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SUMMARY

A flux reconstruction technique is presented in order to perform aeroacoustic computations using implicit
high-order spatial schemes on multiblock structured grids with non-conforming interfaces. The use of such
grids, with mesh spacing discontinuities across the block interfaces, eases local mesh refinements, simplifies
the mesh generation process, and thus facilitates the computation of turbulent flows. In this work, the
spatial discretization consists of sixth-order finite-volume implicit schemes with low-dispersion and low-
dissipation properties. The flux reconstruction is based on the combination of non-centered schemes with
local interpolations to define ghost cells and compute flux values at the grid interfaces. The flow variables in
the ghost cells are calculated from the flow field in the grid cells using a meshless interpolation with radial
basis functions. In this study, the flux reconstruction is applied to both plane and curved non-conforming
interfaces. The performance of the method is first evaluated by performing two-dimensional simulations of
the propagation of an acoustic pulse and of the convection of a vortex on Cartesian and wavy grids. No
significant spurious noise is produced at the grid interfaces. The applicability of the flux reconstruction to
a 3-D computation is then demonstrated by simulating a jet at a Mach number of 0.9 and a diameter-based
Reynolds number of 4 x 10° on a Cartesian grid. The non-conforming grid interface located downstream of
the jet potential core does not appreciably affect the flow development and the jet sound field, while reducing
the number of mesh points by a factor of approximately two.

Copyright © 2018 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For flows at high Reynolds numbers, the direct computation of the aerodynamic noise from the

Navier-Stokes equations requires accurate numerical methods in order to properly compute both the
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2 S. LE BRAS, H. DENIAU AND C. BOGEY

small turbulent motions and the low-frequency sound waves in the radiated pressure field [1-3]. In
order to meet these requirements, in addition to high-order discretization schemes, locally refined
meshes are needed in order to capture the turbulent eddies generating noise [4].

For aeroacoustic simulations performed on multiblock structured grids, the computational domain
is usually divided into subdomains composed of conforming grids characterized by a full point-
matching distribution at the block interface, as shown in Fig. 1(a). Difficulties in performing high-
fidelity computations with such grids arise when the geometries are complex. Such geometries
must be included in the numerical simulations in order to faithfully reproduce the conditions of the
experiments [5,6]. In this context, high-quality structured meshes with conforming interfaces are in
many cases almost impossible to generate [7]. For instance, for high-speed flows exhausting from
turbofan jet engines or developing on aircraft wings [8], extremely fine grids are required to resolve
the flow in the boundary layers and the wakes. Using conforming grids, local mesh refinements
can be found in all the computational domain, leading to an excessive number of mesh points as
well as to the generation of extremely small cells in out of interest areas. Obviously, this increases
the computational cost of the simulation. In addition, using an explicit time discretization scheme,
the presence of very small mesh cells imposes severe constraints on the time step so that the CFL

restriction is verified [3].

(@) (b)

Figure 1. Representation of 2-D meshes with (a) conforming and (b) non-conforming grid interfaces in blue.

In order to perform aeroacoustic simulations of high-Reynolds-number flows at a reasonable
computational cost, the use of non-conforming grids [9] without overlapping is attractive. Such
meshes exhibit discontinuities of the grid lines across the block interface. This is the case of
Fig. 1(b), providing an example of a non-conforming mesh with discontinuous grid spacings in the
azimuthal direction at the block interface in blue. Using such a mesh for instance, the refinement at
the center of the grid in Fig. 1(a) can be avoided. The size of the smallest cells and thus the time
step are therefore chosen such that the acoustic sources are well-discretized. In addition, the use
of non-conforming grids simplifies the grid generation process since the mesh blocks composing
the computational domain can be created independently and then easily assembled. In return, in
order to obtain high-fidelity numerical results using non-conforming grids, an accurate spatial
discretization at the grid interfaces is required. Indeed, as the grid spacing is discontinuous at the
block interface, the spatial discretization schemes cannot usually be applied close to the interface
and their formulations have to be modified.

In computational aeroacoustics, the spatial discretization can be carried out using high-order

low-dissipation and low-dispersion schemes, amongst which the dispersion-relation-preserving

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
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A FLUX RECONSTRUCTION TECHNIQUE AT THE INTERFACES OF NON-CONFORMING GRIDS 3

schemes [10], the optimized explicit schemes in the Fourier space [2], or the implicit schemes [11,
12]. In this study, the spatial discretization consists of the sixth-order finite-volume implicit scheme
of Fosso et al. [12] in combination with the sixth-order implicit selective filter of Visbal and
Gaitonde [13]. Implicit schemes are particularly attractive in order to reach a high-order spectral
accuracy using a smaller number of grid points compared to explicit schemes. However, in the
context of parallel computations, the flow equations are generally solved locally in each subdomain
of the multiblock grid. As a consequence, the implicit centered schemes cannot be applied at the
mesh block interfaces. Therefore, in a previous study [12], a technique of flux reconstruction at the
interface of conforming grids has been developed. Based on the application of non-centered spatial
schemes at the block interface and the use of ghost cells, the technique allowed us to successfully
perform massively parallel aerodynamic and aeroacoustic computations of jet flows [14—17].

In the present study, a flux reconstruction technique for the interface of non-conforming grids
is proposed. The technique, derived from the method developed for conforming grids [12], is
based on the application of non-centered schemes at the grid interface. Due to the mesh line
discontinuities at the grid interface, an additional step consisting in reconstructing ghost cells is
required. The flow variables in the ghost cells are computed using a local interpolation technique,
based on a meshless method involving Radial Basis Functions (RBF) [9,18]. Meshless interpolations
are useful in order to alleviate the difficulties caused by the loss of the mesh topology at the
interfaces of non-conforming grids. Indeed, since meshless interpolations are performed from
arbitrarily scattered spatial data without any geometrical information, computational overheads
due to topology reconstructions are avoided. Originally developed by the authors for plane non-
conforming grid interfaces [19], the technique of flux reconstruction is extended to curved interfaces
in this study. In comparison with the preliminary results presented in [19], the properties of the
RBF interpolation are examined in 1-D in the wavenumber space, and the performance of the flux
reconstruction is further assessed by simulating in 2-D the convection of a vortex on wavy grids
and the propagation of an acoustic pulse. In addition, the application of the technique to a three-
dimensional turbulent jet flow is presented.

The present paper is organized as follows. In a first section, the high-order finite-volume approach
used in this study and the flux reconstruction method for conforming interfaces are described.
In section 2, the reconstruction technique developed at the interface of plane and curved non-
conforming grids is presented. In section 3, the properties of the RBF interpolations are examined
in 1-D in the wavenumber space. In section 4, the accuracy of the flux reconstruction is evaluated
by simulating a two-dimensional acoustic pulse propagating through a non-conforming interface. In
section 5, the simulations of two-dimensional vortex convection for Cartesian and wavy grids with
different spatial resolutions are presented. In particular, the advantages of using RBF interpolations
for the reconstruction and the choice of the interpolation parameters are discussed. Finally, the
application of the technique to a 3-D turbulent jet flow is presented, using a non-conforming grid
downstream of the jet potential core. The reduction in the number of mesh points obtained using a
non-conforming grid is evaluated. The effects of the presence of a non-conforming interface on the

sound field radiated by the jet are examined.

