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Dynamic image quantization

using Leaky Integrate-and-Fire neurons
Effrosyni Doutsi, Member, IEEE, Lionel Fillatre, Marc Antonini, Member, IEEE,

Panagiotis Tsakalides, Member, IEEE,

Abstract—This paper introduces a novel coding/decoding
mechanism that mimics one of the most important properties
of the human visual system: its ability to enhance the visual
perception quality in time. In other words, the brain takes
advantage of time to process and clarify the details of the
visual scene. This characteristic is yet to be considered by
the state-of-the-art quantization mechanisms that process the
visual information regardless the duration of time it appears
in the visual scene. We propose a compression architecture
built of neuroscience models; it first uses the leaky integrate-
and-fire (LIF) model to transform the visual stimulus into a
spike train and then it combines two different kinds of spike
interpretation mechanisms (SIM), the time-SIM and the rate-
SIM for the encoding of the spike train. The time-SIM allows a
high quality interpretation of the neural code and the rate-SIM
allows a simple decoding mechanism by counting the spikes.
For that reason, the proposed mechanisms is called Dual-SIM
quantizer (Dual-SIMQ). We show that (i) the time-dependency
of Dual-SIMQ automatically controls the reconstruction accuracy
of the visual stimulus, (ii) the numerical comparison of Dual-
SIMQ to the state-of-the-art shows that the performance of the
proposed algorithm is similar to the uniform quantization schema
while it approximates the optimal behavior of the non-uniform
quantization schema and (iii) from the perceptual point of view
the reconstruction quality using the Dual-SIMQ is higher than
the state-of-the-art.

Index Terms—Uniform Quantization, Non-uniform Quantiza-
tion, Leaky Integrate-and-Fire Model, Spikes, Rate coding, Time
coding.

I. INTRODUCTION

C
OMPRESSION is undoubtedly considered as one of

the most important and necessary processing steps in

image communication. Images are highly correlated signals

as they consist of a lot of redundancy. A lot of effort has

been deployed to justify how to efficiently eliminate this

redundancy while ensuring high reconstruction quality (lossy

compression). The definition of redundancy is often associated

with the sensitivity of the human visual system (HVS) to

specific spatiotemporal frequencies. Thus, understanding and

modeling the visual perception seems to be very beneficial to

the progress of compression algorithms [1], [2].

The core of the state-of-the-art lossy compression algo-

rithms is quantization. The quantization objective is to figure
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out the best possible way to map a range of values from

the input signal into a single quantum value. There are two

different kinds of quantization; the uniform and the non-

uniform. Both methods are able to process the input signal at

once and achieve only one reconstruction quality depending

on their parameters. However, this single-step approach is in

contrast to the HVS where time has a key role in the quality

refinement of the reconstructed images. In other words, if we

neglect the saccadic eye movements, the HVS takes advantage

of the duration the input signal is available to enhance the

quality of the perceived image.

In this work, we are interested in adopting into a com-

pression architecture, the aforementioned time-dependent ca-

pacity of the HVS in order to improve the perception quality

of the reconstructed signal in time. We propose a novel

coding/decoding architecture inspired by the neurons which

are the main processing units of the HVS. In the literature,

there are plenty of spike generation mechanisms (SGM) which

approximate the way the neurons transform a constant positive

input stimulus I into a sequence of N ∈ N
+ discrete events

called a spike train. Each discrete event, namely a spike, is

generated if the input intensity is stronger than a threshold θ,

otherwise the neuron remains silent. The spikes are treated as

identical stereotype events, because their shape does not seem

to carry any information. Rather, it is the number of spikes

and/or the spike arrival times which matter [3].

During the last decade, the neural spiking mechanisms have

attracted the interest of the signal processing society. The most

challenging part of using these mechanisms is to find out the

best spike interpretation mechanism (SIM) which allows us

to use the code of spikes and reconstruct the highest quality

input signal (Fig. 1), since the brain uses the code of spikes

to learn, analyze, and take decisions instead of reproducing

the input stimulus. However, there are several architectures

that use neural models in order to encode signals using spikes

such as the rank order coders (ROC) [4], [5], time encoding

machines [6] and asynchronous pulse sigma-delta modulators

(APSDM) [7]. The importance of the time parameter was

mentioned for the first time in [4] where the authors show

that when the observation window is long, the number of

spikes that participate in the reconstruction process is higher,

resulting in a better quality.

The main contributions of this paper are the following.

First, the paper introduces a novel quantizer, namely the

Dual-SIM Quantizer (Dual-SIMQ), which is based on two

complementary aspects of SIM: i) the input value is converted

into a sequence of spikes by using a time-encoding and ii) it
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Fig. 1: General framework of the proposed architecture. A

3× 3 input image I is fed to a group of 9 neurons (in blue).

Each neuron is associated and excited by an individual pixel.

After a given observation window T the spike trains are used

to reconstruct an approximation of the input image Î .

is reconstructed by using a rate-decoding which counts the

spikes. It is shown that the combination of time-encoding

and rate-decoding leads to a natural quantization of the input

value. Second, the maximum number of spikes is controlled

by a given observation duration T > 0. The duration T is

interpreted as the maximum time period which is allowed

to encode and decode the spike train. The behavior of the

quantizer depends of the parameter T . Hence, this time con-

straint generates a dynamic quantizer whose behavior evolves

in time. The dynamic properties of the Dual-SIMQ give

rise to a ground-breaking compression system that permits a

time-dependent quality refinement of the reconstructed signal.

