaform glycosylated 

lipid obtained by fermentation. The lipid is self-organized into flat interdigitated membranes, 

stabilized by electrostatic repulsive forces and stacked in micrometer-sized lamellar domains. 

The defects in the membranes and the interconnection of the lamellar domains are responsible, 

from the nano- to the micrometer scales, for the elastic properties of the hydrogels. The lamellar 

structure is probed by combining small angle x-ray and neutron scattering (SAXS, SANS), the 

defect-rich lamellar domains are visualized by polarized light microscopy while the elastic 

properties are studied by oscillatory rheology. The latter show that both storage G´ and loss G´´ 

moduli scale as a weak power-law of the frequency, that can be fitted with fractional rheology 

models. The hydrogels possess rheo-thinning properties with second-scale recovery. We also 

show that ionic strength is not only necessary, as one could expect, to control the interactions 

in the lamellar phase but, most importantly, it directly controls the elastic properties of the 

lamellar gels.  
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Introduction 

2D and 3D soft self-assembled materials, usually obtained from stimuli-responsive 

peptides, proteins and lipids,1–4 attract a large interest in the field of nanotechnology, for the 

increasing number of high-tech applications5 such as protective coating for cells,6 regenerative 

medicine,7 lab-on-a-membrane prototyping,8 self-healing materials.9 Lipids can self-assemble 

into a variety of soft structures,10 possibly leading to isotropic (entangled fibers) or anisotropic 

(lamellar) structures, the latter being of particular interest.11 

Lamellar hydrogels,12 discovered in 1996 by Safinya and Davidson and composed of a 

phospholipid Lα phase stabilized by a polymer-grafted lipid, were the first example of an elastic 

2D self-assembled material at small concentration (<10 wt%). Since then, lamellar hydrogels 

(LH) were obtained by polymer-stabilization,13 or by combining a lamellar phase with a 

gelator.14,15 The first polymer-free LH, based on surfactant mixtures or lipid/surfactants, are 

reported only in 2014.16,17 Nonetheless, LH are rare compared to more common self-assembled 

fibrillar network, and their out-of-equilibrium behaviour is unknown. If LH are complex elastic 

fluids generated by defects,12 and of which the mechanical properties are hard to control, their 

defectuous nature is also an opportunity in preparing new materials.18 

We have recently shown that a pH-responsive C18:0 glucolipid (17-L-[(β-D-

glucopyranosyl)oxy]-cis-9-octadecenoic acid, G-C18:0, Figure 1a) below 1 wt% undergoes a 

reversible phase transition from a predominant micellar phase to flat interdigitated lipid layers 

(Figure 1b,c)  from basic to neutral pH (transition pH ~7.8) at room temperature (RT).19,20 The 

corresponding monounsaturated glucolipid can be classified as a biosurfactant, a family of 

biobased molecules exclusively produced by the fermentation process of glucose and vegetable 

oil.21,22 More specifically, G-C18:0 is obtained by the fermentation of the yeast S. bombicola 

ΔugtB1,23 and lastly hydrogenated. The microorganism was specially engineered from the WT 

S. bombicola, known to produce the common sophorolipid biosurfactant.24 Deletion of the 

second glucosyltransferase (ugtb1) results in the direct production (as high as ~0.5 gL-1h-1) of 

glucolipids, up to then produced only by enzymatic conversion of acidic sophorolipids or by 

the microbial conversion of secondary alcohols glucosides.25,26 The acidic glucolipid, simple in 

structure, combines a packing parameter >0.5 with a melting temperature (Tm) above RT, thus 

favouring the spontaneous formation of infinitely flat lamellae over vesicles.20 

We show here that a phospholipid-free solution only containing glucolipid G-C18:0 

(Figure 1) in the form of interdigitated membrane spontaneously forms a hydrogel in the 

neutral-acidic pH range above 1 wt%. The hydrogel is not fibrous, as expected from other 

microbial glycolipids,27,28 but it falls in the rare category of LH, without the use of additives 
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like surfactants, polymers or cross-linkers, as shown for other systems.11 The gels reach elastic 

moduli above the kPa range, controllable by ionic strength, in a pseudo two-phase lipid-water 

system. However, pH controls the carboxylic/carboxylate ratio,19,20 thus hiding an actual four-

components (neutral and charged glucolipid, water, salt) system, becoming an unprecedented 

single-lipid lamellar hydrogel, of which the interactions and, above all, the resulting elastic 

properties are unexpectedly triggered by ionic strength. The hydrogel forms through the 

organization of the lipid interdigitated membrane into flat and highly defectuous lamellar 

regions, having shear-thinning properties with instantaneous (seconds) recovery of the 

elasticity. The viscoelastic properties highlight a weak power-law frequency dependence of the 

storage G´ and loss G´´ moduli, a rheological feature of widespread occurrence, but for which 

existent rheological models failed to establish a clear connection with the microstructure. The 

straightforward preparation method, in addition to the multi-scale characterization of the 

system, make this glycolipid lamellar hydrogel a promising candidate for future fundamental 

and applicative investigations. Finally, the glycosylated nature of the molecule defines a new 

class of lamellar hydrogel with potential interest in the biomedical field, cosmetics or food 

science. 

 
Figure 1 – a) Molecular structure of glucolipid G-C18:0 (17-L-[(β-D-glucopyranosyl)oxy]-cis-9-

octadecenoic acid) and b) its pH-dependent phase behavior at room temperature: a micelles-rich phase 

occurs at pH above 7.8 and a lamellar phase forms at pH below 7.8.19,20 c) The lamellar phase is composed 

of an interdigitated membrane composed of a hydrophilic region (Th), a hydrophobic layer (L) and a water 

region of thickness dw.  

 

Materials and Methods 

Chemicals. The microbial monunstaurated glucolipid G-C18:1 has been produced at a 

production rate of ~ 0.5 gL-1h-1 in a bioreactor system using a modified strain (ΔugtB1) of the 

yeast Starmerella bombicola23 and according to the experimental conditions described in ref. 
20. The fully saturated G-C18:0 (Mw = 462.6 g.mol-1), used in this work, was obtained from 

GC18:1 by a catalytic hydrogenation reaction, described in ref. 20. The NMR, HPLC and LC-
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MS analyses of G-C18:0 can be found in ref. 20. 18:1 Liss Rhod PE (Mw= 1301.7 g.mol-1, λabs= 

560 nm, λem= 583 nm), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine 

rhodamine B sulfonyl) (ammonium salt), is purchased by Avanti® Polar, Inc 

 

Preparation of G-C18:0 hydrogels. Hydrogels are prepared by dispersing the G-C18:0 powder 

in water followed by sonication and adjustment of pH to the desired pH value and ionic strength. 

