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 11 
Abstract— Ground deformation monitoring at a local scale requires accuracy, along with dense spatio-temporal 12 

resolution. Radio-Frequency Identification (RFID) technology is proposed as an alternative to classical geodetic methods 13 

for monitoring displacements of a landslide. Passive RFID tags allow for a very dense resolution, both in time and space, at 14 

the scale of a 100-m-long surface. By deploying 19 passive RFID tags on a landslide for 5 months, this study validates the 15 

technique by comparison with laser total station and wire extensometer data. The accuracy of the RFID technique was 1 cm 16 

during normal weather and up to 8 cm during snow events. The results demonstrate that RFID tag tracking can monitor 17 

landslide displacements with multiple sensors at low cost, providing dense spatio-temporal data. This technique could 18 

potentially be used for other applications such as monitoring volcanic activity, buildings, unstable rocks or snow cover. 19 

 20 

Keywords — Wireless sensor network, Slope stability, Real-time location tracking system, Early warning, Monitoring, 21 

Radio-Frequency Identification 22 

Highlight —  23 

• Passive RFID is a new method to monitor surface displacements on a landslide. 24 

• RFID works across vegetation, fog, rain and snowfall. 25 

• This first prototype allows for a wireless monitoring at a range of 60 m. 26 

• Displacement accuracy reaches 1 cm in general and 8 cm with a snow cover. 27 

• Low-cost RFID tag network provides data with high spatio-temporal resolution. 28 

Abbreviations 29 

RFID: Radio-Frequency Identification 30 

TD-Phase: Time-Domain Phase Difference of Arrival  31 

FD-Phase: Frequency-Domain Phase Difference of Arrival  32 

RSS: Received Signal Strength 33 
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1. INTRODUCTION 34 

Ground deformations are monitored at different scales. On a scale of a few hundred meters, a landslide creates 35 

surface displacements that vary in both time and space. Motion monitoring to understand the landslide mechanism 36 

requires the best possible spatial and temporal resolution. However, obtaining a high spatial resolution is expensive at 37 

the scale of landslides, owing to either the station or the multiple measurement points. Large-zone monitoring 38 

techniques, such as ground-based radar interferometers, laser scanners, robotic total stations and fiber optics 39 

(Monserrat et al., 2014; Jaboyedoff et al., 2012; Iten et al., 2008) have a high station cost (30-100 k€), which restrict 40 

their use in standard applications. Similarly, more localized techniques such as GPS and extensometers have a cost per 41 

point (1-10 k€) that make them economically inefficient for a spatially-dense network of sensors (Gili et al., 2000; 42 

Angeli et al., 2000). The development of low-cost single-frequency GPS (Benoit et al., 2015) and radio-frequency 43 

transponders (Kenney et al., 2009; Intrieri et al., 2018a) reduced the cost to 100-1000 € per point, but each instrument 44 

still requires its own power source, which considerably increases the cost of the material, its installation and 45 

maintenance. Satellite Remote sensing techniques are economically efficient but their best current time resolution is 46 

4-6 days (Intrieri et al., 2018b; Milillo et al., 2014; Lacroix et al., 2018). Similarly, ground-based optical correlation 47 

barely exceeds a 1-day resolution (Travelletti et al., 2012) because of low light at night and other luminance variations. 48 

Furthermore, some techniques are completely unusable in specific conditions: GPS signal may be blocked by steep 49 

slopes and high trees, optical techniques may be hindered by fog, rain, snow and vegetation, and extensometers may be 50 

obstructed by snow, ice or animals. In comparison, Radio-Frequency techniques continue to work in the presence of 51 

rain, fog, snow and vegetation, although environmental conditions may affect accuracy. Given these facts, 52 

Radio-Frequency Identification (RFID) (Heidrich et al., 2010) appears to be a viable alternative in terms of cost, 53 

spatio-temporal resolution and weather robustness. 54 

Billions of passive targets, or tags, are produced by the RFID industry every year (Das, 2017) to identify goods 55 

remotely, leading to numerous research and business applications (Ngai et al., 2008; Tzeng et al., 2008). Tags typically 56 

comprise a passive microcircuit connected to an antenna. They communicate with a station that consists of a reader 57 

connected to another antenna. This communication relies on a continuous radio-frequency wave emitted by the station, 58 

this wave powers the tag, which then backscatters a modulated wave that encodes its own identification number, and 59 

the station reads this number (EPC Gen2, 2015). Passive tags and stations currently cost 0.01-20 € and 2-4 k€, 60 

respectively, and the reader can identify 30 to 800 tags per second (EPC Gen2, 2015; Klair et al., 2010). These 61 
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advantages have already been exploited in RFID applications in earth-science research, such as to sense soil moisture 62 

levels or vibrations (Pichorim et al., 2018; Jayawardana et al., 2016), measure crack openings (Cazeca et al., 2013; 63 

Caizzone and DiGiampaolo, 2015), or trace alluvial and coastal sediment (Lamarre et al., 2005; M. H. Nichols, 2004). 64 

