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Dynamic Quantization using Spike Generation

Mechanisms
Effrosyni Doutsi, Member, IEEE, Lionel Fillatre, Marc Antonini, Member, IEEE,

Panagiotis Tsakalides, Member, IEEE,

Abstract—This paper introduces a neuro-inspired co-
ding/decoding mechanism of a constant real value by using a
Spike Generation Mechanism (SGM) and a combination of two
Spike Interpretation Mechanisms (SIM). One of the most efficient
and widely used SGMs to encode a real value is the Leaky-
Integrate and Fire (LIF) model which produces a spike train.
The duration of the spike train is bounded by a given time
constraint. Seeking for a simple solution of how to interpret
the spike train and to reconstruct the input value, we combine
two different kinds of SIMs, the time-SIM and the rate-SIM.
The time-SIM allows a high quality interpretation of the neural
code and the rate-SIM allows a simple decoding mechanism
by couting the spikes. The resulting coding/decoding process,
called the Dual-SIM Quantizer (Dual-SIMQ), is a non-uniform
quantizer. It is shown that it coincides with a uniform scalar
quantizer under certain assumptions. Finally, it is also shown
that the time constraint can be used to control automatically the
reconstruction accuracy of this time-dependent quantizer.

Index Terms—Quantization, Leaky-Integrate and Fire Model,
Spike Count, Uniform Scalar Quantizer.

I. INTRODUCTION

THEORETICAL neuroscience provides a qualitative basis

for describing what is the nervous system, how does it

work and which are the functions, the structure and the general

principles by which it operates. Neuromathematical models

have many different applications in computer vision, sensory-

motor integration, neuromorphic hardware and artificial intel-

ligence, among others.

We are interested in studying a novel coding/decoding

architecture for signals, images and videos which is inspired

by the neurons. In the literature, there are plenty of Spike

Generation Mechanisms (SGM) which approximate the way

the neurons transform a constant positive input stimulus I
into a sequence of N ∈ N

+ discrete events called a spike

train. Each discrete event, namely a spike, is generated if

the input intensity is stronger than a threshold θ, otherwise

the neuron remains silent. The spikes are treated as identical

stereotype events, because their shape does not seem to carry

any information. Rather, it is the number of spikes and/or the

spike arrival times which matter [1].

During the last decade, the neural spiking mechanisms have

attracted the interest of the signal processing society because

E. Doutsi was with Université Côte d’Azur, I3S, CNRS in the beginning of
this work. She is now with Foundation for Research and Technology-Hellas
(FORTH) (e-mail: edoutsi@ics.forth.gr).

L. Fillatre and M. Antonini are with Université Côte d’Azur, CNRS, I3S,
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they may reveal how to design power-efficient encoders and

networks by encoding analog signals into spikes. Rank order

coders [2], [3], time encoding machines [4], [5] and Asyn-

chronous Pulse Sigma-Delta Modulators (APSDM) [6] are few

of the latest architectures which use neural models in order to

encode signals using spikes.

It is a general truth that neuroscientists are interested in

exploiting SGMs but since the brain uses the code of spikes

to learn, analyze, and take decisions instead of reproducing the

input stimulus, the decoding process is out of their research

scope. Nevertheless, the interpretation of the spike trains

remains a highly important issue for many applications such

as signal and image processing with constrained power and/or

neuromorphic devices. Thus, it is highly important to find out

the best Spike Interpretation Mechanism (SIM) which allows

us to use the code of spikes and reconstruct the highest quality

input signal (Fig. 1).

I Î

Fig. 1: General framework of the proposed architecture. A

group of 60 neurons receives an input stimulus I which is

flashed for 150 ms. The neurons generate some spike trains,

after a short period of silence, which are used to reconstruct

an approximation Î . The delayed response of the neurons is

justified by the location of ganglion cells. In addition, the

visual stimulus is first captured and transformed, by the time-

varying receptive field of the former retina cells, into a low-

energy signal that turns into high-energy as time increases.

Thus, the neurons need more time to be excited [7].

The main contributions of the paper are the following.

First, the paper introduces a novel quantizer, namely the

Dual-SIM Quantizer (Dual-SIMQ), which is based on two

complementary aspects of SIM: i) the input value is converted

into a sequence of spikes by using a time-encoding and ii)

it is reconstructed by using a rate-decoding which counts

the spikes. It is shown that the combination of time-coding

and rate-decoding leads to a natural quantization of the input

value. Second, the maximum number of spikes is controlled

by a given observation duration T > 0. The duration T is

interpreted as the maximum time period which is allowed
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to encode and decode the spike train. The behavior of the

whole quantizer is dependent of this parameter T . Hence, this

time constraint generates a dynamic quantizer whose behavior

evolves in time. The dynamic properties of the Dual-SIMQ

give rise to a ground-breaking compression system that permits

a time-dependent quality refinement of the reconstructed sig-

nal. This is a great breakthrough compared to the conventional

quantizers which process the input stimulus for a single time

without taking advantage of the observation duration. The im-

pact of such a behavior might become apparent if we consider

videos. It is shown that this novel neuro-inspired mechanism

is a non-uniform quantizer which can coincide with a Uniform

Scalar Quantizer (USQ) by choosing adequately some of its

parameters.