This is a great breakthrough compared to the conventional

quantizers which process the input stimulus in a single-step

without taking advantage of the observation duration. It is

also mathematically proven that this novel neuro-inspired

mechanism performs as a uniform or non-uniform quantizer by

choosing adequately some of its parameters. Last but not least,

this paper shows that the Dual-SIMQ outperforms the capacity

of a uniform scalar quantizer (USQ) without deadzone, it

coincides with the performance of a USQ with deadzone and

it approximates the optimal Lloyd-Max quantizer (LQ).

Section II describes the principle of the neuro-inspired quan-

tization based on spike trains. Section III is an overview of

the spike generation and interpretation mechanisms, focusing

especially on the well known leaky integrate-and-fire (LIF)

model. Section IV presents our main contribution introducing

how to combine the rate-SIM and time-SIM to derive the

Dual-SIMQ. Numerical results on simulated data and real

data are presented in Section V. A concise discussion and

the conclusion of this work are drawn in section VI.

II. PRINCIPLE OF NEURO-INSPIRED QUANTIZATION

This section briefly recalls the main concepts in quantization

and rate-distortion theory and how they are related to the

neuro-inspired quantization.

A. Basics of Quantization

Let I be a real random variable with the probability density

function (pdf) p(I) and let the representation of I be denoted

as Î . If we are given r bits to represent I , the value Î can

take on 2r values. The general problem of quantization is to

find the optimum set of values for Î , called the code points

Î1, Î2, . . . and the regions S1, S2, . . ., that are associated with

each code point.

According to quantization theory [8], a 2r-rate distortion

code consists of an encoding function,

f : R → C, (1)

where C is a subset with 2r elements of the set of all integers

Z and a decoding function

g : C → R. (2)

The encoding function defines a partition {S1, . . . , S2r} of R

such that Si ∩ Sj = ∅ for all i 6= j and ∪2r

m=1Sm = R.

The interval Sm is called the m-th quantization region and

it is defined such that f(I) is constant for all I ∈ Sm and

g(f(I)) = Îm for all I ∈ Sm.

The quantization can be uniform or non-uniform [9], [10].

A uniform quantizer is recommended when the input source

is either uniformly or non-uniformly distributed. In the latter

case, it is mandatory that the quantizer is followed by an

entropy coder where the statistics of the input source are taken

into consideration. Otherwise, it is better to calculate some

non-uniform quantization regions such that finer regions are

associated to more likely values. This paper does not make any

assumption on the probability distribution of the input source.

Most uniform quantizers for signed input value can be

classified as being of one of two types: mid-rise and mid-tread.

A typical mid-rise uniform scalar quantizer with a quantization

step size q > 0 can be expressed as

Qq(x) = q ×

(⌊

x

q

⌋

+
1

2

)

, (3)

where ⌊x⌋ corresponds to the greatest integer less than or equal

to x. For simplicity, it is assumed that C = Z is not finite.

The definition of the mid-tread uniform scalar quantizer

with deadzone λ > 0 is given by:

Qq,λ(x) = sgn(x)max

(

0,

⌊

|x| − λ/2

q
+ 1

⌋)

× q, (4)

where sgn(I) denotes the sign of I: sgn(I) = 1 if I > 0,

sgn(I) = −1 if I < 0 and sgn(0) = 0. The zero output of

the quantizer is the interval
[

−λ
2 ,

λ
2

]

called the deadzone. The

standard mid-tread quantizer corresponds to λ = q.

It has been proven that given a certain statistical distribution

of the signal it is possible to compute the best partition that

minimizes the power of noise using the non-uniform Lloyd-

Max quantizer which is explicitly described in [11], [12].

B. Neuro-Inspired Quantization

The neuro-inspired quantizer proposed in this paper encodes

the input value as a spike train and it exploits this spike train

to estimate Î . More formally, it is assumed that the input value

I takes the form of a constant signal

I(t) = I 1[0≤t≤T ](t), (5)

for a given duration T > 0 where 1 is the indicator function

which equals 1 if 0 ≤ t ≤ T , and 0 otherwise. Without

any loss of generality, it is assumed that I ≥ 0. It will be

mathematically defined later on (see section IV-B), that if I is

real, the sign of I will be coded separately with a dedicated
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single bit. Here, the encoding function is a function f(I) which

transforms the signal I(t) into a spike train

f : I 7→
{

t1(I), t2(I), . . . , tN(I)(I)
}

=
{

t1, t2, . . . , tN
}

of N = N(I) increasing positive time values tj = tj(I)
depending on I . The decoding function g(·) transforms the

spike train f(I) in an estimated real value Î = g(f(I)). In

the rest of the paper, the symbol I is omitted in the spike times

tj and N in order to simplify the notations. The duration T
acts as a parameter to control the number N of spikes.