In detail, a given amount of G-C18:0 (in wt%) is dispersed in a given volume of milliQ water 

(generally 1 mL). The pH of the mixture is generally between 3.5 and 4.5, according to the 

sample concentration. The pH is then adjusted in the range 5.5 - 7.5 using 1-20 µL of NaOH 1 

M (0.1 M can also be used for refinement), according to concentration and desired pH. The 

mixture is then sonicated between 15 and 20 min in a classical sonicating bath to reduce the 

size of the aggregated powder and until obtaining a homogenous, viscous, dispersion. To this 

solution, the desired volume of NaCl is added so to obtain a given total [Na+] {= [NaOH] + 

[NaCl]} molar concentration. To keep the dilution factor negligible, we have used a 5 M 

concentrated solution of NaCl. The mixture is then sonicated again during 15 min to 20 min 

and eventually vortexed two or three times during 15 s each. The solution can then be left at 

rest during 15 min to 30 min. This procedure is generally enough to obtain a stable hydrogel. 

However, to reduce the impact of gel history, rheological measurements are performed after 2 

hours following an annealing cycle: vortexing of the gel during 15 s at room temperature, 

loading of the fluid solution in the rheometer, heating from 25°C to 70°C (above Tm) at 

10°C/min, rest at T= 70°C during 10 min, cooling to T= 25°C at 10°C/min.  

 

Small Angle X-ray Scattering (SAXS). All SAXS experiments are performed at 25°C at the 

DUBBLE BM26B beamline at the ESRF synchrotron facility (Grenoble, France).29,30 Samples 

have been analysed during the run SC4639 using a beam at 11.93 KeV and a sample-to-detector 

distance of 2.10 m. Samples are prepared ex-situ and they are analysed directly by setting them 

in front of the x-ray beam. The signal of the Pilatus 1M 2D detector (172 x 172 μm pixel size), 

used to record the data, is integrated azimuthally with PyFAI to obtain the I(q) vs. q spectrum 

(𝑞 = 4𝜋 sin 𝜃
𝜆ൗ , where 2θ is the scattering angle) after masking systematically wrong pixels 

and the beam stop shadow. Silver behenate (d(100) = 58.38 Å) and α-Al2O3 (d(012) = 3.48 Å) 

are respectively used as SAXS and WAXS standards to calibrate the q-scale. Data are not scaled 

to absolute intensity. 
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Small Angle Neutron Scattering (SANS). SANS experiments have been performed at the D11 

beamline of Institut Laue Langevin (Grenoble, France). Four q-ranges have been explored and 

merged using the following wavelengths, λ, and sample-to-detector (StD) distances. 1) ultra-

low q: λ= 13.5Å, StD= 39 m; 2) low-q: λ= 5.3Å, StD= 39 m; 3) mid-q: λ= 5.3Å, StD= 8 m; 4) 

high-q: λ= 5.3Å, StD= 1.4 m. All samples are prepared in 99.9% D2O (using NaOD and DCl 

solutions, as well) to limit the incoherent background scattering. Solutions are analyzed in 

standard 1 mm quartz cells. Direct beam, empty cell, H2O are recorded and boron carbide (B4C) 

is used as neutron absorber. All samples are thermalized at 70°C during 10 min then cooled 

down at 25°C. Analysis is performed after 2 h from cooling. The background sample (D2O) 

signal was subtracted from the experimental data. Absolute values of the scattering intensity 

are obtained from the direct determination of the number of neutrons in the incident beam and 

the detector cell solid angle. The 2-D raw data were corrected for the ambient background and 

empty cell scattering and normalized to yield an absolute scale (cross section per unit volume) 

by the neutron flux on the samples. The data were then circularly averaged to yield the 1-D 

intensity distribution, I(q). The software package Grasp (developed at ILL and available free of 

charge) is used to integrate the data, while the software package SAXSUtilities (developed at 

ESRF and available free of charge) is used to merge the data acquired at all configurations and 

subtract the background. 

 

Rheology. Rheology experiments are carried out using a MCR 302 rheometer (Anton Paar, 

Graz, Austria) equipped with a Peltier temperature system which allows accurate control of the 

temperature by the stainless steel lower plate and with a solvent trap to ensure minimal 

evaporation of water during the measurements.  

- Oscillatory rheology. These experiments are performed using titanium or a stainless 

steel sandblasted upper plate (diameter 25 mm). The gap (0.5 or 1 mm) and the normal 

force (NF= 0 N) are controlled during the experiments. After loading, samples are 

allowed to stand at rest for at least two hours before analysis. A dynamic strain sweep 

is first conducted at an angular frequency (ω= 6.28 rad.s-1) by varying the shear strain 

(γ) from 0.001 to 100 % in order to determine the linear viscoelastic regime (LVER). A 

value of strain within the LVER is then applied in the following dynamic angular 

frequency sweep between 100 and 0.01 rad.s-1. To monitor the gelation of the G-C18:0 

upon thermal annealing, the elastic (G´) and viscous (G´´) moduli are recorded during 

temperature heating ramps from 20 to 70 °C at a rate of 10 °C/min. The sample is 

initially vortexed, then loaded and held at 70 °C for 10 min and then cooled from 70 to 
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25 °C at a rate of 10 °C/min and finally held at 25°C during two hours. These 

temperature variation experiments are performed using an oscillation angular frequency 

(ω= 6.28 rad.s-1) and a strain (γ = 0.05%). Afterward, an angular frequency sweep (100 

– 0.01 rad.s-1) was performed using a shear strain, γ= 0.05%, within the LVER.  

- Shear viscosity. Steady-shear viscosity is determined using a cone-and-plate geometry 

(diameter 25 mm, angle 1° and truncation 50 µm) and a plate-and-plate geometry 

(diameter 25 mm, gap = 0.5 mm) by increasing the shear rate (γ) from 10-3 to 103 s-1. 

Compared to plate-plate geometry, cone-plate configuration guarantee a uniform shear 

of the sample, however the small imposed gap (truncation 50 µm) could lead to 

preferential aggregation of the lamellar structure (3-4 nm of thickness but few µm of 

length (Llamellar) in the center of the geometry (Llamellar > gap x 10).  Here we presented 

therefore the data obtained used the plate-plate geometry. Except for thermal annealing 

experiments, all rheological characterizations are conducted at 25 °C, unless otherwise 

mentioned. 