Section II describes the principle of the neuro-inspired quan-

tization based on spike trains. Section III is an overview of

the spike generation and interpretation mechanisms, focusing

especially on the Leaky Integrate-and-Fire (LIF) model which

is the most well known model. Section IV presents our main

contribution. It shows how to combine the rate-SIM and time-

SIM to derive the Dual-SIMQ. Numerical results on both

simulated data and real data are presented in Section V. A

concise discussion and the conclusion of this work are drawn

in section VI.

II. PRINCIPLE OF NEURO-INSPIRED QUANTIZATION

This section briefly recalls the main concepts in quantization

and rate-distortion theory and how they are related to the

neuro-inspired quantization.

A. Basics of Quantization

Let I be a real random variable with the probability density

function (pdf) p(I) and let the representation of I be denoted

as Î . If we are given r bits to represent I , the value Î can

take on 2r values. The general problem of quantization is to

find the optimum set of values for Î , called the code points

Î1, Î2, . . . and the regions S1, S2, . . ., that are associated with

each code point.

According to quantization theory [8], a 2r-rate distortion

code consists of an encoding function,

f : R → C, (1)

where C is a subset with 2r elements of the set of all integers

Z and a decoding function

g : C → R. (2)

The encoding function defines a partition {S1, . . . , S2r} of R

such that Si ∩ Sj = ∅ for all i 6= j and ∪2r

m=1Sm = R.

The interval Sm is called the m-th quantization region and

it is defined such that f(I) is constant for all I ∈ Sm and

g(f(I)) = Îm for all I ∈ Sm.

The quantization can be uniform or non-uniform [9], [10].

A uniform quantizer is recommended when the input source

is either uniformly or non-uniformly distributed but in the

latter case it is mandatory that the quantizer is followed by

an entropy coder where the statistics of the input source are

taken into consideration. Otherwise, it is better to calculate

some non-uniform quantization regions such that finer regions

are associated to more likely values. Several non-uniform

approaches are possible: i) use a uniform quantizer anyway

(with an optimal choice of the quantization step q); ii) use a

non-uniform quantizer (by choosing the quantization regions

and values); iii) transform the input value into one that

looks uniform and use a uniform quantizer (this is called the

compender/expender approach). This paper does not make any

assumption on the probability distribution of the input value.

Most uniform quantizers for signed input value can be

classified as being of one of two types: mid-rise and mid-tread.

A typical mid-rise uniform scalar quantizer with a quantization

step size q > 0 can be expressed as

Qq(x) = q ·

(⌊

x

q

⌋

+
1

2

)

, (3)

where the notation ⌊x⌋ corresponds to the greatest integer less

than or equal to x. For simplicity, it is assumed that C = Z is

not finite. The encoding function f(x) is given by

f(x) =

⌊

x

q

⌋

(4)

and the decoding function is

g(k) = q ·
(

k + 1
2

)

, ∀k ∈ C. (5)

The definition of the mid-tread uniform scalar quantizer

with deadzone λ > 0 is given by:

Qq,λ(x) = sgn(x)max

(

0,

⌊

|x| − λ/2

q
+ 1

⌋)

× q, (6)

where sgn(I) denotes the sign of I: sgn(I) = 1 if I > 0,

sgn(I) = −1 if I < 0 and sgn(0) = 0. The zero output

of the quantizer is the interval
[

−λ
2 ,

λ
2

]

called the deadzone.

The standard mid-tread quantizer corresponds to λ = q. The

encoding function is

f(x) = sgn(x) ·max

(

0,

⌊

|x| − λ/2

q
+ 1

⌋)

, (7)

and the decoding function is

g(k) = sgn(k) ·

(

λ

2
+ q ·

(

|k| − 1
2

)

)

, ∀k ∈ C. (8)

It has been proven that given a certain statistical distribution

of the signal it is possible to compute the best partition that

minimizes the power of noise using the Lloyd quantizer which

is explicitly described in [11].

B. Neuro-Inspired Quantization

The neuro-inspired quantizer proposed in this paper encodes

the input value as a spike train and it exploits this spike train

to estimate Î . More formally, it is assumed that the input value

I takes the form of a constant signal

I(t) = I 1[0≤t≤T ](t), (9)

for a given duration T > 0 where 1 is the indicator function

which equals 1 if 0 ≤ t ≤ T , and 0 otherwise. Without

any loss of generality, it is assumed that I ≥ 0. It will be

mathematically defined later on (see section IV-B), that if I is
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real, the sign of I will be coded separately with a dedicated

single bit. The encoding function is then a function f(I) which

transforms the signal I(t) into a spike train

f(I) =
{

t1(I), t2(I), . . . , tN(I)(I)
}

=
{

t1, t2, . . . , tN
}

of N = N(I) increasing positive time values tj = tj(I)
depending on I . The decoding function g(·) transforms the

spike train f(I) in an estimated real value Î = g(f(I)). In

the rest of the paper, the symbol I is omitted in the spike times

tj and N in order to simplify the notations. The duration T
acts as a parameter to control the number N of spikes.