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
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4 S. LE BRAS, H. DENIAU AND C. BOGEY
2. FLUX RECONSTRUCTION TECHNIQUE FOR CONFORMING GRIDS

2.1. Governing equations

In this study, the 3-D compressible Navier-Stokes equations are solved. Using Cartesian coordinates,
they can be written as:
OW OE, OF. 0G. O0E; O0F; 0Gg

A _Ytd Y74 Yd 1
o "o Ty T o:  ox oy 0z 0 S

where (E., F., G.) are the convective fluxes, (E;, Fy, G4) are the diffusive fluxes,
W = (p, pu, pv, pw, pe)* is the vector of the conservative variables, p is the density, (u, v, w) are the
velocity components, and pe is the total energy. For a perfect gas, the total energy pe is given by:

p

1
pe = 1 + ip(u2 + 0%+ w?) ()

where p is the static pressure and -y is the specific heat ratio. The convective fluxes write as:
E. = (pu, pu® + p, puv, puw, (pe + p)u)*

F. = (pv, puv, pv* + p, pyw, (pe + p)v)* 3)
G. = (pw, puw, pvw, pw? + p, (pe + p)w)*

and the diffusive fluxes as:

E; = (077'11,7'12,713,7'11U + 7120 + T13W + Hl)t
Fyq = (0, 721, Toa, T23, T21u + To2v + Tosw + Ha)? 4

_ ¢
Gq = (0, 131, T32, T33, T31U + T320 + T33w + H3)

where H = (Hy, Hy, H3)! is the heat flux vector, 7;; = 2u.5;; is the viscous stress tensor, f is the
dynamic molecular viscosity computed from Sutherland’s law, and S;; is the deformation stress

- 1 3ul 5‘uj 2 8uk
Sij = 2 (axj + o0x; 3 oxy, 51”) )

tensor:

The heat flux vector H is computed from Fourier’s law, yielding:
H=-)\VT (6)

where VT is the temperature gradient, A = Cpu/Pr is the thermal conductivity, C,, is the specific
heat at constant pressure, and Pr is the Prandtl number.

2.2. High-order finite-volume approach

The computations are performed using the finite-volume multi-block structured solver elsA [20],
allowing us to perform Direct Numerical Simulations (DNS) or Large-Eddy Simulations (LES). In
a finite-volume approach, the integral form of the Navier-Stokes equation (1) is solved at a discrete
level. For this purpose, the computational domain is divided into non-overlapping control volumes

Q;, where i is the volume index. Integrating Eq. (1) over the elementary volumes €2; and using the

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
Prepared using fldauth.cls DOI: 10.1002/fid
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A FLUX RECONSTRUCTION TECHNIQUE AT THE INTERFACES OF NON-CONFORMING GRIDS 5

divergence theorem lead to:

du;

|€2%] +/ (EC+FC+GC)-ndS+/ (Eq+Fi+Gyg) mndS=0 7
dt 09 09

where n = (n,,ny,n;) is the outgoing unitary normal of ;, 9€2; represents the faces of €2; and U;

is the mean value of W in the volume €); such as:
U; = L / wWdv (8)
Coul Jg,

In the elsA solver, the diffusive fluxes in Eq. (7) are calculated from the gradient VU estimated at
the cell interfaces using a 2nd-order method [21]. For clarity, in the following, only the convective
fluxes are presented in the equations. Following Fosso et al. [12] and supposing that the volume €2;
is an hexahedron, the normal n is constant along the interface, and the integral of the convective

fluxes in Eq. (7) can be approximated as:

/ (E.+F,+ G.) -n dS ~ |6%] (Ec(ﬁmi)ngﬁ +F.(Upo,)ny + Gc(ﬁam)nz) )
oQ;

where ﬁaﬂi is the averaged value of the variable vector W at the cell interface 0€2;:

Usg, Wds (10)

_ 1
1092%| Joq,

The convective fluxes are thus computed from the interface-averaged values U of the flow variables.
In order to obtain a high-order calculation of the convective fluxes derivatives, a high-order
interpolation of vector U is performed from the cell-averaged values U. Considering the one-
dimensional computational domain of Fig. 2, the interpolated vector U at the interface i + 1 /2 is

obtained by solving the implicit scheme:

2

ir1/2Uim1/2 + Uipra + Bis1/2Uiys)e = Z aUiq (11)
I=—1

where ;1 1/2, Bi11/2 and a; are the scheme coefficients which are obtained from a Sth-order Taylor
series [12]. This scheme correctly resolves the wavelengths discretized by at least 5 points [14].
Note that despite the use of approximation (9) which is formally only second-order accurate, Fosso
et al. [12] demonstrated that the numerical scheme (11) is equivalent to Lele’s 6th-order finite-
difference scheme [11] for a uniform Cartesian mesh.

interface i+1/2

i-3 i-2 i-1 i i+l | i+2 | i+3

I [
interface i-1/2 interface i+3/2

Figure 2. Representation of a one-dimensional computational domain.

In order to ensure the stability of the centered scheme (11), the 6th-order compact filter of Visbal

and Gaitonde [13] is applied to the flow variables. The filtered values, denoted U, are estimated

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
Prepared using fldauth.cls DOI: 10.1002/fid
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6 S. LE BRAS, H. DENIAU AND C. BOGEY

from the values of U as:
ofUi1 +U; + Ui = Z 51 (Uit + Uiy) (12)
1=0

where ay = 0.47, and ; are the filter coefficients [13]. The filter is employed on a uniformly
spaced grid thanks to a coordinate transform. For LES computations, the filter also plays the role
of a subgrid-scale model, relaxing turbulent energy at high frequencies [22-24]. Time integration
is performed by applying a low-storage 6-stage Runge Kutta algorithm [2]. Radiation boundary
conditions, Navier-Stokes characteristic boundary conditions, and sponge zones are used in order
to avoid significant acoustic reflections at the mesh boundaries. A more detailed description of the
numerical algorithm is given in Fosso et al. [14].

2.3. Reconstruction for conforming grid interfaces

2.3.1. Numerical scheme At the mesh-block interfaces, the implicit centered scheme (11) used in
the computation of the convective fluxes cannot be applied. Thus, in a previous study [12], a flux
reconstruction technique has been proposed at the interfaces of conforming grids. It is presented in
the following by considering a two-dimensional computational domain composed of two blocks L
and R separated by a conforming interface, as shown in Fig. 3.

(a) (b)
block block
block L interface block R block L interface block R
' '
1 1
. . . 1 ° ° . . . 1 ° °
| T I
j . "R * j . . L.\"A/. R1
1 1
. .
i=N-2 i=N-1 i=N i'=0 i=I i=N-2 i=N-1 i=N i'=0 i'=I

Figure 3. Flux reconstruction for conforming grids: (a) step 1: computation of the flow variables at the

interface I, using a scheme involving two cells (squares) and an interface (cross) of block L and two ghost

cells (stars) of block R, (b) step 2: flux computation from the flow variables at the interfaces Iy, and IR,
using a Riemann solver.

The reconstruction technique consists of two steps. In the first step, the flow variables U at the grid
interface in blocks L and R are determined using upwind schemes. More precisely, in block L, as
illustrated in Fig. 3(a), the vector U, at the interface I, is computed using a non-centered scheme
involving the flow variables in cells of blocks L and R such as:

O‘/sz‘:Nfl/Q,j +U, = agUi=n—1; + a1 Ui=n j + a5Up—o ; + a4 Uy—y ; (13)

cells of block L cells of block R

where o/ and a are the scheme coefficients determined using Taylor series. For block L, the values
of U in the cells (i = 0, ) and (i’ = 1, 5) of block R are a priori not known. These cells are thus
referred to as ghost cells for block L in the following. The values of U in the ghost cells are obtained

thanks to data exchanges between the blocks at each time iteration of the simulation. Symmetrically,

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
Prepared using fldauth.cls DOI: 10.1002/fid
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A FLUX RECONSTRUCTION TECHNIQUE AT THE INTERFACES OF NON-CONFORMING GRIDS 7

in block R, the vector U r at the interface Iy in Fig. 3(b) is determined from the upwind scheme:

Ur + 5//ﬁi’:1/2,j =agUi=n_1,; + d{Uj=n j + a3 U;y—o ; + a5 Uy—1 ; (14)

cells of block L cells of block R

where 8" and o] are the scheme coefficients. The values of U 1 and U g are usually not identical,
since they are determined from two different upwind schemes (13) and (14). Therefore, in a second
step, a Riemann problem [25] is solved in order to ensure the unicity of the flux, hence the scheme

conservativity, at the block interface.