C. Basics of Rate Distortion Theory

The distortion of a quantizer can be measured by the Mean

Squared Error (MSE):

D = MSE(I, Î) =

L
∑

m=1

∫

Sm

(I − Îm)2p(I) dI, (6)

where L is the number of the quantization layers. In the case

of a high resolution uniform scalar quantizer, when q is small

(or equivalently L sufficiently large), assuming that the pdf

p(I) is smooth enough, it is shown in [9] that

D ≈
q2

12
. (7)

The rate r is given in bits/symbol (here, a symbol corresponds

to a codeword) by the entropy of the codewords:

r = −
L
∑

m=1

pm log2 pm, (8)

where pm =
∫

Sm

p(I) dI is the probability of the quantization

interval Sm. We also get from [13] that:

r ≈ H(I)− log2 q, (9)

where H(I) =
∫ +∞

−∞
p(I) log2 p(I) dI is the Shannon entropy.

Finally, we obtain the famous rate-distortion approximation

D = D(r) ≈
1

12
22H(I)2−2r, (10)

which gives the optimum value of D for a given rate r in the

case of a high resolution uniform quantizer.

III. SPIKE GENERATION AND INTERPRETATION

This section describes usual mechanisms to transform a

signal into a spike train and to recover it from the spike train.

A. Spike Generation Mechanism (SGM)

In the literature, there are several models which approximate

the neural activation. Hodgkin and Huxley [14] reproduced

the neural activity with high accuracy deriving a set of four

nonlinear differential equations which approximate the neural

behavior with a lot of details at the level of ion channels.

However, these equations are difficult to manipulate. A pos-

sible reduction of these equations leads to either a system

of two-dimensions [15]–[18] or the Spike Response Model

(SRM) [3], [19], [20]. On the one hand, the advantage of the

two-dimension simplification is the plane analysis of the neural

behavior. On the other hand, based on the SRM, it is proven in

[19] that the Hodgkin-Huxley equations can be approximated

by the simpler Leaky Integrate-and-Fire (LIF) model [3].

RI3 RI2 RI1
RI1 < θ < RI2 < RI3

d3 d2

T t

θ

Fig. 2: LIF model with observation window T and threshold

θ. If the intensity I satisfies RI > θ, the neuron spikes (case

I ∈ {I2, I3}), otherwise it remains silent (case I = I1).

The well-known LIF model is simple [3]. It approximates

the neuronal encoding process by a first order differential

equation derived from a resistor-capacitor circuit:

I(t) =
u(t)

R
+ C

du

dt
(t), (11)

where I(t) is the input signal, C is the capacitance, R is

the resistance and u(t) is the voltage across the resistor. The

voltage u(t) models the membrane potential of a neuron. It is

assumed that u(t = t(k)) = 0 mV after the emission of a spike

at time t(k), k ≥ 1, with the convention that t(0) = 0 ms.

The solution uk(t) of the differential equation (11) for the

constant signal I(t) in (5) after the emission of the k-th spike

at time t(k) is given by:

uk(t) = RI

[

1− exp

(

−
t− t(k)

τ

)]

, ∀t ≥ t(k), (12)

where τ = RC is the time constant. The neuron spikes when

uk(t) crosses the threshold θ > 0. The moment t(k+1) the

neuron spikes is called the (k+1)-th firing time and it satisfies

uk(t
(k+1)) = θ. (13)

It follows that

t(k+1) =







+∞, if RI ≤ θ,

t(k) − τ ln

[

1−
θ

RI

]

, if RI > θ.
(14)

Just after the emission of the (k + 1)-th spike at time t(k+1),

the potential is reset to zero, i.e., uk+1(t
(k+1)) = 0, and the

integration of the potential starts all over again for t > t(k+1)

until the next spike emission. The asymptotic value RI de-

termines the generation of the spikes: if RI ≤ θ, there is no

spike, otherwise, a spike is emitted (see Fig. 2). This paper

does not consider any absolute refractory period [3] after the

spike emission.

B. Spike Interpretation Mechanism (SIM)

Due to the fact that spikes are characterized as stereotype

events, the information which is carried on a spike train is

either the number of spikes (rate) or the exact time each

spike arrives. This subsection is dedicated to the analysis
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and comparison of the most widely used Spike Interpretation

Mechanisms (SIMs), the rate-SIM and the time-SIM.

1) Rate-SIM: The spiking activity of a neuron over time is

usually represented by a graph called the raster plot. Under

the assumption that the neurons are independent, it has been

proven that for a given input I(t) the firing rate is a stochastic

process which causes irregular interspike intervals reflecting

a random process [21], [22]. Then, the instantaneous spike

rate (mean firing rate) can be obtained either by averaging the

spikes of an individual neuron (spike count), or by averaging

the firing rate over multiple repetitions of the same experiment

(spike density) [3]. The performance of Rate-SIM methods is

poor if (i) it is impossible to repeat the experiment, and (ii)

when the observation window is too short such that the neurons

are able to emit only a small number of spikes.

2) Time-SIM: An alternative strategy is to interpret a code

of spikes by exploiting the time a neuron emits its spikes.

Generally, the time-to-first-spike is a time-SIM which assumes

that the neuron which fires shortly after the onset of the

stimulus is more sensitive to the input comparing to other

neurons which are activated somewhat later [23]–[27]. Another

famous time-SIM code is the Rank-Order-Coder (ROC) which

identifies the spike train of a neuron by ranking the arrival of

the first spike [4], [23], [28]. Finally, the LIF can also be

considered as a time-SIM as discussed hereafter.

