
HAL Id: hal-02351167
https://hal.science/hal-02351167v1

Preprint submitted on 13 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A method to estimate horse speed at canter from IMU
data with Machine Learning

Amandine Schmutz, Laurence Chèze, Julien Jacques, Pauline Martin

To cite this version:
Amandine Schmutz, Laurence Chèze, Julien Jacques, Pauline Martin. A method to estimate horse
speed at canter from IMU data with Machine Learning. 2019. �hal-02351167�

https://hal.science/hal-02351167v1
https://hal.archives-ouvertes.fr


A method to estimate horse speed at canter from IMU data with Machine Learning
Authors: Amandine Schmutz, Laurence Chèze, Julien Jacques, Pauline Martin

1 Introduction
According to Article 234 of the FEI Jumping Rules, horses speed for international
competitions has to be 350 m per minute minimum and 400 m per minute max-
imum, with exceptions for different kinds of show conditions (FEI, FEI Jumping
Rules, 26th edition, 2019). Speed is therefore a key parameter for success in show-
jumping competitions and an important training input.

3D optical motion capture is currently the gold standard for horse gait anal-
ysis and can be therefore used for measuring stride parameters such as speed (Pfau,
Witte, and Wilson, 2005). Nevertheless, the setting up of the measurement field is
time consuming as well as data processing when your subject differs from the plug-
in gait reference provided by the software (van der Kruk and Reijine, 2018). Those
aspects make its use impossible on a daily basis or during championships for a rider
who wants descriptive results of his horse performance and locomotion parameters
within a minute and potentially in real time without preliminary preparation.
New gait analysis techniques emerged and enabled the development of tools to pro-
vide objective parameters of horse’s motion (Martin, Chèze, Pourcelot, Desquilbet,
Duray, and Chateau, 2017) or to detect lameness (Pfau, Boultbee, Davis, Walker,
and Rhodin, 2016), using low-cost inertial measurement units (IMU), composed
of two sensors: tri-axial accelerometer and tri-axial gyroscope. Those sensors can
be coupled with tri-axial magnetometer, and are therefore called mIMU. Thanks to
data fusion techniques, the use of a magnetometer helps reducing the IMU bias and
leads to better estimation of distance (Filippeschi, Schmitz, Miezal, Bleser, Ruf-
faldi, and Stricker, 2017). IMUs can also be paired with Global Positioning System
(GPS) unit, to improve the estimation of locomotion parameters such as speed (Tan,
Wilson, and Lowe, 2008, Zihajehzadeh, Loh, Lee, Hoskinson, and Park, 2015).
Nevertheless, GPS measurements can be badly influenced by the presence of obsta-
cles (Wing, Eklund, and Kellogg, 2005) and it cannot be used indoors due to signal
loss under roofing.

There exist three main families of methods developed to calculate motion
characteristics from IMU signals. Firstly, model-based methods, like inverted pen-
dulum models for speed estimation in human gait, which simplifies complex biome-
chanical behaviors with simple mechanical model and incorporates subject-specific
information like the limb length (Duong and Suh, 2017, Murphy, Carr, and O’Neill,
2010). Secondly, signal-based methods which mainly rely on signal integration
(Brzostowski, 2018) and use signal processing methods like Butterworth filter to



prevent drifting (Bosch, Serra Bragança, Marin-Perianu, Marin-Perianu, Van der
Zwaag, Voskamp, Back, Van Weeren, and Havinga, 2018). Those methods need
to formulate some realistic assumptions to correct sensors drift and need a zero-
velocity phase within each stride to be able to apply the integration process. For
example the method proposed by Pfau et al. (2005) estimates horse displacement
from one IMU placed on the trunk, assuming that the horse is in a steady state
because of a treadmill that constrained the horse motion. In this case, the IMU
sensor displacement should follow a closed loop and then the average velocity over
a stride should be zero, as well as the average forward-backward and side-to-side
acceleration. Thus, in this context, stride-by-stride mean subtraction of accelera-
tion and of the calculated velocity before integration enables determination of the
integration constants. This assumption is often invalid in numerous experimental
conditions, leading to the non-applicability of direct signal integration method. The
third family of methods is more recent and based on statistical approaches, origi-
nally developed to estimate human speed from IMUs data (Sabatini and Mannini,
2016, Zihajehzadeh and Park, 2017). Those approaches provide accurate estima-
tion of walking speed but regression models accuracy seems to be dependent of the
range of motion. To prevent the drift, a first step is proposed where data are divided
according to their speed regime, thanks to a Support Vector Machine (SVM, Bishop
(2006)), before the computation of speed by regression model (Zihajehzadeh, Aziz,
Tae, and Park, 2018). Thus, the regression model is fit independently to each range
of speed. This method refines the regression model accuracy for slow speed regime.
Statistical methods concept is simple: one has to provide a dataset, called training
dataset, with known variable of interest value (for example, IMU signals matched
to their associated speed) that will be used to build a model. The model will then
be able to predict the value of the variable of interest for new data. The model has
to be trained with cases that can be encountered in its future application, without
which it will perform poorly. We want to extend those methods to the horse motion.