2.3.2. Selective filter In the vicinity of conforming grid interfaces, as for the centered scheme (11),
the 7-point centered filter (12) cannot be applied, and its formulation has to be modified. However,
previous studies [26] demonstrated that the change of the filter formulation at the grid interface is
likely to significantly decrease the accuracy of the filtering process and generate spurious noise.
Therefore, in order to still apply the centered filter (12) at the grid interface, Fosso [26] proposed to
artificially extend the size of the mesh blocks using ghost cells, and to modify the filter formulation
in the ghost cell regions exclusively. In practice, according to the notations of Fig. 4, in order to
change the filter formulation as far as possible from the interface, the block L is extended using
five ghost cells represented by stars. These cells correspond to the cells of block R indexed by
i’ =0,1,2,3,4. Consequently, in block L, the centered filter (12) on 7 points can be applied in cells
i=..,N —1,N and in the ghost cell (' = 0, 7). Finally, a non-centered filter is used in order to

determine the value of U in the ghost cell (' = 1, 7) in grey in Fig. 4:

3 3

- - Yk g Tk

ofUp—g; +Up=yj = E ?Ui:N7k+27j + ?Ui’:od +7vUi=1,; + E ?Ui/:kJrl,j —afUp—y;
k=2 k=1

15)
The flux reconstruction for conforming grids presented in this section has been successfully applied
to massively parallel aeroacoustic simulations of jet flows at high Reynolds numbers [14, 15, 17].

block
block L interface block R

jlni**ttt

i=N-1 =N i’=0 i'=1 =2 i'=3 i'=4
Figure 4. Filter application in block L in the vicinity of a conforming grid interface: the flow variables in the
ghost cell i/ = 1 in grey are filtered using grid cells of block L (squares) and block R (stars).

3. FLUX RECONSTRUCTION TECHNIQUE FOR NON-CONFORMING GRIDS

In this section, the reconstruction presented above for conforming grids is extended to the cases of

plane and curved non-conforming meshes.

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
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8 S. LE BRAS, H. DENIAU AND C. BOGEY

3.1. Plane interfaces

In the case of a non-conforming grid interface, as illustrated in Fig. 5, the flux reconstruction
technique described in section 2.3 cannot be used. Indeed, for such grids, as the mesh lines are
discontinuous across the block interface, the ghost cells represented by stars in Fig. 4 are not defined
anymore. Therefore, the upwind schemes (13) (14) and the filter (15) cannot be applied. In this work,
a new flux reconstruction is thus proposed at the non-conforming interfaces. It consists in using non-
centered schemes and meshless interpolations in order to define the flow variables in ghost cells and
at the grid interface. In this section, the flux reconstruction is presented for the plane grid interface
displayed in Fig. 5, considering block L as the current block.

3.1.1. Numerical scheme In order to compute the flux at the interface I, in block L, the key idea
is to make possible the application of the schemes (13) and (14) thanks to the reconstruction of the
flow variables in ghost cells. For this purpose, a methodology, composed of four steps depicted in
Fig. 5, is presented. In step 1, two ghost cells, represented in grey in Fig. 5(a), are defined. The
centers of these cells, depicted by stars, are located at the intersection between the mesh lines i’ = 0
and " = 1 and the straight line passing by the centers of the cells (: = N — 1, 5) and (i = N, j).
The values of the flow variables U in the ghost cells are determined from the values of U in
the cells of block R using a meshless interpolation. The interpolation technique is presented in
section 3.1.3. In step 2, illustrated in Fig. 5(b), the upwind scheme (13) can be applied to compute
the flow vector Uy, at the interface I;, of block L. In step 3, symmetrically with what was done in
steps 1 and 2 for block L, ghost cells are defined in block R and the scheme (14) is employed to
determine the vector U at the interfaces (... IR j7s IR j'41, ... ) in grey in Fig. 5(c). Finally, in step
4, a ghost interface I}, identical geometrically to Iy, is defined in block R, as shown in Fig. 5(d).
The variable vector I~J/L at the interface I} is interpolated from the values U obtained in step 3.
This second interpolation method is also described in section 3.1.3. Even if the interfaces I} and I,
are geometrically identical, the values of U at these two interfaces differ since they are computed
from different schemes and interpolations. Therefore, the convective flux at the block interface is

determined from the values of Uy, and ﬁlL by resolving a Riemann flux problem [25].

3.1.2. Selective filter Five ghost cells are necessary in order to apply the non-centered filter (15)
near the block interface. For conforming grids, as explained in section 2.3, the flow variables
in the ghost cells are directly obtained thanks to data exchanges between blocks. However,
for non-conforming grids, these variables first need to be interpolated before being exchanged.
Consequently, using five ghost cells results in an extra computational cost compared to conforming
grids, which led us to only consider two ghost cells. The application of the filter close to the non-
conforming interface of block L is illustrated in Fig. 6. The cells and ghost cells of block L involved
in the filtering are represented by squares and stars, respectively. As shown in Fig. 6(a), using two
ghost cells, the 7-point centered filter (12) can be applied as far as point (i = N — 1, j) in block L.
At the cell (i = N, j) adjacent to the block interface, in grey in Fig. 6(b), the filtered field ﬁi: N,j 18
computed from the upwind formulation:

4

afUi—n_1; + Uiy +afUp_g; = ZW’;’@UN74+k,j +v5Uir=0,5 + 76 Uir=1,; (16)
k=0

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
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(a) step 1 (b) step 2
block block
block L interface block R block L interface block R
v : '
(I : . . .
T e e N As
j N AN e . . e *
Dod ¢ | e N
i=N-2 i=N-1 (=N i'=0 i'=1 i=N-2 i=N-1 =N i’=0 i'=1
(c) step 3 (d) step 4
block block
block L interface block R block L interface block R
: :
. . . l i . . .
Pl . 1 \ o |l
|72 . T I/l L
j . . . ‘I ] . . . ‘I interpolatis n’vl
' 2 11.(,/' . j ! ./ . /.,
. . . ) ) . . . i .
i=N-2 i=N-1 [=N i'=0 i'=1 i=N-2 i=N-1 [=N i'=0 i'=1

Figure 5. Flux reconstruction for non-conforming grids at the interface Iy, in block L: (a) step 1: definition of

two ghost cells (stars), (b) step 2: computation of the flow variables at the interface Iy, using a non-centered

scheme involving an interface (cross) and two cells (squares) of block L, and two ghost cells (stars), (c)

step 3: computation of the flow variables at the interfaces in grey, applying steps 1 and 2 in block R, (d)

step 4: interpolation of the flow variables at the ghost interface I7, using the data computed in step 3, and
computation of the resulting flux at the block interface using a Riemann solver.

Finally, the flow variables in the ghost cells (¢ = 0, ) and (i’ = 1, j) are filtered using non-centered
schemes on 7 points, as illustrated in Fig. 6(c) and 6(d), yielding:

~ ~ ~ 4
afUi=n,; + Uy=o,j + afUi=y j = kZO Y Un—a1k,j + 75 Uir=o,j + 75 Uir=1,;
1 (17)

. . 1
" 1 111
afUp—o; +Up=r,; = kZO Vi UN—a+k,j + 75 Uir=0,; + 7 Uir=1,5

"

where oy = 0.47, and ;,, v,/ and 7}/’ are the non-centered filter coefficients [27].

3.1.3. Interpolation techniques In the flux reconstruction for non-conforming grids, interpolations
are performed in order to compute the flow variables U in two ghost cells and the values of U at
the grid interface. As presented in section 3.1.1, in block L, the interpolations are carried out using
values of U and U in block R. In practice, block R can be divided into subdomains with a loss of
topology information between the domains. Therefore, in this study, meshless interpolations based
on Radial Basis Functions (RBF) are employed.