According to Subsection III-A, the LIF encodes the in-

put stimulus into the spike train
{

t(1), . . . , t(N)
}

. From the

definition of the arrival times t(k+1) in (14), it follows that

the delay d = d(I) between two spikes arrivals is constant

because I is assumed constant in the observation window T ,

i.e., d = t(k+1) − t(k) for any k, and satisfies

d(I) =







+∞, if RI < θ,

h(I) = −τ ln

[

1−
θ

RI

]

, if RI > θ.
(15)

The stronger the input signal is, the smaller the delay between

spikes. On the contrary, a weak input signal corresponds to

a larger delay. Figure 2 illustrates the LIF model for three

different temporally constant inputs I1 < I2 < I3 and a

threshold θ. Based on (15), the intensities I2 and I3 are able

to spike with delays d3 < d2. The third intensity I1 remains

silent because RI1 < θ so its spiking delay turns to infinity.

Let us denote h−1(d) the inverse function of h(I) given by

h−1(d) =
θ

R

(

1− exp

(

−
d

τ

)) , for d 6= 0. (16)

If the delay d, finite or infinite, was perfectly known, the

reconstructed value would be Î :

Î =

{

0, if d > T,
h−1(d), if d ≤ T.

(17)

When d is larger than the observation duration T , the

receiver does not receive any spike. Hence, any arbitrary value

of Î is acceptable; the zero value is a reasonable choice. In

addition, there is no error of reconstruction when the delay is

smaller than T . Based on the analysis above, the substitution

of the delay d with the observation window T in (16) results

in a new threshold λ associated to the reconstruction error

λ = Rh−1(T ) = θ

(

1− exp

(

−
T

τ

))−1

. (18)

Therefore, according to the aforementioned example where

the delay is known, if RI > λ there will be no reconstruction

error. It can be noted that λ > θ (since T > 0 and τ > 0) and

λ converges to θ as T becomes arbitrarily large.

The characteristic function of such a “perfect” coding/

decoding system, called the Perfect-LIF, is a thresholding

function [29]. The temporal constraint T implies that all the

input value I such that θ < RI ≤ λ cannot be recovered

by the time-constrained perfect-LIF. As discussed in [30],

the transmission of the exact value of the delay d is very

expensive regarding the number of coding bits. To decrease

the binary rate of the perfect-LIF, this paper proposes to

combine the spike counter rate-SIM and the delay coder time-

SIM mechanisms resulting in the Dual-SIMQ. The proposed

quantizer ensures (i) time-dependency, similar to the HVS

behavor, (ii) low memory cost, (iii) high reconstruction quality,

(iv) simplicity in terms of the overall processing and (v)

extension feasibility to higher dimensional signals.

IV. DUAL-SIM QUANTIZER

This section is dedicated to the analysis of our novel Dual-

SIMQ which was first briefly introduced in [30].

A. Dual-SIMQ Coder/Decoder

The first step of the Dual-SIMQ encoder consists in en-

coding the input value I as a spike train by using the LIF

encoder (14). When the input signal is constant, since the

interspike delay (15) is constant, we propose, as a second step,

to count the spikes instead of coding the interspike delay. The

theoretical number of spikes over the time interval [0, T ] is:

N = N(I) =







0, if RI ≤ λ,
⌊ T

d(I)

⌋

, if RI > λ.
(19)

Once the number of spikes, N , has been transmitted to the

decoder, one can easily estimate the interspike delay by

d̂ =

{

∞, if N = 0,
T

N
if N > 0.

(20)

d

T

T/2
T/3

θ

R

h(I)

I
0
Î0

λ

R
Î2 Î3

S0 S2S1

Fig. 3: The input values I is arranged in quantization regions

Sk depending on the number k of emitted spikes.
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Fig. 4: (a) Impact of the threshold θ on the performance of the Dual-SIMQ for a zero-mean normal distribution with σ = 2;

the distortion increases with theta (set of parameters: C = 50 F, T = 200 ms). (b) Dual-SIMQ characteristic function for

different θ values (parameters: T = 150 ms, R = 100 Ω, C = 1 F). (c) Impact of the size of the observation window T on

the performance of the Dual-SIMQ. The reconstruction quality improves when the size of the observation window increases

(set of parameters: C = 50 F, θ = 1 V).

Fig. 3 illustrates how the Dual-SIMQ counts the number

of spikes with respect to the input intensity I . For any input

intensity I such that RI < λ, there will be no spikes emitted

(N = 0) because d > T . Consequently, all the input values

which belong to interval

S0 = {I > 0 : RI < λ} =
[

0, h−1 (T )
)

(21)

will be recovered by the single output intensity Î0 = 0. Based

on the above equation, it is obvious that the length ℓ0 of the

interval S0 is ℓ0 = λ/R. Let us now suppose that only one

spike arrives for the input signal I , i.e., N = 1. According

to (19), all the input intensities I which have caused the

generation of a single spike belong to

S1 =

{

I > 0 :
T

2
< d(I) ≤ T

}

. (22)

According to the quantization theory [9], assuming that

the pdf, p(I), is uniform over S1, it is well known that the

MSE error is minimized when the quantization interval is

represented by its center. Hence, we choose to reconstruct any

value I associated to S1 as its centroid value

Î1 =
1

2

(

h−1

(

T

2

)

+ h−1 (T )

)

. (23)

With the same reasoning, let us define Sk as the quantization

region associated to the input value I which has generated

exactly k spikes for any k ≥ 1, i.e.,

Sk =

{

I > 0 :
T

k + 1
< d(I) ≤

T

k

}

. (24)

The length ℓk of an interval Sk for k ≥ 1 is given by

ℓk = h−1

(

T

k + 1

)

− h−1

(

T

k

)

. (25)

A value I ∈ Sk is reconstructed by the interval’s centroid

Îk =
1

2

(

h−1

(

T

k + 1

)

+ h−1

(

T

k

))

. (26)

B. Dealing with real values

In signal processing, it is very common that an input

source has to be first transformed before the quantization.