C. Basics of Rate Distortion Theory

The distortion of a quantizer can be measured by the Mean

Squared Error (MSE):

D = MSE(I, Î) =

L
∑

m=1

∫

Sm

(I − Îm)2p(I) dI, (10)

where L is the number of the quantization layers. In the case

of a high resolution uniform scalar quantizer, when q is small

(or equivalently L sufficiently large), assuming that the pdf

p(I) is smooth enough, it is shown in [9] that

D ≈
q2

12
. (11)

The rate is given by the entropy of the codewords:

r = −
L
∑

m=1

pm log2 pm, (12)

where pm =
∫

Sm

p(I) dI is the probability of the quantization

interval Sm. We also get from [12] that:

r ≈ H(I)− log2 q, (13)

where H(I) =
∫ +∞

−∞
p(I) log2 p(I) dI is the Shannon entropy.

Finally, we obtain the famous rate-distortion approximation

D = D(r) ≈
1

12
22H(I)2−2r, (14)

which gives the optimum value of D for a given rate r in the

case of a high resolution uniform quantizer.

III. SPIKE GENERATION AND INTERPRETATION

This section describes usual mechanisms to transform a

signal into a spike train and to recover it from the spike train.

A. Spike Generation Mechanism (SGM)

In the literature, there are several models which approximate

the neural activation. Hodgkin and Huxley [13] reproduced

the neural activity with high accuracy deriving a set of four

nonlinear differential equations which approximate the neural

behavior with a lot of details at the level of ion channels.

However, these equations are difficult to manipulate. A pos-

sible reduction of these equations leads to either a system

of two-dimensions [14]–[17] or the Spike Response Model

(SRM) [1], [18], [19]. On the one hand, the advantage of the

two-dimension simplification is the plane analysis of the neural

behavior. On the other hand, based on the SRM, it is proven in

[18] that the Hodgkin-Huxley equations can be approximated

by the simpler Leaky Integrate-and-Fire (LIF) model [1].

The well-known LIF model is simple [1]. It approximates

the neuronal encoding process by a first order differential

equation derived from a resistor-capacitor circuit:

I(t) =
u(t)

R
+ C

du

dt
(t), (15)

where I(t) is the input signal, C is the capacitance, R is

the resistance and u(t) is the voltage across the resistor. The

voltage u(t) models the membrane potential of a neuron. It is

assumed that u(t = t(k)) = 0 mV after the emission of a spike

at time t(k), k ≥ 1, with the convention that t(0) = 0 ms.

The solution uk(t) of the differential equation (15) for the

constant signal I(t) in (9) after the emission of the k-th spike

at time t(k) is given by:

uk(t) = RI

[

1− exp

(

−
t− t(k)

τ

)]

, ∀t ≥ t(k), (16)

where τ = RC is the time constant. The neuron spikes when

uk(t) crosses the threshold θ > 0. The moment t(k+1) the

neuron spikes is called the (k+1)-th firing time and it satisfies

uk(t
(k+1)) = θ. (17)

It follows that

t(k+1) =







+∞, if RI ≤ θ,

t(k) − τ ln

[

1−
θ

RI

]

, if RI > θ.
(18)

Just after the emission of the (k + 1)-th spike at time t(k+1),

the potential is reset to zero, i.e., uk+1(t
(k+1)) = 0, and the

integration of the potential starts all over again for t > t(k+1)

until the next spike emission. The asymptotic value RI deter-

mines the generation of the spikes: if RI ≤ θ, there is no spike,

otherwise, a spike is emitted. This paper does not consider any

absolute refractory period [1] after the spike emission.

B. Spike Interpretation Mechanism (SIM)

Due to the fact that spikes are characterized as stereotype

events, the information which is carried on a spike train is

either the number of spikes or the time each spike arrives. This

subsection is dedicated to the analysis and comparison of the

most widely used Spike Interpretation Mechanisms (SIMs),

the rate-SIM and the time-SIM.

1) Rate-SIM: The spiking activity of a neuron over time

is usually represented by a graph called the raster plot as

shown in Fig. 1. Under the assumption that the neurons are

independent, it has been proven that for a given input I(t)
the firing rate is a stochastic process which causes irregular

interspike intervals reflecting a random process [20], [21].

Then, the instantaneous spike rate (mean firing rate) can be

obtained either by averaging the spikes of an individual neuron

(spike count), or by averaging the firing rate over multiple

repetitions of the same experiment (spike density) [1]. The

spike density can be interpreted as a time-dependent mean

firing rate. The rate-SIM is certainly the most traditional
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RI3 RI2 RI1
RI1 < θ < RI2 < RI3

d3 d2

T t

θ

(a)

Input I

Output Î

θ

R
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Fig. 2: (a) LIF model for the observation window duration T and the threshold θ. If the intensity I satisfies RI > θ, the

neuron spikes (case I ∈ {I2, I3}), otherwise it remains silent (case I = I1). (b) Black solid line: the Perfect-LIF enables the

reconstruction of values I > θ/R. Red dash-dotted line: the Perfect-LIF enables the reconstruction of values I ≥ λ/R due to

the temporal constraint T .

approach but it is so simplistic that it seems to be rather an

intuitive than a reliable method. Indeed, the rate-SIM neglects

all the information hidden in the time each spike arrives.