First, the interpolation technique is described for the calculation of a component u of the vector
U in the ghost cell located at ' = 0 in Fig. 5(a). The calculation is performed using the value of u
known in n, cells of block R surrounding the ghost cell. These n,, cells are located along the line

i’ = 0 for a 2-D mesh, in the plane ¢’ = 0 for a 3-D straight mesh. The RBF approximation ugrpr of

Copyright © 2018 John Wiley & Sons, Ltd.
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(a) ®)
block block
block L interface block R block L interface block R
: . N : . N
' N . ' . N
8 ¢ j+ L é j+l
j o= - - [ ST RN N *-- j = - o |emef e *--
HE) 6 j Y . j
i=N-4 i=N-3 i=N-2 i=N-1 i=N  i'=0 =] i=N-4 i=N-3 i=N-2 i=N-1 i=N  i'=0  i'=]
(©) @
block block
block L interface block R block L interface block R
: : o :
o : [ :
L é j+l L $ j+l
j = n m|emeeefe I:_* I o j = n m|emeeefe I---'----t. * [
HE) B j v . j
i=N-4 i=N-3 i=N-2 i=N-1 i=N  i'=0  i'=] i=N-4 i=N-3 i=N-2 i=N-1 i=N  i'=0  i=]

Figure 6. Filtering at the non-conforming grid interface in block L. Cells in block L (squares) and ghost
cells in block R (stars) used in the filter scheme applied at points: (a) (¢ = N — 1,3), (b) (¢ = N, j), (c)
(i' = 0,7)and (d) (& = 1,7).

the variable u at point  writes [9]:

uRpF (T Z@ () +Z<q (18)

where ¢; and (, are the unknown interpolation coefficients, (x;);=1,.n, are the
centers of the n, cells, & are Wendland’s radial basis functions [9, 28], and
S P (@) = (o + G+ Gy + oo + (n28® is a polynomial term of degree deg(P) that
ensures the unicity of the approximation urpr [18,29]. The calculation of the coefficients &; and
(q is presented in appendix A.l. Similarly, the value of U in the second ghost cell in Fig. 5(a) is
interpolated using the RBF approximation (18) and n, points located at i = 1. The choice of the
interpolation parameters n,, and deg(P) in Eq. (18) is discussed in sections 6 and 7.

A second interpolation technique is proposed in order to interpolate the flow variables U at the
block interface I} in Fig. 5(d). As for the interpolation of the flow field in the ghost cells, a RBF
interpolation is carried out. However, the quantity to interpolate is not a single-point value u but
an averaged value u on a grid interface. Therefore, the interpolation of @ on the interface I} is
performed from n, values of U at the interfaces (Ira,-- IR, IR j'+1,-.s IR n,) Tepresented in
grey in Fig. 5(c). The interpolation formulation at the grid interface I} is obtained by integrating
Eq (18) on I}:

1

ﬂ,L/ = URBF (:1:) dz (19)
12l Ji,
(1
ij |I’ / O(z,x,)de —&—Z(jq I’|/ P,(z)dz
q=1 L IIL
Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)

Prepared using fldauth.cls DOI: 10.1002/fid



237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

257

258

259

260

261

262

263
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where the point ;- is the center of the surface I ;.. The calculation of the interpolation coefficients
Ej, and Z“q is detailed in appendix A.2.1. A 3rd-order Gaussian quadrature is used in order to
compute the integrals of Eq. (19). In practice, the interpolation coefficients in Eq. (18) and (19)
are computed only once at the beginning of the simulation and stored in memory, yielding low CPU
cost interpolations (see appendix A).

3.2. Curved interfaces

For curved grid interfaces, the flux reconstruction presented in section 3.1 cannot be applied. For the
interpolation of the flow variables at the grid interface using Eq. (19), as the curvature of the surface
is not taken into account to define the ghost interface I, the integral (19) is evaluated on a plane
interface that does match the shape of the non-conforming interface. Therefore, a flux reconstruction
for curved non-conforming interfaces is also proposed. The objective is to find a function o(z) to
define a curved interface I;,__ knowing only the position z of the mesh points. The flow variables

at the interface /7, are then calculated as in Eq. (19):

~ 1
U= 35— URBF (.’L‘) dz -
|ILcurved ‘ I,Lcurvcd

ne 1 mo 1
= Z | 5—— O(x,x;)dx | + Z C | 55— P,(z)dx
j'=1 |ILcurved | 17 g=1 ‘ILcurved | Iy

curved curved

The calculation of the RBF coefficients Ej/ and Zq is described in appendix A.2.2.

The method to determine the function o is presented for the 2-D grid of Fig. 7(a), composed
of two blocks L and R separated by a curved interface. The curved interfaces to be defined by
and (Ip1 Toen TR+ lewrveas <o IRy ). In
order to determine the function o, a technique proposed by Carr et al. [30] for 3-D imaging

the function o are denoted by I7 Ip

ved curved ) *

reconstruction is employed. First, relations to be verified by the function ¢ at given mesh points
are imposed. In particular, at the N, grid points of blocks L and R lying on the interfaces

(IR curvear -5 IRj IR, j'+1cueveas -+ IR,m, ., ) in Fig. 7(a), the function o cancels out:

7
curved’

o(z)=0 1<i<N, @1)

where x; = (z;,y:, 2;) are the spatial coordinates of the ith-mesh point. In order to ensure that
function o differs from the zero-function, off-surface points are considered and non-zero values are
given to the function o at these points. In the present study, n, points of block L and n,, points of
block R are selected, corresponding to the centers of the cells adjacent to the grid interface. They
are represented by black and grey circles in Fig. 7(b) for n,, = 3. A value of ¢ = —1 is given to the
n, points of block L, and o = 1 is attributed to the n,, points of block R. Thus, the objective is to
find the function o so that the following relations are satisfied:

ol@)=0 1<i<N,
o(x,)=1 1<r<n, (22)
ol)=-1 1<1<n,

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
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where (z,)1,.. n, and (2;)1,.. », are the positions of the centers of the n, cells of blocks L and R,
respectively. Then, given the set of points Sy = [(Z:)1,...~,, (Zr)1,...n,» (@)1, n,] = [(T5)1,.., V]
and the relations (22), the function o is calculated by RBF interpolation [30]:

Ng m
o(x) ~ orpr(E) = Y 0,;0(x,2,) + > _ KePy() (23)
j=1 q=1

where Ng = N, + 2n,, and ©; and k, are the unknown interpolation coefficients computed
similarly as for the ghost cells (see appendix A.1).

(a) (b)

block
interface
=~}

block
interface
=~

block L . block R block L ‘ block R

: surface defined by
: Np surface points where 6=0

interfaces I’ Leurveds IR.Icurveds

ooEII

IR 2curvea A0 IR 3curyea : off-surface points where 6=-1
: off-surface points where 6=1
Figure 7.Computation of the function o that defines the curved interfaces I/Lmve , and

(IRvjéurved)lﬁj'S"v:?’: (a) interfaces Ichurvcd and (IRJémed)lSJ"S?’ and N, points (squares) lying
on the interfaces, (b) surface points (squares) where o = 0 and off-surface points (circles) where o # 0.