 

Light Microscopy. Images of G-C18:0 samples, at rest or after shear, are acquired in bright field 

and polarized light mode (PLM) using a Nikon DS-Ri1 through crossed polarizers (samples are 

prepared in flame-sealed flat capillary of 200 μm thickness) and in a differential interference 

contrast mode (DIC-M) using a Zeiss AxioImager D1 microscope.  

 

 

Differential Scanning Calorimetry (DSC): DSC is performed using a DSC Q20 apparatus from 

TA Instruments equipped with the Advantage for Q Series Version acquisition software 

(v5.4.0). Acquisition is performed on a G-C18:0 dry powder sample (~ 10 mg) sealed in a 

classical aluminium cup and using an immediate sequence of heating (from 10°C to 90°C) and 

cooling (from 90°C to 10°C) ramps both at a rate of 1°C/min. 

 

Confocal Laser Scanning Microscopy (CLSM): CLSM was performed with a LeicaSP8 Tandem 

Confocal system. Samples were excited with the dye specific wavelength (561 nm) and the 

emission was detected between 580 and 620 nm using a photomultiplier tube (PMT) detector. 

CLSM images were analyzed using Fiji (Fiji is just ImageJ)31 and 3D construction was 

performed using the 3D Stack mode of Fiji. Temperature variation (T= 50°C) was performed 

with temperature controller modulus of the microscope. The hydrogel (CG-C18:0= 2.5 wt%, pH 

6) was prepared following the general method described above. A volume of 4 μL of an 
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ethanolic solution of 18:1 Liss Rhod PE (C= 53 mg/mL) was added to 1.5 mL of the hydrogel 

to reach an approximate molar ratio of G-C18:0/Liss of 500. Liss is a water insoluble, 

rhodamine-containing, lipid and it is largely used to mark lipid bilayers. It is generally 

considered not to interfere with the bilayer assembly at Lipid/Liss ratio above 200. We did not 

observe any variation in the gel physical aspect after addition of Liss. 

 

Results and discussion 

Lamellar structure of the glucolipid G-C18:0 probed by SAXS and SANS. 

G-C18:0 is a microbial glucolipid characterized by a single glucose moiety covalently 

attached to stearic acid, a melting temperature, Tm, of about 37°C (Figure S 1) and a pKa of 

8.4 (Figure S 2). A combination of SAXS and cryo-TEM data reported earlier19,20 have shown 

the formation of an interdigitated layer (IL) exposing both the glucose and COOH/COO- 

moieties, where the COOH/COO- ratio depends on pH. Figure 1 displays a scheme of the 

supposed structure of a G-C18:0 layer characterized by hydrophilic (Th), hydrophobic (L) and 

water layers (dw). The total thickness of approximately 3.6 nm (2Th + L), estimated after 

modelling SAXS profiles using a standard bilayer model,19,20 is compatible with the full length 

of G-C18:0, thus suggesting the stabilization of an interdigitated membrane rather than a 

bilayer, classically found for phospholipid membranes. The typical cryo-TEM images, 

extensively presented elsewhere,19,20 show the presence of infinitely wide G-C18:0 stacked 

layers. 

SANS (Figure 2a-c) and SAXS (Figure 2d) experiments are recorded for samples at 

pH 7 and pH 6.5 and various NaCl concentrations and concentrations between 1 wt% and 5 

wt%. SAXS profiles measured at NaCl concentration below 250 mM bear a large oscillation 

above q= 1 nm-1 (Figure 2d) and a -2 slope (in log-log scale) below q= 1 nm-1. The latter is 

typical for 2D objects and in particular for lipid membranes,32 while the latter is a typical feature 

for bilayers and previously found in the same G-C18:0 systems and fitted using a lamellar form 

factor model.19,20 One should note that the different scattering length densities of G-C18:0 and 

water with respect to x-rays and neutrons induces an important difference in terms of the 

contrast between the lipid and water, and for this reason the oscillation above q= 1 nm-1 is not 

observed in SANS profiles. Nonetheless, both SAXS and SANS profiles are characterized by a 

broad peak below 1 nm-1 and indicative or a lamellar period, d(100). Whichever the pH or 

technique of analysis, the peak is prominent for G-C18:0 concentrations above 2.5 wt% and 

NaCl content above about 100 mM, while below these values the peak is extremely broad and 
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hard to observe. To better observe the first and second order of the lamellar period, one can 

eliminate the q2 dependence by mean of Kratky plots (Iq2(q)); Figure 2a-c show the Kratky 

plots corresponding to all samples, thus putting in evidence, for some of them, the presence of 

both the d(100) and d(200) reflections, where the latter are unfortunately too broad to be observed 

in most cases. At high ionic strength for volume fractions above 2.5 wt%, one can observe a 

second broad peak at q-values below about 0.7 nm-1. Attribution of this peak, of which we do 

not observe the second order, is not straightforward but we make the hypothesis of the 

coexistance of two lamellar domains stabilized by water layers of different thickness, probably 

induced by a non-homogeneous and specific adsorption phenomena of Na+ onto the membrane, 

as described theoretically and found experimentally in charged lipid membranes.33–35  

 

 
Figure 2 - a-c) SANS profiles acquired on samples prepared at pH 6.5 and various NaCl concentrations at 

(a) 1 wt%, (b) 2.5 wt%, (c) 5 wt%. Kratky plots [I.q2(q)] are provided below each series of spectra. d) SAXS 

profiles acquired for a G-C18:0 solution (5 wt%) at pH 7 at various NaCl concentrations. 

 

Analysis of d(100) for all SAXS and SANS experiments shows that d(100) decreases with 

increasing ionic strength (Figure 3a), an evidence which is commonly observed for lipid 

lamellar phases stabilized by electrostatic repulsive interactions.36 In the excess of salt (1 M), a 

powder, characterized of condensed lamellae, precipitates, as also shown by diffraction peaks 

becoming sharper, more intense, and shifting above 1 nm-1 (Figure 2d). The expected period 

for an ideally swelled lamellar phase is dideal=δ/φ, being δ the membrane thickness (here 

assumed to be 2Th + L = 3.6 nm)20 and φ the lipid volume fraction. Plotting the experimental d-

spacing over dideal, d/dideal, against the glucolipid volume fraction, φGC, one systematically finds 

d/dideal<1 (Figure 3b), meaning that swelling does not follow ideality below 10 wt% at any pH 

and ionic strengths. Similar results were obtained for diluted phospholipid lamellar phases 
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below 20 wt% and explained by the presence of a second phase applying an additional osmotic 

pressure onto the lamellae.37 Similar arguments could certainly explain d/dideal<1 in the present 

system. 