2) Time-SIM: An alternative strategy is to interpret a code

of spikes by exploiting the time a neuron emits its spikes.

Generally, the time-to-first-spike is a time-SIM which assumes

that the neuron which fires shortly after the onset of the

stimulus is more sensitive to the input comparing to other

neurons which are activated somewhat later [22]–[26]. Another

famous time-SIM code is the Rank-Order-Coder (ROC) which

identifies the spike train of a neuron by ranking the arrival of

the first spike. A strong stimulus corresponds to a fast arrival

of a spike (low rank) while a weak stimulus results in a late or

no response (high rank) [2], [22], [27], [28]. Finally, the LIF

can also be considered as a time-SIM as discussed hereafter.

According to Subsection III-A, the LIF encodes the input

stimulus into the spike train
{

t(1), . . . , t(N)
}

. From the defini-

tion of the arrival times t(k+1) in (18), it follows that the delay

d = d(I) between two spikes arrivals is constant because I is

constant, i.e., d = t(k+1) − t(k) for any k, and satisfies

d(I) =







+∞, if RI < θ,

h(I) = −τ ln

[

1−
θ

RI

]

, if RI > θ.
(19)

The stronger the input signal is, the smaller the delay between

spikes. On the contrary, a weak input signal corresponds to

a larger delay. Fig. 2(a) illustrates the LIF model for three

different temporally constant inputs I1 < I2 < I3 and a

threshold θ. Based on (19), the intensities I2 and I3 are able

to spike with delays d3 < d2. The third intensity I1 remains

silent because RI1 < θ and its spiking delay turns to infinity.

Let us denote h−1(d) the inverse function of h(I) given by

h−1(d) =
θ

R

(

1− exp

(

−
d

τ

)) , for d 6= 0. (20)

If the delay d, finite or infinite, was perfectly known, the

reconstructed value would be Î :

Î =

{

0, if d > T,
h−1(d), if d ≤ T.

(21)

When d is larger than the observation duration T , the receiver

does not receive any spike. Hence, any arbitrary value of Î is

acceptable; the zero value is a reasonable choice. In addition,

there is no error of reconstruction when the delay is smaller

than T . Based on the analysis above, the substitution of the

delay d with the observation window T in (20) results in a

new threshold λ associated to the reconstruction error

λ = Rh−1(T ) = θ

(

1− exp

(

−
T

τ

))−1

. (22)

Therefore, according to the aforementioned example where

the delay is perfectly known, if RI > λ there will be no

reconstruction error. It can be noted that λ > θ (since T > 0
and τ > 0) and λ converges to θ as T becomes arbitrarily

large.

The characteristic function of such a “perfect” coding/ de-

coding system, called the Perfect-LIF in [29], is a thresholding

function as shown in Fig. 2(b). The solid line shows the

perfect-LIF without any time constraint (infinite observation

time) and the dashed-dotted line shows the perfect-LIF with

the bounded observation time T . The temporal constraint T
implies that all the input value I such that θ < RI ≤ λ
can not be recovered by the time-constrained perfect-LIF.

Obviously, as discussed in [30], the transmission of the exact

value of the delay d is very expensive regarding the number

of coding bits. To decrease the binary rate of the perfect-LIF,

this paper proposes to combine the spike counter rate-SIM and

the delay coder time-SIM mechanisms resulting in the Dual-

SIMQ. Using the rate-SIM decoder allows us to have a simple

decoding mechanism which works for any T .

IV. DUAL-SIM QUANTIZER

This section is dedicated to the analysis of our novel Dual-

SIMQ which was first briefly introduced in [30].

A. Dual-SIMQ Coder/Decoder

The first step of the Dual-SIMQ encoder consists in en-

coding the input value I as a spike train by using the LIF

encoder (18). When the input signal is constant, since the

interspike delay (19) is constant, we propose to count the
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spikes instead of coding the interspike delay. The theoretical

number of spikes over the time interval [0, T ] is:

N = N(I) =







0, if RI ≤ λ,
⌊ T

d(I)

⌋

, if RI > λ.
(23)

If one counts the number of spikes N for a fixed observation

window T , the delay d = d(I) can be easily estimated by

d̂ =

{

∞, if N = 0,
T

N
if N > 0.