The objective of this work is to develop a smart device that can provide the
rider with the movement parameters of his horse, in daily routine such as during
training sessions as well as during competition events, using only one IMU fixed in
the saddle. The idea is also to propose a tool that overcomes the limits imposed by
the use of GPS or 3D optical motion capture systems. This user-case differs from
existing published work for sports (Camomilla, Bergamini, Fantozzi, and Vannozzi,
2018) by not using sensors fusion, not being in a steady state that allows an easy use
of direct integration of acceleration signals, nor using a sensor on the limb which
allows to reset errors at each cycle on short time periods.

In order to do so, several machine learning models and different data confor-
mations will be tested. The obtained results will be compared to those of one signal
based method, already used for speed estimation in animal locomotion, the Overall



Dynamic Body Acceleration. The aimed accuracy is 0.6 m/s (36 m/min) in order
to meet the expectations of the show jumping professionals. As far as the authors
know, this accuracy has not been reached for horses by the previously mentioned
methods using data from one IMU only (Pfau et al., 2005, Bosch et al., 2018).

2 Materials and methods

2.1 Data

The database used for model development is made of 3221 canter strides from 58
ridden jumping horses of different breeds, height (129-176 cm), age (5-18 years old)
and different levels of competition (amateur or professional). One IMU (LSM6DSL,
STMicroelectronics) placed in the saddle close to the horse’s withers was used to
measure tri-axial acceleration (range ±8 g) and tri-axial rotation rate (range ±2000
dps) at a sampling frequency of 100 Hz. Data collected by the IMU were sent via
a Bluetooth R© antenna to a smartphone (iPhone X, Apple Inc.) and then stored on
an online server. Two different protocols, which will be detailed here-after, were
used to collect data: the first one was speed measurement for a straight path and
the second one was speed measurement for a curved path. For both protocols, ref-
erence speed was measured by video cameras or chronometer and matched to each
stride signal to train the machine learning model. For each protocol, “strides” were
defined from the maximum peak on the Z-axis (cf. Figure 1) of the raw accelera-
tion data to the next 100 samples, in order to have the same number of points for
each individual regardless the speed, a necessary condition to use machine learning
methods. So, depending on the horse’s speed, this data segmentation may include
more than one cycle. We choosed not to re-sample a cycle in order to keep the
information on the duration of the stride to estimate speed. Values from the three
axes of the gyroscope and the accelerometer were extracted according to this cut-
ting process with an automated detection algorithm written in MATLAB (R2014b).

2.1.1 Straight path

To get reference stride speed, IMU data were synchronized to a 4-cameras 2D track-
ing system (UI-5240CP-M-GL, IDS) which had a measuring field of 26 meters.
Horses were equipped with ten 2D-reflecting markers on anatomical landmarks
(Figure 2) and their speed in the camera’s field was derived from the markers’
2D trajectories using a custom software written on MATLAB R© (R2014b). The
accuracy of this system is of 1.4% of the measured distance (Martin, 2015), which



Figure 1: Orientation of IMUs axes on an equipped horse
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Figure 2: Field of measurement with 2D video cameras

would correspond to +/-2.8 cm for a 2 m measured distance for example. Data were
gathered for different speeds chosen by the rider (normal, slow and fast), with and
without jumps before and after the camera’s field and with or without ground bars,
spaced from 2.5 m to 4.5 m, in the field of measurement. Those various conditions
were chosen in order to expand the range of canter within the training set, in order
to get closer to daily training conditions of jumping horses.
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Figure 3: Plan of speed measurement on curves for a horse at left-hand canter