4. PROPERTIES OF THE RBF INTERPOLATION IN THE WAVENUMBER SPACE

The performance of the RBF interpolation is evaluated in the wavenumber space. For this purpose, a

uniform 1-D mesh extending over the range [0, 1], composed of 81 points (z;)1<;<s1 is considered:
zj=(j—1A for 1<j5<81 (24)

with A = 1/80. At the points z;, a harmonic function fj(z) = exp(ikx) is imposed, where k is the
wavenumber with kA varying from 0 to 7, and i is the complex number verifying i> = —1. For RBF
interpolations, a second 1-D mesh, referred to as the RBF grid, is defined using Ngpr = 41 points

located at the following positions:

j_

T=(02A + ————
i < * Ngrpr — 1

) for 1<j < Ngrpr (25)
In this way, the distance between two consecutive RBF grid points is equal to 2A and there is a full
point-mismatch between the two 1-D meshes. The interpolation of f; on the RBF grid is denoted gy,
in the following. For consistency with the finite-volume flux reconstruction proposed in this study,

the function gy, is defined over each segment [z, 2, ], with j € [1, Nrpr — 1]. For x € [z}, 2 4],

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
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A FLUX RECONSTRUCTION TECHNIQUE AT THE INTERFACES OF NON-CONFORMING GRIDS 13

from Eq. (18), the function g;, writes as follows:

Ty

g(z) = > &(w, @) + P(x) (26)

=1

The n, nearest mesh points (7;) that surround point 2 = (2 + 2’ ,)/2 and where the values
of fi are known are used to determine the interpolation coefficients in Eq. (26). In this section,
the influence of the number of points n, is evaluated by performing interpolations using n, = 4,
6, 8 and 20 points. The interpolations are carried out using the 2nd-degree polynomial function
P(z) = (o + (17 + (22, where (¢j)o<j<2 are the unknown interpolation coefficients. The influence
of the degree of P on the accuracy of the spatial discretization is discussed in section 5.

First, the accuracy of the RBF interpolation is examined. For this purpose, an interpolation error €
is computed as a function of the wavenumber k from the difference between the values of f; and g

! /! .
over each segment [z, 2 ;] as:

Nrpr—1

= > [l -l e
=1 =%

where | - | is the complex modulus. Secondly, the energy of the interpolated signal g, is compared
with the energy of the original signal f;, through the evaluation of the integrals 'y and E, defined

as: ,
TNRBF

Ef(k:):/ T @)Pde =1 and Eg(k:):/ gk (2) 2 dz (28)

’ !
1 Ty

For comparison, interpolations are also performed using the polynomial functions of degrees 2 and

3 given by:

Py(x)
P3(z) = c4+csx+cea’® + cpa® 30)

c1 + cx + 031‘2 29)

where (c;j)1<;<7 are the interpolation coefficients. Note that, as for the RBF interpolations, the
polynomial approximations (29) and (30) are defined by pieces over each segment [z, 2%, ,].
The interpolations coefficients (c;) are determined using a least-square approximation involving
n, nearest points surrounding point z; . More precisely, over each segment [z}, 2’ ], the values
of (¢;) are calculated to minimize the functions x p, and x p;:

n,=4 P _ 9
xp,(ci,c2,c3) = Z' 2§ij)_x{k()x2l)| 1)
=1 M
N, =6 P B 9
xry(enes,coer) = ) | ng)— x{i})ﬁl” 32)

The variations of the energy F, obtained from the RBF interpolations using n, = 4, 6, 8 and
20 points and from the polynomial interpolations with P, and P;5 are represented in Fig. 8(a) as a

function of the normalized wavenumber kA. When RBF is used, the value of £, decreases with kA,

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
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indicating higher levels of dissipation at high wavenumbers. The highest levels of dissipation are
obtained using n,, = 4. In particular, for kA = 7/3, the energy is equal to 0.995 for n,, = 4 whereas
values 0.99 < F, < 1 are obtained for n, = 6, 8 and 20. The dissipation obtained using RBF is
lower than that calculated from a polynomial interpolation of degree 2 over all the wavenumber
range. In addition, using RBF, no energy amplification is observed whereas energy values F, > 1
are found using polynomial interpolation Ps for 7/8 < kA < 7/2 in Fig. 8(a). Therefore, it is
interesting to use RBF to preserve the energy stability and to maintain low dissipation levels for
wavenumbers kA < /4, which are well resolved by the present spatial discretization schemes.

The interpolation errors e obtained using RBF and polynomial interpolations are represented in
Fig. 8(b) as a function of the wavenumber kA. When RBF is used, the highest values of ¢ are
obtained for n, = 4. In this case, the interpolation error is stronger than that calculated with the
polynomial interpolation P for kA < 7 /2. However, it is lower than the error computed with P»
which involves the same number of interpolation points. When the number of interpolation points
n, increases, as expected, the value of e decreases all over the wavenumber range. For n,, = 20, as
a result, the error € is lower than the error computed using P for 7/12 < kA < 7. For kA < 7/12,
it is higher than that obtained using Ps, but is very small and lower than 5 x 1076,

10°

1
1071
0.98 i
> 1072
K w
.., 0.96 R .
) o 107"
— —
(<5} —
=094 R o
S 1074
0.92 q 10~
0.9 L L 1 Ll 10—6 1 1 1 1 1
/40 /16 /8 m/Am/3 7/2 ﬂ /40 /16 /8 n/Am/3 /2 T
kA EA

Figure 8. Representation of (a) the energy E4 and (b) the interpolation error € as a function of the normalized
wavenumber kA: RBF interpolations using o ny = 4,----ny =6, ===ny = 38§, ny = 20, polynomial
interpolations of m degree 2 and x degree 3. — F, = E;y = 1.

5. ACOUSTIC PULSE

In order to examine the overall accuracy of the flux reconstruction presented for non-conforming
grids above, an acoustic pulse is imposed in the vicinity of a non-conforming interface in a medium
at rest. For this purpose, the two-dimensional domain of size ¢ x ¢ shown in Fig. 9(a) is considered,

with £ = 100 m. It is composed of two blocks separated by a non-conforming interface located at

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
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x = 0.64. Att = 0, the pulse is introduced at x,, = 0.4¢ and y,, = 0.5¢ as:

(z — ) + (y — yp)*
)

p'(x,y) = Ay exp <ln2

u'(z,y) =v'(z,y) =0
P(z,y) =o' (z,y)

(33)

where h = 0.03/ is the pulse half-width, A, is the pulse amplitude, and ¢ is the ambient sound
speed. The ambient pressure and temperature are equal to pg = 10° Pa and Ty = 300 K, respectively.
Radiation boundary conditions and sponge layers are used. An exact solution of the problem can be
derived from the linearized Euler equations [31]. In order to compare the numerical results obtained
from the Navier-Stokes equations with the exact solution, an amplitude A, of 0.1 Pa is chosen. In
addition, the viscous terms in Eq. (1) are neglected in the simulations.

The performance of the flux reconstruction is evaluated using six Cartesian grids referred
to as pulsegridl, pulsegrid2, pulsegrid3, pulsegrid4, pulsegrid5 and pulsegrid6, and two flux
reconstruction techniques with and without RBF interpolation. The RBF interpolations are carried
out using a number of n,, = 8 points. The influence of the degree deg(P) of the RBF polynomial
function in Eq. (18) is examined using polynomial functions of degree 0, 1 and 2. For the flux
reconstruction without RBF, 2nd-order interpolations are used in order to reconstruct the flow
variables in the ghost cells and at the grid interface [32]. This reconstruction, available in the elsA
solver [20], is described in appendix A.3.

The mesh parameters, namely the grid spacings Az, and the grid spacings Ay* and Ay® at the
left and right hand sides of the block interface are given in Tab. I. The meshes pulsegrid2, pulsegrid3,
pulsegrid4, pulsegrid5 and pulsegrid6 are respectively 2, 3, 4, 5 and 6 times finer than pulsegridl.
In all cases, at the left-hand side of the interface, a uniform grid spacing Az = Ay” is used in the
directions = and y. For pulsegridl, it is equal to 0.02¢. At the right hand-side of the interface, the
grid spacing is also equal to Az in z direction whereas the mesh spacing Ay* is twice larger than
Ay’ in y direction. In order to have a full point-mismatch at the grid interface, for = > 0.6¢, in all
cases, the grid cells are shifted upwards of 0.5Ay".

mesh Az Ayl AyYT
pulsegridl ~ ¢/50  ¢/50  ¢/25
pulsegrid2  ¢/100 ¢/100 ¢/50
pulsegrid3  ¢/150 £¢/150  £/75
pulsegridd  ¢/200 ¢/200 ¢/100
pulsegrid5 ¢/250 £/250 £/125
pulsegrid6  ¢/300 ¢/300 £/150

Table I. Mesh spacings used in the simulations of the pulse.