(24)

Fig. 3 illustrates how the Dual-SIMQ counts the number

of spikes with respect to the input intensity I . For any input

intensity I such that RI < λ, there will be no spikes emitted

(N = 0) because d̂ > T . Consequently, all the input values

which belong to interval

S0 = {I > 0 : RI < λ} =
[

0, h−1 (T )
)

(25)

will be recovered by the single output intensity Î0 = 0. Based

on the above equation, it is obvious that the length ℓ0 of the

interval S0 is ℓ0 = λ/R. Let us now suppose that only one

spike arrives for the input signal I , i.e., N = 1. According

to (23), all the input intensities I which have caused the

generation of a single spike belong to

S1 =

{

I > 0 :
T

2
< d(I) ≤ T

}

. (26)

According to the quantization theory [9], assuming that

the pdf, p(I), is uniform over S1, it is well known that the

MSE error is minimized when the quantization interval is

represented by its center. Hence, we choose to reconstruct any

value I associated to S1 as

Î1 =
1

2

(

h−1

(

T

2

)

+ h−1 (T )

)

. (27)

With the same reasoning, let us define Sk as the quantization

region associated to the input value I which has generated

exactly k spikes for any k ≥ 1, i.e.,

Sk =

{

I > 0 :
T

k + 1
< d(I) ≤

T

k

}

. (28)

The length ℓk of an interval Sk for k ≥ 1 is given by

ℓk = h−1

(

T

k + 1

)

− h−1

(

T

k

)

. (29)

A value I ∈ Sk is reconstructed by the interval’s centroid

value

Îk =
1

2

(

h−1

(

T

k + 1

)

+ h−1

(

T

k

))

. (30)

B. Dealing with real values

In signal processing, it is very common that an input

source has to be first transformed before the quantization.

The transformation enables to concentrate most of the signal

information in few low frequency components. However, after

the transformation, most of the times, occur negative values,

d

T

T

2T

3
θ

R

h(I)

I
0
Î0

λ

R
Î2 Î3

S0 S2S1

Fig. 3: The input values I is arranged in quantization regions

Sk depending on the number k of emitted spikes.

so here we describe how the proposed Dual-SIMQ deals with

negative inputs.

Suppose that the input value I corresponds to one of the

pixel values of an image. We have decided to assign 1-bit per

pixel to encode the sign of each input intensity as following

sgn(I) =

{

1, if I ≥ 0,
−1, otherwise.

(31)

Thus, the Dual-SIMQ coder receives as an input the absolute

value of each input intensity |I| and computes the number of

the emitted spikes k within the observation window T . Then,

the decoder receives the sign information, sgn(I), and the

number of spikes k which are associated to the quantization

interval Sk represented by the centroid value |Î|. Finally, the

output of the decoder is given by Ĩ = sgn(I)|Î| and the

reconstructed values belong to the set

Ĩ ∈
{

Ĩ0, Ĩ1, . . . , Ĩk, . . .
}

. (32)

C. Dynamic Properties of the Dual-SIM Quantization

As explained in the previous sections, the performance of

the Dual-SIMQ is mainly driven by the threshold parameter

θ. Figure 4(a) shows for a normal distribution input that when

the threshold value increases, the Dual-SIMQ generates a lot

of distortion. This is also obvious if one plots the characteristic

function of the Dual-SIMQ (see Fig. 4 (b)) where the length ℓ
of the quantization steps are wider as theta increases. However

besides θ, there are other parameters that also influence the

Dual-SIMQ response such as the observation window T and

the resistance R.

1) Time-Dependent Dual-SIMQ: The “dynamic” behavior

of the Dual-SIMQ is one of its most important properties

associated with the fact that the number of spikes depends on

the length of the observation window T . According to (23),

the longer the input signal is flashed, the more the spikes that

correspond to this input intensity. On the other hand, if the

observation window is too small, the number of spikes will

fail to precisely describe the input signal.

As depicted in Fig. 4(c), for a normal distribution input,

while increasing the observation window T , the quality of the

reconstructed signal substantially improves. It is remarkable

that when time is too short (T < 20 ms) the Dual-SIMQ

is not able to perceive any information regarding the input
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Fig. 4: (a) Impact of the threshold θ on the performance of the Dual-SIMQ; the distortion increases with theta (set of parameters:

C = 50 F, T = 200 ms). (b) Dual-SIMQ characteristic function for different θ values (parameters: T = 150 ms, R = 1000 Ω,

C = 1 F). (c) Impact of the size of the observation window T on the performance of the Dual-SIMQ. The reconstruction

quality improves when the size of the observation window increases (set of parameters: C = 50 F, θ = 50 V).

signal. This is a natural coincidence due to the neuroscience

models which are embedded in the Dual-SIMQ. This time

could be intuitively explained as the propagation time of the

visual stimulus to the spiking neurons. In addition, it is obvious

that at a given time (T ≈ 100 ms) the reconstruction quality

vanishes into an asymptotic value.

2) Resistance-Dependent Dual-SIMQ: It has been shown

in [30] that the Dual-SIMQ can be approximated by a USQ

for very large values of R. In this work, we extend this proof

and we show that R determines the Dual-SIMQ response that

varies from uniform to non-uniform.