The transformation enables to concentrate most of the signal

information in few low frequency components. However, after

the transformation, most of the times, occur negative values,

so here we describe how the proposed Dual-SIMQ deals with

negative inputs.

Suppose that the input value I corresponds to one of the

pixel values of an image. We have decided to assign 1-bit per

pixel to encode the sign of each input intensity as following

sgn(I) =

{

1, if I ≥ 0,
−1, otherwise.

(27)

Thus, the Dual-SIMQ coder receives as an input the absolute

value of each input intensity |I| and computes the number of

the emitted spikes k within the observation window T . Then,

the decoder receives the sign information, sgn(I), and the

number of spikes k which are associated to the quantization

interval Sk represented by the centroid value |Î|. Finally, the

output of the decoder is given by Ĩ = sgn(I)|Î| and the

reconstructed values belong to the set

Ĩ ∈
{

Ĩ0, Ĩ1, . . . , Ĩk, . . .
}

. (28)

C. Dynamic Properties of the Dual-SIM Quantization

As explained in the previous sections, the performance of

the Dual-SIMQ is mainly driven by the threshold parameter θ.

Figure 4(a) shows for a zero-mean normal distribution input

with σ = 2 that when the threshold value increases, the

distortion generated by the Dual-SIMQ increases. This is also

obvious by the characteristic function of the Dual-SIMQ (see

Fig. 4(b)) where the length ℓ of the quantization steps are

wider as theta increases. However besides θ, there are other

parameters that also influence the Dual-SIMQ response such

as the observation window T and the resistance R.

1) Time-Dependent Dual-SIMQ: The “dynamic” behavior

of the Dual-SIMQ is one of its most important properties

associated with the fact that the number of spikes depends on
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the length of the observation window T . According to (19), the

longer the input signal is “flashed” in front of a LIF neuron,

the more the the number of spikes that correspond to this input

intensity. On the other hand, if the observation window is too

small, the number of spikes will fail to precisely describe the

input signal.

As depicted in Fig. 4(c), for a normal distribution input,

while increasing the observation window T , the quality of the

reconstructed signal substantially improves. It is remarkable

that when time is too short (T < 20 ms) the Dual-SIMQ

is not able to perceive any information regarding the input

signal. This is a natural coincidence due to the neuroscience

models and parameters embedded in the Dual-SIMQ. This

time could be intuitively explained as the propagation time

of the visual stimulus to the spiking neurons. In addition, it is

obvious that at a given time (T ≈ 100 ms) the reconstruction

quality vanishes into an asymptotic value.

2) Resistance-Dependent Dual-SIMQ: It has been shown in

[30] that the Dual-SIMQ can be approximated by a USQ for

very large values of the resistance R. In this work, we extend

this proof and we show that R determines the Dual-SIMQ

response that varies from uniform to non-uniform.

Proposition 1. Given a value of R arbitrarily large. Let us

assume that the input value I has generated exactly N = k
spikes for any k ≥ 1 during T milliseconds. Then, the Dual-

SIMQ behaves as a uniform quantizer where the length ℓk of

each quantization interval is constant for all k and given by:

ℓk = ℓ =
θC

T
+ o

(

1

R

)

, ∀k, (29)

where the notation o(·) is the little-o notation, which is used

to express the asymptotic behavior of a function. Then, the

number of the generated spikes is

N = N(I) =
⌊I

ℓ

⌋

=
⌊ T

θC
I
⌋

. (30)

Proof. Using the Taylor series it follows that, for k ≥ 1,

h−1

(

T

k

)

=
θC

T
k +

θ

2R
+

θT

12R2Ck
+ o

(

1

R2

)

. (31)

Combining (25) and (31) yields (29). Furthermore, we get

λ

R
= h−1 (T ) =

θC

T
+

θ

2R
+

θT

12R2C
+ o

(

1

R2

)

.

Finally, a short calculation based on the Taylor series of the

logarithm shows that

d(I) = h (I) =
θC

I
+

Cθ2

2RI2
+ o

(

1

R

)

. (32)

Incorporating (32) in (19) yields (30).

Proposition 1 shows that the Dual-SIMQ coincides with a

USQ, Qq=ℓ∞,λ=2ℓ∞(x), as R becomes arbitrarily large, with a

quantization step q = ℓ∞. This confirms that a large T yields

an accurate quantization. On the opposite, a large value of θ
or C decreases the accuracy of the quantizer.

Proposition 2. Given a value of R relatively small, then the

Dual-SIMQ behaves as a non-uniform quantizer. The length

of each quantization interval depends on the number of spikes

k. When k increases, the length ℓk converges to an asymptotic

value

lim
k→∞

ℓk =
θC

T
. (33)

Proof. See the proof in the Appendix A.