The time step At of the simulations is chosen sufficiently small so that the errors related to
the time discretization are negligible. More precisely, its value is calculated in order to provide
a CFL number coAt/Ax of 0.05 for Az = ¢/300. The fluctuating pressure field p’ obtained at
t = 1200At using pulsegrid2 is represented in Fig. 9(a). At this instant, the acoustic wave reaches
the non-conforming interface. In order to evaluate the effective order of the spatial discretization

in the presence of the non-conforming interface, the pressure fluctuation obtained at ¢ = 1200A¢ is

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
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16 S. LE BRAS, H. DENIAU AND C. BOGEY

compared to the exact solution p/,_, . through the L, relative error:

(fg (0 — pgxacmdﬂ) 2
€p = <

fQE pgxact dQ

(34)

where Q. = {(z,y) € R? | 0.2¢ < z,y < 0.8¢}. In finite-volume, p’ is the averaged value of the
fluctuating pressure over each cell of domain €2, (see Eq. (8)). Therefore, for consistency, the exact
solution is calculated similarly. The discrete form of Eq. (34) thus writes as:

W) 9\ 1/2
€ = <Zcell€§25 (p Pexact cell) ) (35)

> o
celleQ pexact cell

where p!__ .+ .on = (1/]Qcen]) fﬂceu Dioxactd§2 and |Qcen| is the volume of the cell. Simulations with
four uniform Cartesian meshes without grid interfaces with grid spacings of Az = Ay = ¢/50,
£/100, £/200 and £/300 respectively have also been done for comparisons.

The errors ¢, obtained using the non-conforming grids with and without the flux reconstruction
based on RBF for polynomial functions of degrees 0, 1 and 2 are presented in Fig 9(b), as a function
of the grid spacing Az /¢. Those obtained using the meshes without grid interface are also indicated.
In all cases, the amplitude of ¢, decreases as the value of Az tends to 0. Using the grid without
interface, the error profile follows a 6th-order convergence slope. This result is expected since the
present spatial discretization is based on 6th-order numerical schemes (see Fosso et al. [12]). With
non-conforming interfaces, the 6th-order convergence slope is not retrieved, and higher error levels
are obtained for Az < 0.005¢ compared to the simulations without interfaces. The stronger errors
are obtained using the flux reconstruction without RBF, with an error profile varying following a
2nd-order slope. When RBF is used, lower errors are obtained, and they decrease with the degree
of P. In particular, the error profile calculated with deg(P)=2 is in good agreement with that
obtained for conforming grids. In the following, the RBF interpolations are therefore performed
using deg(P)=2.

(@)
1072 F
1. £
10—3 E
N =8
w
305
107
085 04 0.6 1.0 1077
z/l 3.10-3 5.10-3 10-2

Ax/l

Figure 9. (a) Fluctuating pressure p’ at ¢t = 1200At using pulsegrid2, with 10 isocontours from 1074
to 1072 Pa following a geometric progression of ratio 1.67. The non-conforming interface is shown in
blue. (b) Error profiles ¢, as a function of the grid spacing Az/¢: RBF interpolations with polynomial
functions A deg(P)=0, o deg(P)=1, x deg(P)=2,  interpolation without RBF and O grids without interface.
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6. CONVECTION OF A VORTEX

The performance of the flux reconstruction on non-conforming grids is then evaluated by performing
2-D simulations of vortex convection on Cartesian and wavy meshes.

6.1. Cartesian grids

A round vortex is convected in a mean flow defined by a uniform Mach number M of 0.5, a pressure
of 10° Pa and a temperature of 300 K. The two-dimensional computational domain used in the
simulations extends from z = 0 down to x = 3L in the streamwise direction, and from y = 0 up
to y = L in the transverse direction, where L = 0.1 m. It is divided into two blocks separated by
a vertical non-conforming interface located at x = L. The vortex is defined by the velocity and

pressure fluctuations:

’ I (.’t - mc)Q + (y - yc)2
u :*@(y*yc)exp <1H2 252
I (ZC B xc)2 + (y - yc)2
v = ﬁ(l — ) exp <— In2 52 (36)
2 2 2
r_ P . (v — ) +(y_yc)
p = o2 exp< In2 02

where (z.=0.5L,y. = 0.5L) is the position of the vortex center at the initial time ¢ =0,
b= (vIn2/20)L ~ 0.04L is the vortex Gaussian half-width, and I" represents the vortex intensity
given by:

pl?

7k 10° Pa (37)

where R = b/+/In 2. The velocity and pressure fluctuations are superimposed onto the mean flow at
t=0.

The performance of the flux reconstruction is examined by performing simulations using
four meshes referred to as Finegrid, Mediumgrid, Coarsegrid, and Verycoarsegrid, and two flux
reconstruction techniques with and without RBF interpolations. When RBF is applied, the influence
of the number of interpolation points n, is studied by carrying out interpolations with n, = 4,
6, 8 and 12 points. The RBF interpolations are performed using a second-degree polynomial
function in Eq. (18). The influence of the degree of the polynomial function has been examined
by performing simulations using polynomial functions of degrees 0, 1 and 2. The use of the second-
degree polynomial function provided the lowest spurious noise levels at the grid interface. For the
sake of concision, these results are not presented in this study. Views of the four meshes close to
the block interface are given in Fig. 10. The mesh parameters, including the grid spacings Ax in
the streamwise direction, and the grid spacings Ay’ and Ay® at the left and the right sides of
the block interface are provided in Tab. II. In all cases, in the streamwise direction, a grid spacing
of Az = A = L/255 is used. The vortex half-width b is thus discretized by 10 points, given that
b = 10.6A. In the transverse direction, on the left hand side of the interface, the grid spacing Ay
is equal to A. On the right hand side, the mesh resolution in the y direction is different from A.
More precisely, the grid spacing Ay’ is respectively equal to 0.5A, 2A, 4A and 6A for Finegrid,
Mediumgrid, Coarsegrid and Verycoarsegrid, corresponding to a discretization of the vortex half-

width by 21.2, 5.3, 2.6 and 1.8 points. In addition, in order to ensure a full point-mismatch at the

Copyright © 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2018)
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grid interface, for z > L, the cells are shifted upwards of Ay’?/2 for Finegrid and of Ay’ /2 for the

meshes Mediumgrid, Coarsegrid and Verycoarsegrid.

() () (© @
0525 0.525 0.525 0525
S0 S0 1;0.5 1;0.5

0.475
0.975

0.475 0.475 0.475
1 1.025 0.975 1 1.025 0.975 1 1.025 0.975 1 1.025
x/L x/L x/L x/L

Figure 10. Representation of the meshes close to the block interface: (a) Finegrid, (b) Mediumgrid,
(c) Coarsegrid, and (d) Verycoarsegrid.

mesh Az Ayt Ayf
Finegrid A A 05A
Mediumgrid A A 2A
Coarsegrid A A 4 A
Verycoarsegrid A A 6 A
Table II. Mesh spacings for the Fine, Medium, Coarse, and Verycoarse grids.

The time step At in the computations is chosen in order to impose a CFL number
(1 4+ M)coAt/A of 0.4, where ¢ is the ambient sound speed. When the vortex crosses the block
interface, spurious waves are generated due to the difference in grid resolution as well as to the
specific spatial discretization at the interface. The objective here is to ensure that the amplitude
of these spurious waves is very low with respect to the pressure deficit in the vortex. For that,
the pressure field pinerface Obtained in the multiblock simulations is compared with the pressure
field ppo-interface cOmputed from a simulation without block interface. That monoblock simulation is
carried out using the same computational domain with mesh spacings Az = Ay = A. By comparing
the pressure pingerface With ppo-interface instead of with the analytical vortex solution (36), the error
thus obtained only results from the effects of the non-conforming grid and not from discretization
errors. In addition, the pressure field differences Ap = pinterface — Pno-interface are only computed at
the left side of the block interface where the mesh is similar in the two computations. In this way,
the pressure fields pingerface aNd Pro-interface are computed at the same point. In particular, the time
evolution of Ap is recorded at the two mesh points A and B, indicated by squares in Fig. 11. They
are located, respectively, at the interface at x = L and y = 0.5L, and upstream of the block interface
at x = 0.8L and y = 0.75L. The signal recorded at point A provides information on the vortex
deformation at the block interface, while the signal at point B gives the amplitude of the spurious

waves propagating from the interface.