 
Figure 3 - a) Evolution of the lamellar period d(100) as a function of ionic strength; the corresponding SAXS 

and SANS data are shown in Figure 2. VS, G and OG correspond to macroscopic state of the sample: VS, 

Viscous solution; G, Gel; OG, Opal Gel. b) d/dideal ratio as a function of G-C18:0 volume fraction for different 

ionic strengths and pH values; dideal= δ/φ, being δ the membrane thickness (= 3.6 nm)20 and φ the lipid 

volume fraction. 

 

Attribution of the lipid packing within the membrane and type of lamellar phase is done 

using the WAXS portion of the x-ray scattering data (Figure 4a). The WAXS data show a sharp 

peak at 14.9 nm-1: in the absence of salt, the peak is so broad that it can hardly be detected, 

unless background (water, characterized by the classical peaks at 20 and 27 nm-1) is subtracted 

(Figure 4b). Above [NaCl]= 1 M, the peak is intense and sharp. All experiments are performed 

at room temperature, below the Tm (Figure S 1) thus suggesting an ordered packing of the lipids 

within the membrane. It is then expected that G-C18:0 forms a Lβ,i phase (interdigitation comes 

from the bolaform nature of G-C18:0). A classical Lβ is commonly characterized by an intense, 

well-defined, peak between 14.9 nm-1 and 15 nm-1 (𝑑-spacing of 0.42 nm),38–40 signature of the 
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parallel packing of the acyl chain within the hydrophobic region of a bilayer. The collapsed 

phase is certainly in the form of Lβ,i. On the contrary, in the swollen region, the same peak is 

very broad; according to the water-containing profiles (b), the shoulder at 14.9 nm-1 should be 

attributed to a Lα phase, characterized by a liquid-like order of the acyl chain. However, the 

expected 𝑞଴ should rather be at 14.7 nm-1 (𝑑-spacing of 0.46 nm),38–40 a smaller value than what 

we do observe experimentally. The last possibility, probably the most plausible, is represented 

by the Pβ phase, which is characterized by a single peak with a corresponding 𝑑-spacing around 

0.42 nm and a width larger than the Lβ phase (although not as large as in the Lα).38,40  

 
Figure 4 - a) Background (water)-containing and b) background-subtracted WAXS profiles of samples 

studied in Figure 2d. 

 

Glucolipid G-C18:0 spontaneously forms lamellar hydrogels in water without additives 

 G-C18:0 hydrogels can be formed by dispersion of the lipid in water at room 

temperature, at concentrations above about 1 wt%. Gel formation is very straightforward as 

long as the following procedure is employed. The equilibrium pH of G-C18:0 is generally 

below 4.5, under which G-C18:0 is insoluble in water. Hydrogels can then be obtained by 

combining adjustment of pH in the range between 5 and 7.5 with homogenization during 20 to 

30 min in a sonication bath. These conditions generally provide a viscous solution (VS, Figure 

5a) with a corresponding d-spacing of ~20 nm (VS in Figure 3a), which turn into a gel when 

salt (here, NaCl) is added to concentrations above 20 mM. According to the amount of salt, 

hydrogels look homogeneous and do not recover immediately after vortexing (Figure 5b), or 

they can display an opal-like appearance and fast recovery (Figure 5c). The corresponding d-

spacing for a gel (G) and opal gel (OG) are generally below 15 ~nm (G and OG in Figure 3a).  
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Figure 5 –Typical images of (a) viscous (V), (b) gel (G) and c) opal gel (OG) solutions. OG in c) is denser and 

presents a stronger scattering than gel (G) in b). 

In order to perform comparable rheology experiments, all samples studied in Figure 5 

were annealed through vortexing, heating at 70°C, above the Tm (Figure S 1) and cooling in 

the rheometer. The typical sol-to-gel transition upon cooling is measured in Figure 6a over 2 

h, during which both moduli (G´´> G´) have a steep increase, then oscillating at 25°C until G´> 

G´´. The typical angular frequency sweep (G´(ω) and G´´(ω), respectively represented by full 

and open symbols throughout this work) of a (annealed) lamellar G-C18:0 hydrogel prepared 

at pH 6.5 for three ionic strengths are shown in Figure 6b. The typical range of G´ (ω= 6.28 

rad.s-1) spans between 102 Pa and 104 Pa when ionic strength ranges between ~50 mM and ~ 

500 mM, measured at pH 6 and pH 6.5 (Figure 6c). The magnitude of G´ falls in the same order 

as observed for polymer-stabilized Lα,g
41 and polymer-free lamellar hydrogels.16 Figure 6b also 

shows that G´ > G´´ over the entire angular frequency range, an established criterion 

distinguishing gels from viscous liquids.42 The typical viscoelastic response of G-C18:0 follows 

a power-law behavior over four orders of angular frequency magnitude. Both moduli scale as 

G´~ G0´𝛼 and G´´~ G0´´β, where G0´ and G0´´ are pre-factors at ω= 1 rad.s-1 and 𝛼, β~ 0.23 

the exponents. In general, for stable hydrogels we find the exponents 𝛼 and β spanning between 

0.15 and 0.3, while for unstable hydrogels with higher amount of NaCl (142 mM), the system 

behaves like a viscoelastic fluid with an elastic character (G´> G´´)  at high  followed by a 

crossover point (G´= G´´) at intermediate  and finally (G´< G´´)  at low . 

Time stability of the hydrogels over 24 h shows that weak gels (102 Pa) measured after 

2 h from annealing (blue symbols in Figure 6d) evolve towards stronger gels (103 Pa) after 24 

h, indicating that the evolution of the mechanical properties can occur on long time-scales. 