Figure 5 illustrates how the value of R affects the length

ℓ of the quantization intervals in function of the number

of spikes. When R is small and k ≥ 1, the length of the

quantization interval is a strictly increasing function which is

upper-bounded by ℓ0. However, when R is large, the Dual-

SIMQ becomes completely uniform. As we show later on,

when the Dual-SIMQ is applied to a normal distribution signal,

it is expected to better encode the low than the high intensities

when R is small. On the contrary, whatever the intensity is,

if R is high it will behave towards a uniform manner. The

interpretation of the above behavior will be more evident in

section V.

0 2 4 6 8 10 12 14 1� �� 20
0

0.5

1

1.5

2

2.5

3

3.5

4

R = 1 Ω

Asymptotic value

R = 104 Ω

Number of spikes

le
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Fig. 5: Performance of the Dual-SIMQ as (i) non-uniform

quantizer (small R) and (ii) uniform quantizer (R arbitrarily

large). The number of spikes varies in function of the intensity

I (set of parameters: θ = 5 V, C = 10 F and T = 100 ms.

V. NUMERICAL RESULTS

The proposed neuro-inspired Dual-SIMQ is compared to the

state-of-the-art and evaluated in terms of the rate- distortion

trade-off on both simulated and real data against.

A. Experiments with Simulated Data

In this section, we aim to study the validity of the rate-

distortion theory which is determined by the comparison of

the rate-distortion approximation and the performance of the

Dual-SIMQ when the distribution of the input signal is normal.

It has been proven in Section IV-C, that the Dual-SIMQ is a

dynamic quantizer that performs either as a uniform or as

a non-uniform quantizer. The distortion approximation (7) is

only related to an asymptotic behavior thus, the comparison

is considered against the uniform Dual-SIMQ. If the constant

length of the quantization intervals ℓk (33) takes the place of

the quantization step q in (7), it is trivial to visualize that the

distortion approximation perfectly overfits the behavior of the

Dual-SIMQ leading to the following formula:

D =
(θC)2

12T 2
∼

α

T 2
. (34)
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Interestingly, we can see that the distortion of the Dual-SIMQ

quantizer is inversely proportional to the observation time T
for given θ and C.
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Fig. 6: Comparison of the asymptotic performance of the Dual-

SIMQ with the USQ with deadzone for inputs following (a)

the Laplacian distribution and (b) the Gaussian distribution

(set of parameters: C = 1 F, R = 103 Ω, θ ∈[5,800] V and

T = 150 ms).

Fig. 6 compares the performance of the Dual-SIMQ and

the USQ with deadzone for input samples following zero

mean Laplacian and Gaussian i.i.d. distributions with σ = 2.

According to [13] for a USQ with deadzone, there is an

optimal relationship between the quantization step q and the

deadzone λ; for Laplacian distributions the deadzone equals

λ = 2q and for Gaussian distributions λ = q. Proposition

1 has shown that the performance of the Dual-SIMQ is

asymptotically equivalent to the optimal USQ with deadzone.
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Fig. 7: Comparison between (i) the Dual-SIMQ, (ii) the USQ

with deazone λ = q, (iii) the USQ without deadzone (λ = 2q)

and (iv) the non-uniform Lloyd quantizer for 100 synthetic

normal zero mean distribution signals (set of parameters:

C = 1 F, T = 150 ms, θ ∈ {1, R, . . . , 10R} V, λ = q,

q = {1, 8, 10, 15, 20, 40, 60, 80, 100}).

It is proven in Section IV, that by tuning some of the

Dual-SIMQ parameters its behavior might be uniform or non-

uniform. For this reason, we have decided to contrast the

performance of the Dual-SIMQ with the uniform USQ and

the non-uniform LQ. Figure 7 illustrates the average behavior

of (i) the proposed Dual-SIMQ, (ii) the USQ with deadzone,

(iii) the USQ without deadzone and (iv) the LQ when trained

with 100 synthetic zero mean normal distribution images with

σ = 2. As expected, for the same rate values the performance

of Dual-SIMQ, outpeforms the USQ without deadzone, coin-

cides with the optimal USQ with deadzone λ = q, while it

approximates the capacity of the optimal LQ quantizer. The

quality evaluation of the results was measured by the PSNR

metric (35) while the rate was computed according to (9).

Throughout this paper the entropy is given in bits per pixel

(bpp).

PSNR(I, Î) = 10 ∗ log10

(

2552

MSE(I, Î)

)

, (35)

where MSE(I, Î) is defined by (6).

B. Dual-SIMQ on Real Data

This section is dedicated to the comparison of the proposed

neuro-inspired quantizer to the state-of-the-art. Figure 8 il-

lustrates the schema of every quantization architecture that

participates to this comparison. The first quantization is when

the input value I is quantized by a USQ or the LQ (see Fig.

8 (a) and (b) respectively). The second type of quantization is

composed of three steps: (i) the input value I is transformed

in a spike train with a constant interspike delay d(I), (ii) the

interspike delay d(I) is quantized with a USQ or the LQ (see

Fig. 8 (c) and (d), respectively) (iii) the reconstructed value Î
is given by:

Î =

{

0, if d̂ > T,

h−1(d̂), otherwise,
(36)

where h−1(·) is defined in (17). The third quantization is given

by the Dual-SIMQ (see Fig. 8 (e)).