2.1.2 Curved path

Because the 2D tracking system has a good accuracy only when the horse dis-
placement is perpendicular to the cameras field, another measurement protocol was
designed for curve displacement. A curved path of known perimeter was defined
with cones and with a width small enough to make the horses pass the measuring
equipment in a rather narrow path (Figure 3). The traveled distance was calculated
as distance = 2πr, with r the radius of the circle. Time spent in the curve by the
horse was measured with an automatic chronometer (CP 520, Tag Heuer) triggered
at the entrance and at the exit of the curved path (Figure 3). The average speed
of the horse was then derived as speed = distance/time. Each stride of the horse
within the curve was then matched with the average speed. For example, if the
average speed in the curve was 6 m/s and the horse did 5 strides, then a speed of
6 m/s was assumed for all these strides. In order to mimic real-life conditions of a
jumping course the whole database is composed of 2906 strides collected in straight
path and 315 strides in curved path.



2.2 Speed measurement methods

2.2.1 Overall Dynamic Body Acceleration method

Overall Dynamic Body Acceleration (ODBA) method is a signal-based method pro-
posed in Wilson, White, Quintana, Halsey, Liebsch, Martin, and Butler (2006) that
does not rely on signal integration. They developed a parameter named ODBA,
calculated from acceleration in the 3 space directions, which is closely linked to the
speed of a walking animal.
In our case, acceleration signals are low-pass filtered using a fourth-order Butter-
worth filter with a cut-off frequency of 10 Hz. After that, an angle correction is
applied to align the Z-axis with the gravity vector. Then for each axis, as specified
by Wilson et al. (2006), the signal mean value is subtracted from smoothed data.
Those values are then converted to absolute positive units. Finally, resulting signals
are summed up and a mean ODBA value is calculated for each stride. A linear
regression is then used to link the mean ODBA for one stride to the speed of the
stride. The linear regression is performed with R software (v.3.4.0) (R Core Team,
2017a) and the lm function of stats package (R Core Team, 2017b).

2.2.2 Statistical models

In a mathematical point of view monitored signals can be considered into two dif-
ferent ways. The first approach is as a multi-dimensional vector of size 606 (101
values per measured signal). The second approach is a vector of six functional vari-
ables, one per measured signal. The main advantage of considering collected data
as a vector of functional variables is that we keep the temporal dynamic. We refer
to Ramsay and Silverman (2005) for univariate and bivariate examples.

The statistical methods we have tested can be divided into two categories.
The first one, high dimensional models which deal with data sets where the number
of columns can be large. Among those methods we tested Ridge regression, Lasso
regression, Principal Component Regression (PCR), Partial Least Square regression
(PLS), Elastic net regression, neural network, random forest and Support Vector
Machine (SVM). For a complete review about these models refer to (Bishop, 2006,
Hastie, Tibshirani, and Friedman, 2001). Secondly, the functional approaches with
a parametric regression model for functional data (Ramsay and Silverman, 2005)
and a non parametric regression model (Ferraty and Vieu, 2006).

As in Zihajehzadeh et al. (2018), we wonder if the division of the database
into smaller homogeneous subgroups, before the computation of speed by the re-
gression model may improve the model accuracy. Thus, each previously described
model will be tested on raw data and on the database divided into two subgroups.



These subgroups has been built thanks to a clustering method for multivariate func-
tional data (Schmutz, Jacques, Bouveyron, Cheze, and Martin, 2018).

Figure 4: Diagram of statistical methods process from training to the speed predic-
tion

To sum up, the signals collected with the accelerometer and the gyroscope
for each stride are matched with the measured reference speed. This is used as
input data to train the model in order to obtain the best speed estimation for new
data in the future. All this process is illustrated on Figure 4. Models are devel-
oped with R software (v.3.4.0) and packages glmnet (Friedman, Hastie, and Tib-
shirani, 2010), pls (Mevik, Wehrens, and Liland, 2016), neuralnet (Fritsch and
Guenther, 2016), randomForest (Liaw and Wiener, 2002), e1071 (Meyer, Dimitri-
adou, Hornik, Weingessel, and Leisch, 2017), fda.usc (Febrero-Bande and Oviedo
de la Fuente, 2012), funHDDC (Schmutz and Bouveyron, 2019) and function funo-
pare.knn.lcv (Ferraty and Vieu, 2006).