Quantitative observations up to 48 h (Figure S 3), and qualitatively over two weeks, show that 

initially viscous solutions systematically turn into gels, which eventually tend to scatter light 

(whitening) and to show syneresis. The continuous evolution of the aspect and mechanical 
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properties show that none of the lamellar hydrogels reach thermodynamic equilibrium, which 

makes it impossible to draw a consistent quantitative overview correlating mechanical 

properties and physico-chemical parameters. For this reason, experiments presented in Figure 

6a,b are performed after an arbitrary lag time of two hours, at which the estimated concentration 

above which gelation is possible (here measured at pH = 6.7, ionic force 163 mM, Figure S 4) 

is in the order of 1 wt%. 

pH controls the ionization degree of G-C18:0 and, as a consequence, on the charge 

density of the lipid membranes. To this regard, it is well-known that ionic strength strongly 

affect the interbilayer distance in charged lamellar systems.33,34,43–45 but the impact of salt on 

the mechanical properties of lamellar hydrogels is particularly unexpected, expecially at low 

lipid volume fractions. It was never reported for lamellar gels and only partially investigated in 

concentrated (> 10 wt%) onion phases, with uncomparable impact on the elastic properties (G´< 

10 Pa for concentrations in the order of 10 wt%)43 with respect to the system shown here.  The 

elastic properties of the G-C18: lamellar hydrogel are extremely sensitive to ionic strength 

above about 20 mM to 50 mM. At ionic strength below ~100 mM, pH plays a marginal role on 

the elastic properties. However, at higher ionic strength, charge screening effects induce the 

collapse of the membrane (Figure 3a) and which can result in macroscopic phase separation 

(precipitation). If pH is increased, additional negative charges are most likely introduced in the 

glucolipid membrane following deprotonation of the carboxylic acid and recovery of the gel is 

possible, possibly due to swelling. On the contrary, at small salt concentrations and constant 

pH between 5 and 7, the solution is generally viscous; by increasing the ionic strength below 

molar amounts, gel formation is generally promoted, a phenomenon systematically associated 

to lamellar shrinking, with inter-layer water thicknesses, dw, dropping from 25-20 nm to about 

15 nm (Figure 3a). 

Finally, Figure S 4 and Figure S 5 show the rheo-thinning and thixotropic properties 

of G-C18:0 hydrogels under high shear and high strain conditions. In particular, a typical 

hydrogel (2.5 wt%, pH 6, [NaCl]= 123 mM) submitted to a series of step-strain (0.5 % <  < 

100 %) cycles is able to recover about 25% of its initial elasticity after 30 s and between 60% 

and 80% after 30 min (Figure S 5). 
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Figure 6 – a) Time evolution of G´ (full symbols) and G´´ (open symbols) at 25°C for various ionic strengths 

(cooling rate: 5°C/min, CG-C18:0= 2.5 wt%, pH= 6.5, ω= 6.28 rad.s-1, γ= 0.05%) after annealing (15 s vortex, 

loading, T= 70°C during 10 min, heating rate: 10°C/min). b) G´(ω) (full symbols) and G´´(ω) (open symbols) 

for CG-C18:0= 2.5 wt% as a function of [NaCl] (pH= 6.5, γ= 0.05%). c) Typical absolute values of G´ at pH 6 

and 6.5 as a function of [NaCl] (ω= 6.28 rad.s-1, γ= 0.05%). d) Comparison of the time evolution of G´ (full 

symbols) and G´´ (open symbols) after annealing at T= 70°C and cooling at 25°C for a gel ([NaCl]= 33 mM, 

pH 6.5) and a viscous solution ([NaCl]= 125 mM, pH 7) (cooling rate: 5°C/min, CG-C18:0= 2.5 wt%, ω= 6.28 

rad.s-1, γ= 0.05%). All rheology measurements are performed in a plate-plate geometry at constant normal 

force of 0 N (initial gap 0.5 mm). 

 

Understanding the microstructure of G-C18:0 hydrogels 

From a rheology point of view, the distinctive power law response is commonly reported 

for several soft materials like cells46, adipose tissue47, collagen48, colloidal49,50 and polymeric 

gels51–53 and indicates a broad range of relaxation times. Power law viscoelasticity is generally 

captured using three distinct models namely critical gels,51 soft glassy rheology (SGR)54 and 

fractional rheological models.55 In the current case, the critical gel (system at the gel point) 

model is not suitable to describe the rheological response of G-C18:0 hydrogels since G´() 

and G´´() have to remain strictly parallel with the frequency resulting in a frequency 

independent loss factor (tan (δ) = G´´()/G´()). This is not the case since in many experiments 

we observed G´() ~ 𝛼 and G´´() ~ β with 𝛼 ≠ β. Moreover, at high salt concentrations, a 
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power-law behavior over high frequency range was observed but with a G´() ~ G´´() 

crossover at low frequencies (Figure 6b). The SGR model considers that viscoelasticity is 

controlled by disorder, metastability and local structural rearrangements between the 

mesoscopic elements.56 Thermal motion alone is not sufficient to reach complete relaxation and 

the system has to cross energy barriers, larger than typical thermal energies, and related to 

lamellar rearrangement in our case. The system can be driven into a glassy, liquid, or 

intermediate state through a mechanically-activated process characterized by a mean-field 

‘‘noise temperature’’, x. G-C18:0 hydrogels satisfy all criteria of a soft glassy material:  storage 

moduli magnitude (G´~ 0.1-10 kPa), aging behavior and weak power law of G´, G´´(ω).  

Compared to canonical rheological models based on the combination of springs and dashpots, 

fractional rheological models are based on the use of spring-pots elements derived using 

fractional calculus. The spring-pot element is characterized by a fractional exponent (𝛼) with 0 

< 𝛼 <1, where for 𝛼 1 and 𝛼 0, the fractional element is assumed as dashpot and spring, 

respectively.57 Both the SGR and fractional rheological models based on the combination of 

spring-pot elements are suitable for capturing the power-law viscoelasticity. Jaishankar and 

McKinley had even demonstrated that the constitutive equation of the SGR model can be 

reduced to that of a single spring-pot element by relating the fractional exponent (𝛼) to the noise 

temperature (x) by 𝛼 = x-1.57 

 

 
Figure 7 – G´(ω) (full symbols) and G´´(ω) (open symbols) for CG-C18:0= 2.5 wt% as a function of [NaCl] (69 

mM, blue; 142 mM, green) at pH= 6.5 and γ= 0.05%. The data are fitted using three fractional models: 
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Kelvin-Voigt (2 parallel spring-pots), Maxwell (series of 2 spring-pots) and Zener (combination of both). 

The fitting procedure was achieved using the open source library RHEOS58 developed in Julia language.59 

 

Based on that, we attempt to model the viscoelastic response of G-C18:0 hydrogels by 

fitting the rheological data presented in Figure 6b to a combination of two spring-pot elements 

in series (fractional Maxwell) and in parallel (fractional Kelvin-Voigt) and to a combination of 

three spring-pots (fractional Zener) (Figure 7). The parameters resulting from the fitting 

procedure are shown in Table 1. The best fit was obtained using the fractional Zener model. 

