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An expression of the Magnetic Co-Energy
adapted to MagnetoStatic Volume Integral
Formulations - Application to the Magnetic
Force computation

Quentin Debray a,b,∗, Gerard Meunier a, Olivier Chadebec a, Jean-Louis Coulomb a and 
Anthony Carpentier b
a Univ. Grenoble Alpes, CNRS, Grenoble INP*, G2Elab, F-38000 Grenoble, France
b Altair Engineering, 15 chemin de Malacher, 38340 Meylan, France

Abstract. This paper provides a new expression of the magnetic co-energy for ferromagnetic materials. This expression is very
well suited to integral methods but can as well be used as a post function for the Finite Elements Method (FEM). First the
context of this work and the expression of the co-energy will be introduced. Second, two examples will be treated with the
proposed method and the performances will be compared with the FEM.
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1. Introduction

For a few years, Volume Integral Method (VIM) has been widely studied [4][1][2][3] and is know
today as a good alternative to the Finite Elements Method (FEM) for solving magnetostatic problems
in the presence of non-linear materials. While the FEM needs the geometry to be completely meshed,
the VIM only requires the meshing of active materials. Moreover, while the FEM only takes into acount
local approximated interactions between Degrees Of Freedom (DOF), VIM considers Green kernel type
interaction. Those types of interactions allow to be as efficient as possible on a given mesh since the
quality of the calculation of the interaction is very high : indeed, the interaction not only the short dis-
tance interactions are taken into account, but also the long distances interractions thanks to the Green
kernel type interaction. Nevertheless, since the unknows of the VIM are inside the active materials, this
methods yields the magnetic field (or the magnetic induction) only in the active materials. The informa-
tion regarding the magnetic field in the air around the active materials can be obtained by calculation but
has a cost. Thus the classical methods of force computation (Maxwell Stress Tensor [7], Virtual Works
method [5]) are not usable (or at least not as efficient as with the FEM) and we must find specialy adapted
techniques to compute the forces. First we will provide and demonstrate an expression of the magnetic
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co-energy (which can be used to compute the magnetic force [6]) that requires only the information of
the magnetic field inside the active materials. Second we will validate this expression by calculating the
force on the mobile part of a contactor.

2. Formula

The magnetic co-energy is defined via the relation :

W co
mag =

∫
Ω

(∫ H

0
B(H′) · dH′

)
dΩ (1)

where Ω is the whole study domain (which includes the air, and the ferro-magnetic materials). Our goal
is to bring this expression back to the domain Ωm which is the domain on which the VIM yields the
magnetic field :

Ωm = Ωpm + Ωferro (2)

where Ωpm is the domain containing permanents magnets and Ωferro is the ferromagnetic materials. An
illustration of those domains can be found figure (1a) and (1b).

(a) FEM (b) VIM

Fig. 1. Description of the two types of domains (FEM and VIM)

Linear materials
We have :

B = µH + Br (3)

which yields, for the expression of the co-energy :

W co
mag =

∫
Ω

1

2
µH2 + Br ·H dΩ (4)

that can be decomposed in :
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W co
mag =

∫
Ω

1

2
µH2 dΩ +

∫
Ωpm

Br ·H dΩpm (5)

since Br = 0 outside of the permanent magnets. The equation 3 allows to modify the first term of
equation 5 :

W co
mag =

∫
Ω

1

2
(BH−BrH) dΩ +

∫
Ωpm

Br ·H dΩpm (6)

which leads to :

W co
mag =

∫
Ω

1

2
BH dΩ +

∫
Ωpm

1

2
BrH dΩpm (7)

Using the equations H = H0 − ∇ϕ and B = ∇ × A = ∇ × (A0 + Am) where ϕ is the scalair
potential, A0 is the vector potential induced by the sources and Am is the vector potential induced by
the magnetization of the material Ωm, one can write :∫

Ω

1

2
BH dΩ =

∫
Ω

1

2
BH0 −

∫
Ω
B∇ϕ dΩ (8)

We moreover use that : ∫
Ω
B∇ϕ dΩ = 0 (9)

Indeed the divergence theorem allows to re-write the previous equation as :∫
Ω
B∇ϕ dΩ =

∫
Γ
ϕBn dΓ +

∫
Ω
ϕ∇ ·B dΩ (10)

and considering the facts that Bn and ϕ are continuous at the interfaces, that∇ ·B = 0 and ϕ = 0 to the
infinite, we can conclude that : ∫

Ω

1

2
BH dΩ =

∫
Ω

1

2
BH0 dΩ (11)

Thus, by using that B = ∇× (A + Am), we can write :∫
Ω

1

2
BH0 dΩ = W0 +

∫
Ω

1

2
∇×AmH0 dΩ (12)

where W0 is the magnetic energy which would be generated by the coils in absence of any magnetic
materials :

W0 =
1

2

∫
Ω
∇×A0H0 (13)
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This energy can be computed via :

W0 =

Nc∑
k=1

Nc∑
l=1

1

2
LklIlIk with Lkl =

µ0

2π

∫
ΩC

k

jk0

∫
ΩC

l

jl0G(r) dΩC
l dΩC

k (14)

where Lkl is the mutual inductance between the coil l and k without active materials, Nc is the umber of
coil and Ik is the current going through coil k. G(r) is the expression of the Green kernel :