Proposition 1. Let us assume that the input value I has

generated exactly k spikes for any k ≥ 1 while the value

of R is arbitrarily large. Then, the Dual-SIMQ is a uniform

quantizer where the length ℓk of each quantization interval is

constant for all k

ℓk =
θC

T
+ o

(

1

R

)

, ∀k, (33)

where the notation o(·) is the little-o notation, recalled in (44),

which is used to express the asymptotic behavior of a function.

Then, the number of the generated spikes is

N = N(I) =
⌊ T

θC
I
⌋

. (34)

Proof. Using the Taylor series it follows that, for k ≥ 1,

h−1

(

T

k

)

=
θC

T
k +

θ

2R
+

θT

12R2Ck
+ o

(

1

R2

)

. (35)

Combining (29) and (35) yields (33). Furthermore, we get

λ

R
= h−1 (T ) =

θC

T
+

θ

2R
+

θT

12R2C
+ o

(

1

R2

)

.

Finally, a short calculation based on the Taylor series of the

logarithm shows that

d(I) = h (I) =
θC

I
+

Cθ2

2RI2
+ o

(

1

R

)

. (36)

Incorporating (36) in (23) yields (34).

Proposition 1 shows that the Dual-SIMQ coincides with a

USQ, Qq=ℓ∞,λ=2ℓ∞(x), as R becomes arbitrarily large, with a

quantization step q = ℓ∞. This confirms that a large T yields

an accurate quantization. On the opposite, a large value of θ
or C decreases the accuracy of the quantizer.

Proposition 2. Let us now assume that R is small, then the

Dual-SIMQ is a non-uniform quantizer. The length of each

quantization interval depends on the number of spikes k. When

k increases, the length ℓk converges to an asymptotic value

ℓk =
θC

T
, k → ∞. (37)

Proof. See the proof in the Appendix A.
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Fig. 5: This figure illustrates the performance of the Dual-

SIMQ as a non-uniform quantizer when the value of R is small

and as a uniform quantizer when the value of R is arbitrarily

large (set of parameters: θ = 5 V, C = 10 F and T = 100 ms.

Figure 5 illustrates how the value of R affects the length

ℓ of the quantization intervals in function of the number

of spikes. When R is small and k ≥ 1, the length of the

quantization interval is a strictly increasing function which is
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upper-bounded by ℓ0. However, when R is large, the Dual-

SIMQ becomes completely uniform. As we show later on,

when the Dual-SIMQ is applied to a normal distribution signal,

it is expected to better encode the low than the high intensities

when R is small. On the contrary, whatever the intensity is,

if R is high it will behave towards a uniform manner. The

interpretation of the above behavior will be more evident in

section V.

V. NUMERICAL RESULTS

The proposed neuro-inspired Dual-SIMQ is evaluated in

terms of the rate-distortion trade-off on both simulated and

real data.

A. Experiments with Simulated Data

In this section, we aim to study the validity of the rate-

distortion theory which is determined by the comparison of

the rate-distortion approximation and the performance of the

Dual-SIMQ when the distribution of the input signal is normal.

It has been proven in Section IV-C, that the Dual-SIMQ is a

dynamic quantizer that performs either as a uniform or as a

non-uniform transducer. The distortion approximation (11) is

only related to an asymptotic behavior thus, the comparison

is considered against the uniform Dual-SIMQ. If the constant

length of the quantization intervals ℓk (37) takes the place of

the quantization step q in (11), it is trivial to visualize that the

distortion approximation perfectly overfits the behavior of the

Dual-SIMQ.
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Fig. 6: Comparison of the asymptotic performance of the Dual-

SIMQ with the USQ for inputs following (a) the Laplacian dis-

tribution and (b) the Gaussian distribution (set of parameters:

C = 1 F, R = 108 Ω, θ ∈[5,500] V and T = 150 ms).

Fig. 6 compares the performance of the Dual-SIMQ and

the USQ for input samples following Laplacian and Gaussian

distributions. We have chosen these inputs because according

to [12] for a USQ there is an optimal relationship between

the quantization step q and the deadzone λ; for Laplacian

distributions the deadzone equals λ = q and for Gaussian

distributions λ = 2q. Proposition 1 has shown that the

performance of the Dual-SIMQ is asymptotically equivalent

to the optimal USQ.

Input:

I

Quantized value:

Î = Qq,λ(I) (6)

AND / OR

Î = QL(I)

(a)

Input:

I

Spike train (18):
{

t1, . . . , tN(I)
}

Interspike delay:

d = d(I) (19)

Quantized delay:

d̂ = Qq,λ(d) (6)

AND / OR

d̂ = QL(d)

Quantized value:

Î = Î(d̂) (38)

(b)

Input:

I

Spike train (18):
{

t1, . . . , tN(I)
}

Interspike delay:

d = d(I) (19)

Number of spikes:

N = N(I) (23)

Quantized value:

Î = ÎN (30)

(c)

Fig. 7: Three kinds of quantization: (a) USQ Qq,λ or Lloyd

Quantizer QL applied to I , (b) USQ Qq,λ or Lloyd Quantizer

QL applied to delays d(I), and (c) Dual-SIMQ.