The fractional element (β) demonstrate that the value of β increased from 0.18 to 0.22 upon 

NaCl addition but the most significant change was observed for the fractional element γ with γ 

=0.25 (<0.5: a dominant spring character) to γ =0.83 (>0.5: a dominant dashpot character) 

confirming the loss of mechanical properties and in a good agreement with the observed 

crossover at low frequency (from hydrogel to a viscoelastic fluid). For both hydrogels the 𝛼 

=0.99 and therefore this fractional element could be substituted by a simple dashpot element (𝛼 

~1). An optimum model combined a dashpot and two spring-pots elements could be therefore 

envisaged. 

 

Table 1. Fitting parameters from the curves of Figure 7. 

Sample Fractional model  Parameters 

[NaCl]  C𝛼 𝛼 Cβ β Cγ γ 

 

69 mM 

Fract Kelvin-Voigt 0.0 0.95 1406.8 0.21   

Fract Maxwell 1394.29 0.21 475669.9 0.99   

Fract Zener 260141.31 0.99 993.21 0.18 397.31 0.25 

 

142 mM 

Fract Kelvin-Voigt 167.29 0.36 0.0 0.22   

Fract Maxwell 208.09 0.27 2713.19 0.99   

Fract Zener 2517.02 0.99 201.07 0.22 6.13 0.83 

 

Based on the sum of squared residual errors, the fractional Zener model provide the best 

fit followed by the fractional Maxwell and lastly the fractional Kelvin-Voigt which failed to fit 

the behavior of GC-18:0 hydrogel at a high NaCl concentration (142 mM at pH6.5). Even if a 

direct relationship between microstructure and mechanical response remains challenging,60 the 

power law viscoelasticity highlighted by the broad range of relaxation times is related to the 

presence of hydrogel heterogeneities: structures of different sizes (interdigitated layer with 

different lateral size, defects and curvatures, spherulites domains) and densities (accumulation 
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of counter-ions in some regions more than in others). Moreover, the evolution of the rheological 

response with time and salt concentration combined to the microstructural characterization 

point out that the mechanical properties of G-C18:0 are mainly driven by inter-lamellar 

interfaces. Such analysis is consistent with the optical microscopy data presented here below 

and coherent with what is known in other 2D materials like graphene oxide, which only displays 

a power-law rheology behaviour when the graphene layers are strongly interacting after 

addition of a polymer matrix.61 

Figure 8a,b (additional images are shown in Figure S 6g-h) puts in evidence the strong 

heterogeneity of G-C18:0 gels. 1-labeled arrows show oriented defectuous lamellar domains 

both in bright field (Figure 8a) and under crossed polarizers (Figure 8b). These domains look 

like the whispy textures in Ref. 62 and they are connected to defectuous birefringent, although 

disordered, domains (arrows N° 3) through a continuous change in orientation (arrows N° 2). 

Finally, 4-labelled arrows point at spurious small (< 10 μm) spherulitic domains. The entire set 

of polarized light microscopy experiments show that the G-C18:0 lamellar hydrogel is not 

composed of a simple defectuous single lamellar phase, as classically found in lamellar 

hydrogels,12,41 but it is rather composed of large (hundreds of microns) interconnected 

defectuous lamellar domains dispersed in water. For sake of comparison, Figure S 6 presents 

a broad series of bright field and polarized light microscopy (indicated with the CP, Crossed 

Polarizers, subscript) images recorded on typical fluid and viscous samples composed of G-

C18:0 at pH 6.5. Liquid samples are generally characterized by small strongly birefringent 

circular domains of approximate size of 1-10 μm at 1 wt% and room temperature (Figure S 6a-

b) and 10-50 μm at 2.5 wt% (30 mM NaCl) at T= 60°C (Figure S 6e-f). These inclusions recall 

the spherulites in ref. 41 and they are dispersed in a non-birefringent medium. Nevertheless, the 

nature of these domains is most likely not the same; temperature is known to induce a lamellar-

to-vesicle transition,20 while the 10-50 μm spherulitic domains in the sample at T= 60°C (2.5 

wt%, 30 mM NaCl, Figure S 6e-f) correspond to vesicular, probably multilamellar, 

compartments, given their strong birefringency. Upon increasing in viscosity (2.5 wt%, 30 mM 

NaCl, RT, Figure S 6c-d), the medium becomes more and more characterized by larger 

irregular birefringent domains of whispy texture (typical size of 100-500 μm) coexisting with 

strongly birefringent spherulitic inclusions of smaller size (1-50 μm), as discussed above. 

A global microstructural description of the gels can then be summarized as follows: 1) 

large (100-500 μm) oriented domains recalling the typical sheet-like/whispy texture of lamellar 

hydrogels (Figure 17G in Ref. 62); 2) an aqueous matrix composed of interconnected lamellar 

domains below 5 μm in size; 3) embedded spherulitic objects composed of folded lamellar 
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domains of thickness less than 500 nm. The latter are widely present in the gel and they are 

themselves composed of entangled lamellar domains. Video 1,2 and Video 3 respectively 

confirm the presence of domains below 5 μm and spherulitic inclusions.  Finally, microscopy 

experiments confirm the presence of two phases and which can explain the non-ideal swelling 

of the lamellar phase against φGC (Figure 3b). 

 

 
Figure 8 – a,b) Bright field and c,d) polarized light microscopy experiments (scale bar: 100 μm) experiments 

recorded on G-C18:0 hydrogel at C= 2.5 wt%, pH 6.5 and [NaCl]= 150 mM. Arrows 1 through 3 correspond 

to anisotropic regions with different orientations and arrow 4 to spherulitic domains. 

 

Origin of the elastic properties of G-C18:0 lamellar hydrogels 

The elastic properties of lamellar hydrogels are classically explained by the presence of 

structural defects in a monophasic lamellar system. Gel formation in polyethyleneglycol(PEG)-

stabilized Lα phase depends on the PEG volume fraction, which, segregating into curved 

membrane regions, become a nucleation site of the defects.12,41 Recently, Niu et al.16 have 

supposed the origin of the elastic properties in polymer-free LH to depend on the edge 

accumulation of negatively-charged SDS surfactant. To this regard, polarized light microscopy 

(PLM) is commonly used to prove the presence of structural defects, like sheet-like texture or 

spherulitic inclusions, in lamellar hydrogels.12,62 The morphology of the lamellar domains and 

type of defects is very important to identify the nature of the phase and, consequently, the 

relationship to the macroscopic elastic properties. 