2.2.3 Methods comparison

To compare the accuracy of methods, the database is cut into two parts: a training
dataset which is composed of a random sampling of 80% of the database, and the
remaining 20% forms the test dataset. The models are built on the training dataset



and their accuracy is then evaluated on the test dataset. Evaluating methods on an
independent test dataset prevents over-fitting.

Comparison between models is done with the calculation of the percentage
error in the estimated speed above 0.6 m/s. This threshold is the minimum satis-
factory for this parameter to make sense for the professionals. Percentage error is
computed as:

% error = 100×∑
i

|Measured speed at stridei−Predicted speed at stridei|> 0.6
Total number of strides

,

with i corresponding to each stride of the test dataset.
Then, the best machine learning model and ODBA model are also compared

with Bland and Altman plots and its 95% limits of agreement (Bland and Altman,
1999), which allows the evaluation of differences between two methods used on
the same individuals (here strides). In our case, we examine the average difference
between each method and reference values obtained with 2D tracking system for
straight path and chronometer for curve path. Bland and Altman analysis and graphs
are built with the bland.altman.plot function from the BlandAltmanLeh R package
(Lehnert, 2015).

3 Results
To avoid results fluctuation due to random sampling of the test dataset, the random
sampling process of the database is repeated 50 times and the average, minimum
and maximum of percentage error are estimated for each repetition on raw data.
When data are divided into two subgroups, the weighted mean, minimum and max-
imum is computed.

Table 1 shows the mean results for each model. The division of raw data into
subgroups improves results of percentage of error for all high dimensional regres-
sion models, ODBA method and, to a lesser extend, neural network and parametric
functional regression. Nevertheless, the best results are obtained with SVM method
applied on raw data. SVM clearly outperforms its competitors.

The Bland and Altman plot of one SVM repetition is shown on Figure 5
(top), where one point corresponds to one stride. The speed predicted by the model
and the measured speed of the stride are compared. The mean bias is 0, which
means that in average the SVM model output is close to the measured speed. If the
model predictions were perfect, all the points would be aligned on the zero line.
The points that are the farthest from the zero line are the worst predictions. We can
see that for some strides of low speed (below 5 m/s), the SVM model has a tendency
to overestimate their speed. Whereas for some strides of high speed (above 5 m/s),



the SVM model has a tendency to underestimate themWhereas ODBA estimations
(Figure 5, bottom) are more variable than SVM ones. The mean bias is also 0 but
the 95% confidence interval is twice the size of SVM one (cf. Table 1), that is
to say high above our objective value. The ODBA method is more variable than
the SVM one, with 95% of strides bias lower than 2.5 m/s and a clear tendency to
underestimate strides of high speed.
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Figure 5: Bland and Altman plot for one repetition of SVM model with its 95%
confidence interval (top) and ODBA method (bottom)



Raw data Subgroups
Method Mean Min Max Mean Min Max
Ridge 27.7 24.2 30.7 24.0 21.2 27.6
Lasso 29.1 25.9 31.8 25.0 22.0 28.1
PCR 28.5 25.5 31.1 26.4 21.2 34.8
PLS 28.8 25.0 32.2 26.4 21.0 33.8

Elastic net α = 0.3 27.9 24.6 30.9 24.1 21.0 27.7
Parametric functional regression 26.9 23.6 31.7 26.4 23.1 29.4

Non parametric functional regression 16.7 13.0 20.1 17.2 14.9 20.3
SVM 9.9 6.7 11.9 10.7 7.8 12.8

Neural network 29.9 25.7 33.7 28.7 24.8 34.8
Random Forest 17.5 14.3 20.7 18.3 14.7 20.7

ODBA 51.4 47.8 55.1 47.8 28.6 68.6

Table 1: Mean, minimum and maximum values of percentage of error above 0.6
m/s for speed estimation

4 Discussion and Conclusion
The objective of our study was to develop a model which can be integrated into a
smart device in order to accurately provide horse speed per stride to the rider. This
smart device is made of only one IMU situated on the horse wither. The number of
sensors is kept to a minimum in order to facilitate the daily use of this tool and the
non-use of GPS is due to our willingness to make this tool work both indoors and
outdoors.