B. Dual-SIMQ vs USQ on Real Data

It is proven in Section IV, that by tuning some of the

Dual-SIMQ parameters its behavior might be uniform or

non-uniform. For this reason, we have decided to contrast

Dual-SIMQ with uniform and non-uniform state-of-the-art

quantizers. Figure 7 illustrates the schema of every quantizer

that participates to this comparison. The first quantization is

a USQ or the Lloyd quantizer applied directly to the input

value I (see Fig. 7 (a)). The second type of quantization is

composed of three steps: i) the input value I is transformed

in a spike train with a constant interspike delay d(I), ii) the

interspike delay d(I) is quantized with a USQ or the Lloyd

quantizer (see Fig. 7 (b)) iii) the reconstructed value Î is given

by:

Î =

{

0, if d̂ > T,

h−1(d̂), otherwise,
(38)

where h−1(·) is defined in (21). The third quantization is given

by the Dual-SIMQ (see Fig. 7 (c)).

The first goal of this section is to show that, in terms of

compression, counting the number of spikes is more efficient

than quantizing the delays (see Fig. 7 (c) and (b)). The

second mission is to compare the proposed neuro-inspired

quantizer with the state-of-the-art USQ and Lloyd quantizer

when applied directly to the pixel intensities (see Fig. 7 (c)

and (a)). Let the input intensities I1, . . . , In correspond to the

pixel values of each input image I = (I1, . . . , In). The quality

evaluation of the results was measured by the Peak Signal-to-

Noise Ratio (PSNR) metric (39) while the rate was computed

according to (13). Throughout this paper the entropy is given

in bits per pixel (bpp).
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PSNR(I, Î) = 10 ∗ log10

(

2552

MSE(I, Î)

)

, (39)

where MSE(I, Î) is defined by (10).

(a) Dual-SIMQ

θ = 420 V

PSNR = 46.05 dB

r = 5.43 bpp

(b) Dual-SIMQ

θ = 5200 V

PSNR = 23.75 dB

r = 1.93 bpp

(c) USQ

θ = 420 V, q = 0.01
PSNR = 44.43 dB

r = 5.45 bpp

(d) USQ

θ = 5200 V, q = 0.01
PSNR = 23.60 dB

r = 1.94 bpp

(e) LQ

θ = 420 V

PSNR = 43.63 dB

r = 5.4 bpp

(f) LQ

θ = 5200 V

PSNR = 26.96 dB

r = 2 bpp

Fig. 8: Visual comparison of the Dual-SIMQ (a)-(b), the USQ

applied to the delays (c)-(d) and the Lloyd applied to the delays

(e)-(f) for similar rates (set of parameters: R = 103 Ω, C =
1 F, T = 100 ms).

Figure 8 visually compares the performance of the three

quantization methods. As expected, the Dual-SIMQ is sub-

stantially better than the state-of-the-art USQ and LQ applied

(a) Dual-SIMQ

θ = 310 V

PSNR = 49.13 dB

r = 5.43 bpp

(b) Dual-SIMQ

θ = 4200 V

PSNR = 25.14 dB

r = 1.99 bpp

(c) USQ

PSNR = 49.6 dB

r = 5.45 bpp

(d) USQ

PSNR = 27.09 dB

r = 1.99 bpp

(e) LQ

PSNR = 43.63 dB

r = 5.4 bpp

(f) LQ

PSNR = 22.92 dB

r = 1.58 bpp

Fig. 9: Visual comparison of the Dual-SIMQ (a)-(b), the USQ

applied to the pixels intensities (c)-(d) and the Lloyd applied

to pixel intensities (e)-(f) for similar rates (set of parameters:

R = 103 Ω, C = 1 F, T = 100 ms).

to the delays. This is evident both numerically, by the fact that

for similar rates the quality assessment using the Peak Signal-

to-Noise Ratio (PSNR) metric (39) is higher, and visually

especially for lower rates (see cases (b),(c) and (f)), where the

details and the intensities range of the original image are better

approximated by the neuro-inspired method. Figures 9 and 10

verify that for the same rate r (bpp) counting the number of

spikes is more efficient than quantizing the pixel intensities

either in a uniform or a non-uniform way. The experiment in
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Fig. 10 exploits 100 natural images with n = 256×256 pixels

taken from the USC-SIPI database [31].
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Fig. 10: Comparison between (i) the Dual-SIMQ, (ii) the USQ

and (iii) the non-uniform Lloyd quantizer (set of parameters:

C = 1 F, T = 150 ms, θ ∈ {1, R, . . . , 10R} V, λ = q,

q = {1, 8, 10, 15, 20, 40, 60, 80, 100}).