6.1.1. Grid sensitivity The influence of the mesh resolution is evaluated by performing four
simulations using Finegrid, Mediumgrid, Coarsegrid and Verycoarsegrid. The simulation settings

are given in Tab. III. In the four simulations, the flux reconstruction at the block interface is
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Figure 11. Representation of the mesh points A and B (squares) where the pressure field is recorded.

performed using RBF, with interpolations on n, = 8 points and the second-degree polynomial
function (Py)(1,...m) = (1,2,y, 2%,y xy).

mesh flux reconstruction technique n, RBF polynomial degree
Finegrid RBF 8 2
Mediumgrid RBF 8 2
Coarsegrid RBF 8 2
Verycoarsegrid RBF 8 2

Table III. Parameters of the simulations in the grid sensitivity study.

The time evolution of the pressure |Ap| = |Pinterface — Pro-interface| Tecorded at points A and B in
the simulations is presented in Fig. 12, where | - | is the absolute value. The vertical blue line in the
figures indicates the moment when the vortex hits the block interface. The signal amplitudes are
displayed in log scale in order to enhance the differences between the simulations. At point A, in
Fig. 12(a), the maximum value of | Ap| is obtained at the instant when the vortex crosses the interface
in all cases. Using Verycoarsegrid, the pressure fluctuation peak is equal to 28.1 Pa, corresponding
to 2.7% of the pressure at the center of the vortex. Using Coarsegrid, the pressure difference reaches
a value of 5 Pa. Using the medium and the refined meshes, the amplitudes of the spurious waves at
point A are significantly lower than those found for the coarse grids, and do not exceed 0.9 Pa and
0.2 Pa, respectively. At point B in Fig 12(b), the noise level also decreases as the mesh is refined at
the right hand side of the block interface. Indeed, maximum pressure differences of 3.6 Pa, 0.4 Pa,
0.1 Pa and 0.03 Pa are obtained in Verycoarsegrid, Coarsegrid, Mediumgrid and Finegrid. These
levels are much lower than those at point A. Note that using Verycoarsegrid, the vortex half-width b
is only discretized by 1.8 points at the right side of the block interface. As a consequence, the mesh
is not fine enough and the vortex structure is strongly modified when it crosses the block interface,
yielding |Ap| > 0.5 Pa at points A and B for ¢ > 10000A¢. These results demonstrate that non-
conforming grids must be designed such that the flow field is correctly discretized at both sides
of the interface. In the present simulations, given the vortex Gaussian half-width b, a grid spacing
Ay < 4A is recommended, corresponding to a discretization of the half-width b by 2.6 points
(i.e 5.2 points in the vortex width). This result was expected since the numerical methods used
in this study well-calculate the scales discretized by at least 5 points per wavelength [14]. Let us
mention that values Ay® > 4A could be used in sponge zones, that is to say in flow regions close
to the domain boundaries where the mesh is deliberately coarse in order to damp hydrodynamic
fluctuations before they reach the boundary conditions.
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Figure 12. Representation of the time evolution of the pressure difference |Ap| = |pinterface — Pro-interface| () at
point A and (b) at point B: = = Finegrid, —— Mediumgrid, = = = Coarsegrid, and - - - - Verycoarsegrid. The
vertical blue line indicates the moment when the vortex hits the interface.

6.1.2. Influence of the number of points used for RBF interpolations In order to study the
influence of the number of points n, used for RBF interpolations, four simulations are carried
out using n, =4, 6, 8 and 12 points respectively. The simulation parameters are given in Tab. IV.
The medium grid with mesh spacings Az = Ay* = A and Ay = 2A, and the second-degree
polynomial function for RBF interpolation are used in all cases.

mesh flux reconstruction technique n, RBF polynomial degree
Mediumgrid RBF 4 2
Mediumgrid RBF 6 2
Mediumgrid RBF 8 2
Mediumgrid RBF 12 2
Table IV. Parameters of the simulations in the study of the influence of the number of points for RBF
interpolations.

The time variations of the pressure difference Ap = pinterface — Pno-interface recorded at points A and
B are displayed in Fig. 13. The maximum spurious noise levels are observed using n,, = 4, when
interpolations are performed using 4 points. In this case, peaks of 1.6 Pa and 0.3 Pa are obtained
at the interface and upstream. When interpolations are carried out on 6 points, the noise levels are
reduced by at least 60% at both points A and B compared to the case using n, = 4. Increasing the
number of interpolation points from 6 to 8 also leads to a decrease of noise levels upstream of the
block interface in Fig. 13(b), whereas no improvement is found at the interface in Fig. 13(a). Finally,
the pressure signals obtained using n,, = 8 and 12 have similar shapes suggesting that using 8 points

for RBF interpolations is sufficient to reach accurate results in the present test case.

6.1.3. Influence of the flux reconstruction technique In this section, the performance of the flux
reconstruction based on RBF interpolations is compared with that of a flux reconstruction without
RBF. The flux reconstruction without RBF, available in the elsA solver [20], is described in
appendix A.3. In the following, four simulations are performed with and without RBF, using
Mediumgrid and Coarsegrid. The simulation parameters are provided in Tab. V. The RBF

interpolations are carried out using n,, = 8 points and the second-degree polynomial function.
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Figure 13. Representation of the time evolution of the pressure difference Ap = pinterface — Pno-interface () at

point A and (b) at point B:----n, =4, o ny, =6, A ny =8 and ny = 12 points. The vertical blue
line indicates the moment when the vortex hits the interface.

The time variations of the pressure error Ap obtained at points A and B in the simulations using
Mediumgrid are presented in Fig. 14. The flux reconstruction technique without RBF provides
higher noise levels compared to the technique using RBF, especially at point B where the signal
amplitude is 7.5 times higher. The pressure signals obtained using Coarsegrid are displayed in
Fig. 15. Using the RBF technique, maximum values of 5 Pa and 0.45 Pa are reached at points
A and B, whereas values of 17.8 Pa and 2 Pa are obtained without RBF. Thus, the use of the flux
reconstruction technique based on RBF allows us to reduce both the modifications of the vortex

structure and the generation of spurious pressure waves at the block interface.

mesh flux reconstruction technique n, RBF polynomial degree
Mediumgrid RBF 8 2
Mediumgrid no RBF 8 2
Coarsegrid RBF 8 2
Coarsegrid no RBF 8 2

Table V. Parameters of the simulations in the study of the influence of the flux reconstruction technique.
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Figure 14. Representation of the time evolution of the pressure difference Ap = Dinterface — Pno-interface () at
point A and (b) at point B using Mediumgrid: — RBF, - = = no RBF. The vertical blue line indicates the
moment when the vortex hits the interface.
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Figure 15. Representation of the time evolution of the pressure difference Ap = pinterface — Pno-interface () at
point A and (b) at point B using Coarsegrid: —— RBF, = = = no RBF. The vertical blue line indicates the
moment when the vortex hits the interface.