In the present system, XRD and PLM experiments show non-ideal swelling, typical of 

lipid lamellar phases,36,37,63 and demonstrate that the system is biphasic. PLM also demonstrates 
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the presence of highly defectuous lamellar domains and it excludes the existance of fibrillar 

crystals, commonly responsible for the elastic properties in coagels.64 The absence of oily 

streaks and Schlieren defects reasonably exclude, respectively, the existence of defectless 

lamellar and nematic phases (additional comments on these points are given in the Supporting 

Information).41,62,63 Despite the high density of defects shown by PLM, their nature strongly 

recalls the whispy texture shown in lamellar gels,41,62 and characterized by various types of 

defects including screw dislocations, dislocations, disclinations or spherulite inclusions, as 

shown in Figure 9b.12,41,62,63 Figure 9a,b finally summarizes the above by showing the micro 

and submicro structure of the G-C18:0 gels: large, highly defectuous, lamellar domains 

interconnected to each other. 

At a molecular scale, the stabilization of a defect could be explained by the presence of 

either an end-capped membrane (Figure 9d) or a curved membrane (Figure 9d). The former 

can occur if the line tension is small and the latter if the membrane is able to bend. The lamellar 

phase forms at pH below the pKa, determined here to be above 8 (Figure S 2), where the 

carboxylic form of G-C18:0, although majoritary, still coexists with the negatively-charged 

carboxylate form (Figure 9c). End-capping can be explained by a local accumulation of the 

carboxylate form of G-C18:0 in the cap (Figure 9d). This hypothesis is not outrageous because 

the curvature of the cap is comparable to the curvature of a micelle, the latter being the stable 

phase of G-C18:0 in its fully deprotonated form.19 

Bending of the membrane is the other phenomenon that generates defects and it could 

be explained as follows. At room temperature, the membrane composed of G-C18:0 is expected 

to be rigid. However, bending could be promoted either by repulsive steric interactions of the 

sugar headgroups or, most likely, by electrostatic interactions derived from adjacent 

carboxylate groups. At pH< pKa, when gels form, the carboxylate form of G-C18:0 is less 

abundant with respect to its carboxylic acid form; in the hypothesis of a symmetrical (head-tail-

head-tail…65) arrangement and statistical distribution of the bolaform G-C18:0 molecule across 

the membrane, one does not reasonably expect a local accumulation of charge or of glucose 

headgroup. Bending should on the contrary be favoured for an antisymmetrical (head-head, tail-

tail65) arrangement of the bolaform lipids not uniformly distributed across the membrane. Under 

these circumstances, one expects dense patches of glucose on one side of the membrane and 

COOH/COO- on the other side. If the amount of COOH and COO- groups is comparable within 

the patches, the surface area per molecule is the smallest66 and the steric repulsion between the 

sugar headgroups could promote membrane bending. However, it is more reasonable to suppose 

that bending is driven by electrostatic repulsion, known to provide the largest surface area per 
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lipid in carboxylate monolayers.66 In this case, one must assume a higher concentration of COO- 

groups in the patches, as illustrated in Figure 9e. Finally, since all experiments are performed 

at T< Tm, the lipid mobility in the membranes is reduced; this is a condition that favours the 

stability of high curvature regions and, consequently, of defects, on time scales longer than the 

typical time scale of oscillatory rheology (above 10-2 rad.s-1). This hypothesis is supported by 

the fact that increasing the temperature above the Tm promotes the formation of a viscous fluid, 

where defects are partially annealed. 

The macroscopic elastic properties are resulting from a combination of defects at the 

nano/meso scale and the connections between the lamellar domains at the micrometer scale. If 

pH and temperature respectively play key roles in terms of total number of charge and its 

distribution in the membrane, we also stress the fact that the elastic properties are promoted, at 

a given pH, by addition of salt, of which the exact role is at the moment not fully clarified, yet. 

In fact, salt could have an antagonistic role: it could promote curing of the defects by 

neutralizing the negative charges from the COO- groups, but it could also reduce the elastic 

energy of the membrane,67 thus promoting the formation of curved layer and, consequently, 

increasing the defect density. At the same time, in the case of a non-homogeneous distribution 

of salt on the membrane surface,35 possibly due to an inhomogeneous distribution of the 

carboxylate groups, bridging of neighbor membranes and induction of line defects could also 

be a possibility. Interestingly, we also note that salt addition improves the elastic properties, 

thus suggesting its role on defect formation, but at the same time it promotes narrower d(100) 

and appearance of d(200) reflections in both SAXS and SANS profiles. Further work will be 

needed to better understand this point. 
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Figure 9 – Hypothetical structure of the G-C18:0 hydrogel at T< Tm. a) Large lamellar domains (tens to 

hundred of microns) interconnect in water and b) each domain is composed of a highly defectuous lamellar 

phase, with typical defects possibly being displocations, disclinations, spherulite inclusions as well as screw 

dislocations.12,41,62,63 c) A mixture of neutral and negatively-charged G-C18:0 molecules compose the 

interdigitated membranes in the gel. d) End-caps can be stabilized if negative charges accumulating at the 

periphery of the membrane while e) bending is rather promoted if patches of negatively-charged G-C18:0 

molecules in an antisymmetrical (head-head, tail-tail) arrangement occur in the membrane.        

 

Conclusion 

This work shows that a new glucolipid obtained in large amounts from glucose and 

vegetable oils from the microbial fermentation of the modified yeast S. bombicola ΔugtB1 is 

able to form lamellar rheo-thinning hydrogels in water in the pH range between 5 and 7.5 and 

ionic strength between 10 mM and 500 mM. Hydrogels are composed of a biphasic medium 

containing water and large interconnected domains (100-500 μm) of a kinetically-trapped 

lamellar phase stabilized by electrostatic interactions. The mechanical properties depend on 

both the high density of defects, as expected for lamellar hydrogels, but also on the multiscale 

structure, where lamellar domains of several hundred microns coexist with domains of few 

microns and disordered spherulitic inclusions, composed of entangled lamellar sheets of 

thickness less than 500 nm. The G-C18:0 glucolipid has a bolaform structure containing an 

ionizable COOH group. At pH below the pKa (8.4) the amount of negative charges is diluted 

enough to stabilize a lamellar structure composed of interdigitated GC18:0 molecules within 

the membranes having a thickness of 3.6 nm. The pH then defines an average charge density 

responsible for d-spacings in the order of 20 nm. Temperature, set below Tm (37°C), freezes the 
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G-C18:0 molecules in a kinetically-trapped state, thus having a strong impact on the actual 

charge distribution, which controls the formation of end-caps (Figure 9d) and membrane 

bending (Figure 9e), both phenomena being responsible for defect generation in the membrane 