The first goal of this section is to show that, in terms of

compression, counting the number of spikes is more efficient

than quantizing the delays (see Fig. 8 (e) versus (c)-(d)). The

second mission is to compare the proposed neuro-inspired

quantizer to the state-of-the-art (i) USQ with and/or without

deadzone and (ii) LQ when applied directly to the pixel inten-

sities (see Fig. 8 (e) versus (a)-(b)). Let the input intensities

I1, . . . , In correspond to the pixel values of each input image

I = (I1, . . . , In).
Figure 9 visually compares the performance of all the

aforementioned quantization architectures. As expected, the

Dual-SIMQ (see cases (e.1) and (e.1)) outperforms the state-

of-the-art USQ (see cases (c.1) and (c.2)) and LQ (see cases

(d.1) and (d.2)) applied to the delays. This is evident both

numerically, by the fact that for similar rates the quality

assessment using the PSNR metric (35) is higher, and visually

especially for lower rates (see cases (c.2),(d.2) and (e.2)),

where not only the details but also the intensities range of

the input image are better approximated by the neuro-inspired

method. For instance, paying attention to the brim of the hat or

the woman’s hand we observe that the Dual-SIMQ has better

approximated the original intensities. Figure 9 verifies that for

the same rate r (bpp) counting the number of spikes (see cases

(e.1) and (e.2)) is as efficient as quantizing the pixel intensities

uniformly (see cases (a.1) and (a.2)) but less efficient than the

non-uniform manner (see cases (b.1) and (b.2)).
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Input I

Output Qq,λ(I) (4)

(a)

Input I

Output QL(I)

(b)

Input I

Spike train (14)
{

t1, . . . , tN(I)
}

Interspike delay

d = d(I) (15)

Quantized delay

d̂ = Qq,λ(d) (4)

Output Î = Î(d̂) (36)

(c)

Input I

Spike train (14)
{

t1, . . . , tN(I)
}

Interspike delay

d = d(I) (15)

Quantized delay

d̂ = QL(d)

Output Î = Î(d̂) (36)

(d)

Input I

Spike train (14)
{

t1, . . . , tN(I)
}

Interspike delay

d = d(I) (15)

Number of spikes

N = N(I) (19)

Output Î = ÎN (26)

(e)

Fig. 8: Quantization schemes used to evaluate the performance of Dual-SIMQ: (a) USQ Qq,λ applied to I , (b) Lloyd Quantizer

QL applied to I , (c) USQ Qq,λ applied to delays d(I), (d) Lloyd Quantizer QL applied to delays, and (e) Dual-SIMQ.

(a.1) USQ

q = 4.3

PSNR = 46.27 dB

r = 5.33 bpp

(b.1) LQ

PSNR = 48.91 dB

r = 5.73 bpp

(c.1) USQ

θ = 420 V, q = 0.1
PSNR = 43.74 dB

r = 5.32 bpp

(d.1) LQ

θ = 420 V

PSNR = 44.18 dB

r = 5.30 bpp

(e.1) Dual-SIMQ

θ = 420 V

PSNR = 46.43 dB

r = 5.38 bpp

(a.2) USQ

q = 42

PSNR = 26.26 dB

r = 2.21 bpp

(b.2) LQ

PSNR = 27.22 dB

r = 2.25 bpp

(c.2) USQ

θ = 4000 V, q = 10
PSNR = 24.07 dB

r = 2.19 bpp

(d.2) LQ

θ = 4000 V

PSNR = 24.99 dB

r = 2.17 bpp

(e.2) Dual-SIMQ

θ = 4000 V

PSNR = 26.86 dB

r = 2.2 bpp

Fig. 9: Visual comparison between Dual-SIMQ (e.1) and (e.2)), USQ applied to the delays (c.1)-(c.2), Lloyd applied to the

delays (d.1)-(d.2), USQ applied to the pixel intensities (a.1)-(a.2) and Lloyd applied to the pixel intensities (b.1)-(b.2) for

similar rates (set of parameters: R = 104 Ω, C = 1 F, T = 100 ms).

Similar to Fig. 7, the experiment in Fig. 10 compares the

performance of Dual-SIMQ to the state-of-the-art for real data.

In particular, it exploits 100 images with n = 256×256 pixels

taken from the USC-SIPI database [31]. The best performance

of the proposed neuro-inspired quantizer is the one of the

uniform Dual-SIMQ (blue diamond curve). Its rate-distortion

behavior is similar to the USQ with deadzone (red dotted

curve) but much better than the USQ without deadzone (red

dashed curve). As expected, the optimal quantizer still remains

the LQ. From the computational complexity point of view,

the LQ requires a training process which is time demanding

whereas Dual-SIMQ and SQ require only 0.0137 sec. and

0.0112 sec., respectively to quantize/dequantize a still image

with 230×230 pixels on a MacBook Pro with a 2.6GHz Intel

Core i7 processor.

C. Progressive Reconstruction

The Dual-SIMQ is a time-dependent quantizer as discussed

in section IV-C. It is also evident according to Proposition 2

and Proposition 1 that the lengths of the quantization regions
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Fig. 10: Comparison between (i) the Dual-SIMQ, (ii) the

USQ with deazone λ = q, (iii) the USQ without dead-

zone (λ = 2q) and (iv) the non-uniform Lloyd quantizer

for 100 real images taken from [31] (set of parameters:

C = 1 F, T = 150 ms, θ ∈ {1, R, . . . , 10R} V, λ = q,

q = {1, 8, 10, 15, 20, 40, 60, 80, 100}).