C. Progressive Reconstruction

The Dual-SIMQ is a time-dependent quantizer as discussed

in section IV-C. It is also evident according to Proposition 2

and Proposition 1 that the lengths of the quantization regions

depend on T , especially the quantization step ℓ∞ vanishes as

T becomes arbitrarily large. Fig. 11 illustrates the dynamic

behavior of the Dual-SIMQ comparing the reconstruction

performance of the system for different observation windows

T . As expected, when the available observation time of the

Dual-SIMQ is short, the number of spikes that correspond

to high intensities is limited. As a result, the quality of the

reconstruction is poor because most of the small intensities

will be represented by one or none spikes. On the other hand,

when the observation window is large almost all the pixel

intensities will manage to generate some spikes improving

in that sense the reconstruction quality. As a consequence,

the progressive enhancement of the reconstructed signal is

definitely among the most important and ground-breaking

benefits of the Dual-SIMQ taking under consideration that

none of the state-of-the-art quantization methods is able to

improve the quality of the signal along time.

VI. CONCLUSION

This paper has introduced a novel, bio-inspired en-

coder/decoder of natural images called the Dual-SIMQ. The

Dual-SIMQ encoder is based on the LIF model, a very efficient

spike generation mechanism which approximates the neural

spiking process. The Dual-SIMQ decoder is a combination of

two spike interpretation mechanisms which approximates the

spike arrival delay by counting the number of spikes within a

given observation window.

The Dual-SIMQ framework can play a pivotal role in the

signal, image and video processing fields because it allows

to encode the input values in a simple and dynamic manner,

mimicking the neural behavior. At the same time, it enables

to progressively reconstruct the input value, which seems very

promising for video compression applications. The ”bigger

picture” of this work is the development of a new compression

system that understands the visual word according to the

(a) θ = 50 V

PSNR = 38.77 dB

r = 3.67 bpp

(b) θ = 400 V

PSNR = 14.94 dB

r = 0.96 bpp

(c) θ = 50 V

PSNR = 48.12 dB

r = 5.23 bpp

(d) θ = 400 V

PSNR = 28.49 dB

r = 2.32 bpp

Fig. 11: Dual-SIMQ progressive reconstruction for T = 50 ms

(a)-(b)and T = 150 ms (c)-(d) (set of parameters: R = 103 Ω
and C = 1 F).

human visual perception. Within this framework, merging

different neuro-inspired processing tools, such as the retina-

inspired filter [7] and the proposed Dual-SIMQ, could establish

an alternative signal reconstruction methodology depending on

neurons capabilities.
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APPENDIX A

PROOF OF PROPOSITION 2

Let f : [1,+∞) 7→ R be the differentiable function:

f(x) =
1

1− exp
(

−
α

x

) (40)

where α = T/τ > 0 and let g(x) = f(x + 1) − f(x). It is

straightforward to verify that

ℓk =
θ

R
g(k), ∀k ≥ 1.

Let us show that g is an increasing function. The first derivative

of g is

g′(x) = f ′(x+ 1)− f ′(x) (41)



10

where

f ′(x) =
α exp

(

−
α

x

)

x2
(

1− exp
(

−
α

x

))2 . (42)

A short calculation shows that

f ′(x) =
α

4x2 sinh2
( α

2x

) (43)

where sinh(·) is the hyperbolic sine. Let u : [1,+∞) 7→ R be

the function defined by

u(x) = x sinh
( α

2x

)

.

The function u(x) is strictly decreasing over [1,+∞) since its

first derivative is strictly negative. Indeed, we get

u′(x) = sinh
( α

2x

)

−
α

2x
cosh

( α

2x

)

where cosh(·) is the hyperbolic cosine. So, u′(x) < 0 is

equivalent to

tanh
( α

2x

)

<
( α

2x

)

.

A short calculation shows that

tanh(y) < y, ∀y > 0,

where tanh(·) is the hyperbolic tangent, which proves that

u′(x) < 0 for all x ≥ 1. Since u(x) is strictly positive and

strictly decreasing, u2(x) is also strictly decreasing. It follows

that f ′(x) is strictly increasing. From (41), it follows that

g′(x) > 0 for all x ≥ 1. This shows that g is strictly increasing

and, hence, ℓk is a strictly increasing sequence of reals.

Let us calculate the limit of the sequence ℓk. The Taylor

series of h−1(x) at x = 0 is given by

h−1(x) =
θC

x
+

θ

2R
+

θx

12R2C
+

θ

R
o
( x

RC

)

, (44)

where o(·) is the little-o notation such that f = o(g) means

that there exists a function ε(x) satisfying f = gε and ε(x) →
0 as x → 0. Indeed, a short calculation shows that:

1

1− exp(−x)
=

1

x
+

1

2
+

1

12
x+ o(x), (45)

and the derivation of (44) is straightforward. Assuming that k
is large and applying (44) to each term of (29) yields

ℓk =
θC

T
+ o

(

1

k

)

. (46)

The limit ℓ∞ is immediate.

Finally, let us show that ℓ0 > ℓ∞. It is well known that

exp(−x) > 1− x for all x 6= 0. Hence, it follows that

ℓ0 =
λ

R
=

θ

R

(

1− exp

(

−
T

RC

))−1

>
θ

R

RC

T
= ℓ∞. (47)
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