(Figure 9b). Finally, ionic strength below ~500 mM consolidates the hydrogel, although its 

actual role at the mesoscale level impacting the macroscopic elastic properties of the gel is still 

unclear. This work shows the potential of new biobased compounds with possible applications 

in medicine, tissue engineering or cosmetics. At the same time, the unusual mechanical 

properties of single-lipid lamellar hydrogels should stimulate research in the field of complex 

fluids and biophysics for this new class of molecules.   
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Figure S 1 – Differential Scanning Calorimetry (DSC) thermogram of the native G-C18:0 powder acquired 

at 1°C/min 
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Figure S 2 – Experimental determination of the apparent pKa of glucolipid G-C18:0 by titration using 

NaOH in water at T= 25°C (titrated volume: 1.8 mL). The ionization degrees are estimated using the Gibb’s 

free energy rule applied to lamellar phases composed of fatty acids1 

Estimating the ionization degree, α, for fatty acids as a function of pH is a long-date challenge 

which faces the problem of liquid-solid transition and coexistence of multiple phases. The 

problem of calculating α is in fact the problem of estimating the pKa. For stearic acid (which 

composes the fatty backbone of G-C18:0), the molecular pKa measured in organic solvents is 

between 4.9 and 5,2 but this value varies between 5 and 7.6 when stearic acid is contained in a 

micellar environment in water.3 In this work, we use the method of Cistola et al.1, who applied 

the Gibb’s phase rule to the titration curve of selected fatty acids below and above the melting 

temperature of the aliphatic chain. The advantage of this approach is multiple: 1) it is simple; 

2) it has been used on the micelle-to-lamellar phase transitions of fatty acids in water; 3) it can 

be applied on our own experimental data (the titration curve) on a similar system. For the 

detailed description of the method, one can refer to ref. 1. In this work, the region between 

points A and B in Figure S 2 satisfies the condition of invariance (F= 0), where composition is 

fixed, while the region below B (pH= 8.3) is characterized by one degree of freedom (F= 1), 

where composition of the lamellar phase can vary. α is estimated between pH 5 and pH 8.3, 

where α= 0.5 at B. 

 

  



S4 
 

 

 

 

0 10 20 30 40 50 60
101

102

103

104

G
' ,

 G
" 

/ P
a

Time / min

  1h30
  48h

 

Figure S 3 – Time evolution of Gˈ (full symbols) and Gˈˈ (open symbols) (ω= 6.28 rad.s-1 and γ= 0.05 %) for 

G-C18:0 (CG-C18:0 = 5 wt%, pH= 6.7, [NaCl]= 167 mM) after 1h30 and 48 h from thermal annealing. Plate-

plate geometry (25 mm), imposed normal force (NF = 0 N) and initial gap (0.5 mm). 
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Figure S 4 – Shear thinning profiles showing the evolution of viscosity with shear rate at different G-C18:0 

concentrations at pH= 6.7 ± 0.1 and [NaCl]= 163 mM. Plate-plate geometry (25 mm) and an imposed gap of 

0.5 mm are used  
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Figure S 5 – Time evolution of Gˈ (full symbols) and Gˈˈ (empty symbols) with the imposed shear strain (γ) 

at angular frequency (ω= 6.28 rad.s-1). Logarithmic increase of the shear strain (4.10-3 < γ < 100 %) during 

10 min followed by a recovery at γ = 0.5 % (upper limit of the LVER) during 30 min, followed by 6 cycles 

of step strain experiments (γ = 100% during 2 min followed by γ = 0.5 % during 30 min (during the first 5 

cycles) and 300 min in the last cycle. Plate-plate geometry (25 mm) and an imposed normal force (NF = 0 

N) with an initial gap (0.5 mm) are used. 
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Figure S 6 – Bright Field and polarized light microscopy (CP: Crossed Polarizers) images of a set of G-

C18:0 samples at pH 6.5 in water (scale bar: 100 μm). Samples are prepared in flame-sealed flat capillary 

of 200 μm thickness, as in ref. 4. Exact conditions are given on top of each series of images. All images are 

recorded after 24 h from preparation. All samples are kept at room temperature ~ 23°C, except in images 

e)-f), in which samples are kept at T= 60°C. The physical state of the sample are explained in red for each 

series of images. Images in c)-d) and e)-f) refer to the same sample, although in e)-f) the sample has been 

placed at T= 60°C. 
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Considerations on the lamellar phase 

Nematic phases are characterized by orientational order and loss in translational order, 

and the latter could be promoted by the development of defects, like screw dislocations. Dhez 

et al. have shown the effect of dislocation defects on the diffraction profile of a lamellar phase 

close to the lamellar-to-nematic transition in lipid-surfactant-water systems, pointing at the 

complexity of a straightforward attribution of SAXS profiles under these conditions.5 SAXS is 

commonly employed to characterize the lamellar nature of a lipid phase, however, the 

diffraction peak alone in the SAXS/SANS data in the G-C18:0 hydrogels is often very broad 

and it may not unambiguously help to discriminate between nematic order and a defectuous 

lamellar phase,5,6 especially for the viscous solutions at low ionic strength lacking of a second 

order peak. The d(100) peak is much broader (Figure 2 in the main text) than what one classically 

finds in lamellar phases, and it could be interpreted as a coagel-to-gel transition7 or to a nematic 

phase.6 The former case is excluded, because the characteristic fibrillar crystals are never 

observed and gel always forms below the lipid Tm. Concerning the presence of a nematic phase, 

the SAXS data of hydrogels (e.g., pH 7, [NaCl]≤ 250 mM, Figure 2d in the main text) can be 

fitted with a lamellar form factor, while the diffuse scattering peak below 1 nm-1 can be fitted 

with a lamellar structure factor taking into account displacement fluctuations about the ideal 

lattice position.8 Analogous SAXS profiles are also reported for biomembranes.9 Meanwhile, 

all cryo-TEM data in our possession show the systematic presence of flat sheets being “infinite” 

in the planar dimension and polarized light microscopy data never display any typical texture 

of nematic order but they all rather closely look like the whispy textures found in lamellar 

hydrogels, as commented in the main text.  
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