In this work, we propose to use machine learning models to predict horse
speed from IMU data. On the collected dataset, Support Vector Machine gave the
best results which the lowest percentage of error (above 0.6 m/s). SVM method
outperformed other machine learning models and ODBA method. ODBA is a signal
based method that does not need external inputs to estimate speed per stride from
new IMU data. Indeed, direct signal integration methods, which are commonly used
in human case or in horses running on a treadmill case, need strong assumptions to
calculate an integration constant for speed estimation that cannot be made when
the horse moves in real conditions and when the IMU is not located on the limb
(Filippeschi et al., 2017, Camomilla et al., 2018). Moreover, biomechanical models
have not been developed for an asymmetrical gait such as horse canter.

The superiority of machine learning models in this work can be partly ex-
plain by the fact that, usually, models for speed estimation first detect a stride, then



cut the collected signal according to this stride and apply the calculation model
(Bichler, Ogris, Kremser, Schwab, Knott, and Baca, 2012, Mannini and Sabatini,
2014, Zhao, Brahms, Gerhard, and Barden, 2016). These methods standardized the
stride duration for all individuals and few of them take into account the stride du-
ration to calculate speed parameter leading to a loss of information. In the present
work, we choose a different way of pre-processing the collected signals. Indeed,
the stride is detected on the Z-axis but 101 points are kept from the maximal peak
on Z-axis. This change allows to keep the stride duration information: for high
speed the ”stride” will have a signal that contain more canter cycles than low speed
”strides”. This data pre-processing helps increasing the accuracy of the statistical
model.

The novelty of the present work is to propose a model for speed estimation
that relies on one IMU only. The integration of machine learning model in a de-
vice for equestrian sport is innovative in comparison with other existing systems
for equestrian sports based on GPS or in comparison with human tracking motion
systems that are mainly based on the use of a magnetometer or several IMUs (Fil-
ippeschi et al., 2017). The machine learning approach allows the development of
a smart device that does not rely on a GPS for the estimation of a physical phe-
nomenon, here the horse speed at each stride, with an accuracy of 0.6 m/s. This ac-
curacy meets the expectations of professionals of show jumping discipline, which
was their main concern about using or not connected devices. Indeed, as show
jumping can be practiced both indoors and outdoors, our tool overcomes the GPS
systems limitations. Moreover, the accuracy of our model can easily be refined by
performing more campaigns of measurement with the reference systems. Indeed,
a panel of 58 horses is not sufficient to model the behavior of all horses due to
individual’s diversity. It is also necessary to do more measurements on curves of
various diameters, since it greatly influences the horse’s behavior, the correspond-
ing collected signals and therefore the horse speed (Greve and Dyson, 2016).

We cannot benchmark our model to other works on horses because no one
else provides a speed per stride estimation. Indeed, Pfau et al. (2005) and Bosch
et al. (2018) calculate traveled distance with its preciseness but Bosch et al. (2018)
aim to provide a speed estimation in future work. Whereas in human researches,
a wide literature exists on computing human walking speed from data collected
by one IMU placed on the foot, as for example Mannini and Sabatini (2014) who
compare two methods of walking speed estimation, whose accuracy is between
0.5 km/h (0.14 m/s) and 0.7 km/h (0.19 m/s) depending on the walking speed and
the method used. Zihajehzadeh and Park (2016) develop a model for walking speed
estimation based on a regression model which use data from one wrist-worn inertial
sensor. In their paper, the Bland and Altman limits of agreements are lower than 0.2
m/s. Sabatini and Mannini (2016) estimate an instantaneous velocity decomposed



in the three space directions from two IMUs placed one on the pelvis and the other
on the shank of the subject, its accuracy is in the same range than the one of previous
studies. For instance, considering a walking man of 3 km/h (0.8 m/s), the error of
the previous models is around 27% whereas for a running show jumping horse
of 350 m/min (5.8 m/s) our model error is about 10%. Thus, our model is more
accurate than the existing ones for human walking.

Another advantage of our model is that it can be transferred to another disci-
pline than show jumping as long as consistent data are provided to train the model.
Indeed, show jumping canter is specific to the discipline where the bounce is im-
portant whereas in endurance horses, flat canter is preferred. Therefore, in order to
adapt our tool to other disciplines, the model has to be expanded with more data
gathered in new situations. The SVM model is transposable to the other equestrian
sports and to bipedal locomotion, as long as consistent data are provided to train
the model.

To conclude, the predictive method shown herein above is accurate because
the reference data, used as a training dataset, were collected with great precision
and are consistent with the model application (show jumping).
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