G(r) = log(
1

‖r‖
) in 2D (15)

G(r) = − r

‖r‖2
in 3D (16)

ΩC
k is the domain of the coil k, and jk0 is the current density in the coil k inducing a 1A current. The

double integral shown equation (14 right) can be computed with a semi-analytical approach : the first
integral on the region ΩC

l can be calculated analyticaly [8] while the second integral is calculated with
an adaptative Gauss point integration approach. The equation (12) can then be modified using relation
B = ∇×Am +∇×A0 = µ0(H + M) = µ0(H0 −∇ϕ+ M) :∫

Ω

1

2
∇×AmH0 dΩ =

∫
Ω
H0 · µ0(−∇ϕ+ M) dΩ (17)

We use once again the fact that ϕ = 0 to the infinite and∇ · (µ0H0) = 0 to prove that :∫
Ω
H0 · µ0∇ϕ dΩ = 0 (18)

and conclude that :∫
Ω

1

2
∇×AmH0 dΩ =

∫
Ω
H0 · µ0M dΩ =

∫
Ωm

H0 · µ0MdΩm (19)

Since M = 0 outside of the active materials. We finally get the expression of the magnetic co-energy in
linear materials which can be computed by integrating over Ωm only :

W co
mag = W0 +

∫
Ωm

1

2
µ0H0MdΩm +

∫
Ωpm

1

2
BrH dΩpm (20)

General case
We start once again from the co-energy definition :

W co
mag =

∫
Ω

(∫ H

0
B(H′) · dH′

)
dΩ (21)

and we separate this expression in two domains :
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– Ωair which corresponds to the air in the domain Ω
– Ωm which has already been defined

We thus have :

W co
mag =

∫
Ωm

(∫ H

0
B(H′) · dH′

)
dΩm +

∫
Ωair

(∫ H

0
B(H′) · dH′

)
dΩair (22)

to which we add and remove
∫

Ω
1
2BH dΩ :

W co
mag =

∫
Ω

1

2
BH dΩ +

∫
Ωm

(∫ H

0
B(H′) · dH′

)
dΩm −

∫
Ωm

1

2
BHdΩm+∫

Ωair

(∫ H

0
B(H′) · dH′

)
dΩair −

∫
Ωair

1

2
BH dΩair

(23)

The two terms regarding Ωair cancel each other and we can use the developments seen in the linear

materials paragraph for the term
∫

Ω

1

2
BH dΩ to finaly get :

W co
mag = W0 +

∫
Ωm

[
1

2
µ0H0 ·M−

1

2
B ·H +

∫ H

0
B(H′) dH′

]
dΩm (24)

The force can be computed from the magnetic co-energy along the direction of displacement as :

Fs =
dW co

mag

ds
(25)

where s is the displacement of the mobile on which the force is calculated. The current flowing through
the eventual coils of the problem has to remain constant.

3. Validation

The test case is the 2D contactor displayed figure (2a). All the dimensions given in the figure (2a) are
all in mm. The mobile part is shifted from -5mm to 5mm in the horizontal direction. The force according
this direction is computed for 100 position. The profile of the magnetic co-energy and the force along the
(Ox) axis yielded by the proposed method are available figure (2b). We decided to compare the efficiency
of the proposed method (VIM for the field computation and derivation of the magnetic co-energy for the
force computation) to the FEM coupled to the virtual works method. We used a converged FEM solution
as a reference and we calculated the mean and maximum error for the two methods. The results are
availlable figure (3a). The computation times are displayed as well figure (3b).

The results of this study shows that with the same amount of unknows in the active materials (abscissa
of the graph found figure (3a)) the combination of the VIM with the derivation of the magnetic co-energy
(DCE) yields results as good as the FEM coupled with the virtual works (VW) method. Nevertheless,
when the number of unknows is low (less than 1000 unknows in our case), the coupling VIM+DCE is
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(a) Test case (b) Magneti co-energy and force profile

Fig. 2. Description of the test case

far more effective than the FEM+VW coupling. Indeed, computing the integral (24) is extremely cheap
and the VIM is very effective for problems with few unknowns. Moreover, one can notice that in a case
with moving parts, the VIM has the advantage of not requirering remeshing the domain, contrairy to the
FEM. If the number of unknows if high, the VIM is not competitive anymore since the complexity is
O(n2) while the complexity of the FEM is O(n).

(a) Mean and maximal error (b) Computation time

Fig. 3. Description of the test case

4. Conclusion

An original expression of the magnetic co-energy has been presented. This expression is adapted to the
volume integral method since it only requires information in the active materials. This expression can be
used to compute efficiently the force or the torque applied to any magneto-static device. The coupling of
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this method with the VIM shows great promises, especially in a context of pre-design where fasts solving
methods are required, yielding fairly accurate results. One can moreover notice that this expression of
the magnetic co-energy can be used in coupling with the finite elements method as well, the information
in the air is simply ignored. No experiments have been done in this area yet.
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