6.2. Wavy grids

In order to examine the performance of the flux reconstruction for curved non-conforming
interfaces, the vortex defined in section 6.1 is convected on 2-D wavy grids. Three computational
domains, presented in Fig. 16, are considered. They are composed of 2 blocks separated by a wavy
non-conforming interface located close to « = L, where L = 0.1 m. The wavy grid interfaces are
defined by a sinusoidal shape of wavelength A, and of amplitude \,. The values of A, and A, are
provided in Tab. VI for the different meshes. In the grid referred to as wavyl, the block interface
has a height of A, = 24b and a sinusoidal shape of amplitude of A, = 8b, where b is the vortex half-
width. In wavy2, the amplitude of the sinusoidal interface is two times higher than in wavyl, i.e.
Az = 16b, but \, = 24b as previously. In wavy3, the block interface is composed of three sinusoidal
arches with A, = A, = 8b. In all cases, a grid spacing Az = A = L /127 is used in the « direction,
leading to a vortex half-width discretized by 5.3 points. In the y direction, the grid spacing is equal
to Ay = A at the left hand side of the interface. In order to create non-conforming grids, a mesh
spacing Ayt = L/87 is applied at the right hand side of the interface, yielding b = 2.6A. The
vortex, convected from the left to the right, is initially located at yo = 0.5L, and at equal distance

from the domain inlet and the block interface in the x direction.

mesh A\, A,
wavyl 8b 24b
wavy2 160 24b
wavyld 8b  8b
Table VI. Parameters of the wavy grid interfaces.

Six simulations are performed using wavyl, wavy2 and wavy3, and the flux reconstructions
designed for plane and curved interfaces. Their parameters are given in Tab. VII. In all cases,
RBF interpolations are carried out using a number of n, = 8 points and the second-degree
polynomial function. The time step At in the computations is chosen such that CFL number
(1 4+ M)coAt/A=0.2.
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Figure 16. Representation of the wavy computational domains: (a) wavyl, (b) wavy2, and (c) wavy3. The
non-conforming interface is indicated by a bold line.
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The spurious noise generated at the block interface is not recorded at specific points as for the
Cartesian grids in section 6.1. Indeed, since the shapes of the block interfaces in wavyl, wavy2, and
wavy3 differ, the distance between a given point and the interface is not identical in the three grids.
Therefore, the computation of the pressure difference Ap = pinterface — Pno-interface at specific points
is not relevant. Instead, the pressure difference is determined over all the computational domain.
In order to compute the pressure field pyo-intertace, fOr €ach wavy grid, two simulations are carried
out using conforming meshes. The first conforming mesh coincides with the non-conforming grid
at the left-hand side of the interface, whereas the second mesh matches the resolution of the non-
conforming grid at the right-hand side.

mesh  flux reconstruction technique n, RBF polynomial degree

wavyl RBF curve 8 2
wavy2 RBF curve 8 2
wavy3 RBF curve 8 2
wavyl RBF plane 8 2
wavy2 RBF plane 8 2
wavy3 RBF plane 8 2

Table VII. Parameters of the simulations in the study of the influence of the flux reconstruction technique
for curved interfaces.

Snapshots of the pressure difference Ap obtained at ¢t = 2800At using wavyl and the flux
reconstruction for plane and curved interfaces are presented in Fig. 17. At this time, the vortex
core is located at z = 1.5L. In both cases, the presence of the non-conforming grid interface results
in a significant discretization error around the vortex core as well as in the emission of spurious
pressure waves of amplitude about 10 Pa. The simulation using the flux reconstruction technique
designed for curved interfaces provides a maximum noise level of 5.2 Pa, which is two times lower

than that obtained in the simulation using the reconstruction for plane interfaces.
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2

Figure 17. Representation of the pressure difference Ap at ¢ = 2800A¢ using wavy1: flux reconstruction for
(a) plane interfaces and (b) curved interfaces, levels given in Pa.

The pressure difference Ap obtained at ¢ = 2800A¢ using wavy?2 is plotted in Fig. 18. Noise levels

of 10-20 Pa are found. They are higher compared to the results obtained using wavy1 in Fig. 17. This

is due to the block interface which displays stronger variations than that using wavyl. The pressure

difference obtained in Fig. 18 (a) with the flux reconstruction technique for curved interfaces shows

weaker pressure wave amplitudes compared to the pressure difference obtained in Fig. 18 (b) for

the plane interface reconstruction.
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Figure 18. Representation of the pressure difference Ap at ¢t = 2800A¢ using wavy?2: flux reconstruction for
(a) plane interfaces and (b) curved interfaces, levels given in Pa.

Snapshots of the pressure difference Ap obtained using wavy3 at ¢t = 2800A¢ are displayed in

Fig. 19. As for wavyl and wavy2, lower spurious noise is found using the curved reconstruction

technique than the plane one. However, the use of a block interface with 3 arches generates higher

spurious noise levels than previously, with maximum values of Ap of 200 Pa reached at this

instant. In particular, the vortex core, located at x = 1.5L is strongly affected by the presence of

the block interface. The use of non-conforming interfaces with low curvature therefore seems to be

recommended.
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Figure 19. Representation of the pressure difference Ap at ¢t = 2800A¢ using wavy3: flux reconstruction for
(a) plane interfaces and (b) curved interfaces, levels given in Pa.
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7. THREE-DIMENSIONAL JET

In order to demonstrate the applicability of the flux reconstruction technique to a 3-D simulation,
a circular isothermal jet is computed using a Cartesian mesh with a non-conforming interface. The
aim is to prove that the use of non-conforming interfaces does not significantly affect the jet flow
development and the sound field radiated by the jet in the near-field region.

7.1. Jet definition

The jet flow has a Mach number of M =wu;/co =09 and a Reynolds number of
Rep = u;D/v =4 x 105, corresponding to the conditions of the jet in the numerical simulation
of Bogey and Bailly [33], where D and u; are the jet diameter and velocity, cg is the sound speed
and v is the molecular viscosity. The ambient pressure py and temperature 7 are respectively equal
to 10° Pa and 300 K. The jet inflow, located at = = 0, is characterized by the mean longitudinal
velocity profile given by the hyperbolic tangent-profile:

atr) = g (1 tann (151 (38)

where 0y = ro/20 is the initial momentum thickness of the shear layer, ro = D/2 is the jet radius,

and r = y/y? + 22. The mean density profile is computed from a Crocco-Busemann relation:

p(r) = p; (1 L) (1 - “W))l (39)

2 ’U,j Uj

The azimuthal and radial velocities are initially null, and the pressure is equal to pg. In order to seed
the laminar-turbulent transition of the jet flow, vortex rings are added to the flow field in the shear
layer at x = r = ry, at each time step of the computation [34]. The amplitude of the perturbations
is equal to @ = 0.007 and the half-width of the Gaussian profile that defines the vortices is equal to
A = 0.0457. The small disturbances are divergence-free to minimize the production of spurious

acoustic waves.

7.2. Numerical set-up

Two simulations are carried out using Cartesian grids with and without a non-conforming interface.
The computational domain extends from x = 0 up to z = 48 in the flow direction and from O up
to 207 in the y and z directions.

The spatial discretization in the grid without a non-conforming interface is presented in Fig. 20.
In the z direction, for 0 < x < 257, the axial mesh spacing is constant with Az = 0.17¢, and then
increases with a rate of 0.4% up to x = 3579, and with a rate of 8% for x > 35r. In the y and 2
directions, the mesh is finer than in the = direction in order to resolve the shear layers. The grid
spacing does not vary for y, z < rg, with Ay = Az = r/30. For y, z > r, a stretching ratio of 2%
is applied up to r = 20r.

The non-conforming mesh is built from the conforming mesh. Figure 21 provides a simplified
representation of the two meshes in the z-y plane, with the non-conforming interface indicated

by a bold line in Fig. 21(b). In the jet flow region, for = < 14r(, the two meshes are identical.
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Figure 20. Representation of the spatial discretizations in the conforming grid: (a) axial discretization and
(b) discretization in the y and z directions.

Downstream of the end of the jet potential core expected to be around x, ~ 10ry according to
reference [35], a non-conforming interface is defined at x = 14ry, as shown in Fig. 21(b). The
location of the interface is chosen downstream of the jet sound source region, which is found for
x < xp,. For & > 147, the very fine mesh spacings used in the y and z directions at the jet inlet to
discretize the jet shear layers