(a) θ = 500 V

PSNR = 38.93 dB

r = 3.6 bpp

(b) θ = 4000 V

PSNR = 14.50 dB

r = 0.9 bpp

(c) θ = 500 V

PSNR = 48.45 dB

r = 5.15 bpp

(d) θ = 4000 V

PSNR = 27.9 dB

r = 2.27 bpp

Fig. 11: Dual-SIMQ progressive reconstruction for T = 50 ms

(a)-(b)and T = 150 ms (c)-(d) (set of parameters: R = 103 Ω
and C = 1 F).

depend on T , especially the quantization step ℓ∞ vanishes as

T becomes arbitrarily large. Fig. 11 illustrates the dynamic

behavior of the Dual-SIMQ comparing its reconstruction per-

formance for different observation windows T .

As expected, when the available observation time of the

Dual-SIMQ is short, the number of spikes corresponding to

high intensities is limited. As a result, the quality of the

reconstruction is poor because most of the small intensities

will be represented by one or none spikes. On the other hand,

when the observation window is large almost all the pixel

intensities will generate some spikes improving in that sense

the reconstruction quality. As a consequence, the progressive

enhancement of the reconstructed signal is definitely among

the most important and ground-breaking benefits of the Dual-

SIMQ taking under consideration that none of the state-of-the-

art quantization methods is able to improve the quality of the

signal along time.

VI. CONCLUSION

This paper has introduced a novel, bio-inspired en-

coder/decoder of natural images called the Dual-SIMQ. The

Dual-SIMQ encoder is based on the LIF model, a very efficient

spike generation mechanism which approximates the neural

spiking process. The Dual-SIMQ decoder is a combination of

two spike interpretation mechanisms which approximates the

spike arrival delay by counting the number of spikes within a

given observation window.

The Dual-SIMQ framework can play a pivotal role in the

signal, image and video processing fields because it allows

to encode the input values in a simple and dynamic manner,

mimicking the neural behavior. At the same time, it enables

to progressively reconstruct the input value.

We aim at extending this work and apply the Dual-SIMQ

to videos where time is an important parameter which is

directly linked to the frame rate of the video stream. Last

but not least, the “bigger picture” of this work is the devel-

opment of a compression system that understands the visual

word according to the human visual perception. Within this

framework, merging different neuro-inspired processing tools,

such as the retina-inspired filter [32] and the proposed Dual-

SIMQ, could establish an alternative signal reconstruction

methodology depending on neurons capabilities.
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APPENDIX A

PROOF OF PROPOSITION 2

Let f : [1,+∞) 7→ R be the differentiable function:

f(x) =
1

1− exp
(

−
α

x

) (37)

where α = T/τ > 0 and let g(x) = f(x + 1) − f(x). It is

straightforward to verify that

ℓk =
θ

R
g(k), ∀k ≥ 1.

Let us show that g is an increasing function. The first derivative

of g is

g′(x) = f ′(x+ 1)− f ′(x) (38)
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where

f ′(x) =
α exp

(

−
α

x

)

x2
(

1− exp
(

−
α

x

))2 . (39)

A short calculation shows that

f ′(x) =
α

4x2 sinh2
( α

2x

) (40)

where sinh(·) is the hyperbolic sine. Let u : [1,+∞) 7→ R be

the function defined by

u(x) = x sinh
( α

2x

)

.

The function u(x) is strictly decreasing over [1,+∞) since its

first derivative is strictly negative. Indeed, we get

u′(x) = sinh
( α

2x

)

−
α

2x
cosh

( α

2x

)

where cosh(·) is the hyperbolic cosine. So, u′(x) < 0 is

equivalent to

tanh
( α

2x

)

<
( α

2x

)

.

A short calculation shows that

tanh(y) < y, ∀y > 0,

where tanh(·) is the hyperbolic tangent, which proves that

u′(x) < 0 for all x ≥ 1. Since u(x) is strictly positive and

strictly decreasing, u2(x) is also strictly decreasing. It follows

that f ′(x) is strictly increasing. From (38), it follows that

g′(x) > 0 for all x ≥ 1. This shows that g is strictly increasing

and, hence, ℓk is a strictly increasing sequence of reals.

Let us calculate the limit of the sequence ℓk. The Taylor

series of h−1(x) at x = 0 is given by

h−1(x) =
θC

x
+

θ

2R
+

θx

12R2C
+

θ

R
o
( x

RC

)

, (41)

where o(·) is the little-o notation such that f = o(g) means

that there exists a function ε(x) satisfying f = gε and ε(x) →
0 as x → 0. Indeed, a short calculation shows that:

1

1− exp(−x)
=

1

x
+

1

2
+

1

12
x+ o(x), (42)

and the derivation of (41) is straightforward. Assuming that k
is large and applying (41) to each term of (25) yields

ℓk =
θC

T
+ o

(

1

k

)

. (43)

The limit ℓ∞ is immediate.

Finally, let us show that ℓ0 > ℓ∞. It is well known that

exp(−x) > 1− x for all x 6= 0. Hence, it follows that

ℓ0 =
λ

R
=

θ

R

(

1− exp

(

−
T

RC

))−1

>
θ

R

RC

T
= ℓ∞. (44)
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