However, continuous displacement monitoring with RFID remains untested outdoors.  65 

Several methods have been developed to locate passive tags (Miesen et al., 2011). These methods usually estimate 66 

the 1D range or displacement between a tag and a station antenna, and optionally locate the tag in 2D or 3D using 67 

multiple station antennas. These ranging techniques can use the Received Signal Strength (RSS) (Griffin and Durgin, 68 

2009; Ni et al., 2003), the Phase Difference of Arrival (Vossiek and Gulden, 2008; Nikitin et al., 2010) or more 69 

recently the Time of Flight (ToF) (Arnitz et al., 2010; Arthaber et al., 2015). Currently, phase-based methods are 70 

compatible with commercial readers and offer the best accuracy. Several studies used the phase to localize tags with an 71 

accuracy of one centimeter or less. However, these experiments were of short duration (<1 h), over a short range 72 

(<10 m) and were performed indoors. When these techniques are used outdoors, environmental fluctuations could 73 

affect their accuracy. A previous study showed that moisture and temperature variations could create a phase drift of up 74 

to 20 cm over a year (Le Breton et al., 2017). Corrections were proposed, which reduced that drift to less than 2 cm per 75 

year, with a reversible error of 7 mm induced by rain. However, the short tag-station distance (6 m) limited the effect of 76 

multipath propagation in that study. The effect of multipath propagation may be increased at long range and outdoors 77 

and passive RFID has never yet been studied in these conditions.  78 

Hectometer-range outdoor radio-frequency ranging has nevertheless been assessed on landslides using active 79 

transponders. The ranging techniques were based either on RSS, ToF or Phase, with displacement accuracies of 100, 5 80 

and 1 cm, respectively (Lucianaz et al., 2015; Intrieri et al., 2018a; Kenney et al., 2009). Since these techniques use the 81 

same physical principles as passive techniques, phase-based RFID ranging is also expected to have a displacement 82 

accuracy of 1 cm outdoors. As to the maximal range attainable, manufacturers claim ranges of up to 60 m for passive 83 

tags (Confidex, 2014); this range may be sufficient for the goals of this study. 84 

The previous studies then suggest that a dense network of passive RFID tags could be deployed on hectometer-scale 85 

landslides at low cost, to monitor 1D radial displacements with an accuracy of 1-2 cm in a variety of meteorological 86 

conditions. To test the performance of RFID, for five months, we monitored the displacements of 19 tags placed 5 m 87 

apart on a medium-sized landslide (Pont-Bourquin, Switzerland) and compared the results to those obtained with total 88 

station and extensometer data. We provide an example application that benefit from the RFID technique, studying the 89 
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relation between the rainfall and the velocity of this landslide, and finally discuss the advantages and limitations of 90 

RFID displacement monitoring. 91 

2. MATERIAL AND METHODS 92 

 Experimental site: Pont-Bourquin landslide 93 

The Pont-Bourquin landslide lies in the Swiss Pre-Alps, 50 km southeast of Lausanne (Fig. 1.a). The landslide 94 

crosses a complex geological zone composed of Triassic to Jurassic sediments, including gypsum, cargneule, shale 95 

siltstones and black shales, separated by tectonic thrusts (Badoux et al., 1990). Quaternary moraines partially cover the 96 

slope. The landslide material thus mixes all these sediments, with a dominant proportion of clay produced by 97 

degradation of black shale. 98 

 The landslide is about 240 m long, 30 m large (Fig. 1.b) and 10 m deep (Jaboyedoff et al., 2009). Its average slope 99 

is around 25° facing south. The total landslide volume is approximately 40 000 m3, which includes an active part of 100 

around 11 000 m3. The landslide mostly moves translationally, with a slight rotation at its top. Orthophotos from 1995, 101 

1997 and 2004 revealed continuous degradation due to slope movements and erosion in the landslide area. In 2006, a 102 

scarp of 0.8 m was observed at the top of the landslide. On 5 July 2007 a sudden earthflow of around 3 000 to 6 000 m3 103 

occurred after 95 mm of rain fell over a 3-day period (Jaboyedoff et al., 2009). In subsequent years, the landslide 104 

permanently moved by a few meters per year, before suddenly accelerating its descent in summer 2010 leading to a 105 

mudflow of a few thousand cubic meters that blocked the road downslope on 19 August 2010 (Mainsant et al., 2012). 106 

Due to its continuous activity, this landslide appears to be a good candidate to test the RFID technique over several 107 

months.  108 
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 109 

Fig. 1. (a) Pont-Bourquin landslide location in Switzerland (46.3518N, 7.1780E), (b) General aerial view of the Pont-Bourquin landslide, (c) zoom on the zone where 
instruments were placed (black rectangle in b), showing the tags and the RFID station, and (d) photograph showing tags No. 10 and No.°2 installed on the landslide, and 
the station which is placed on a stable zone. 
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 Monitoring instruments  110 

On 3 July 2017, the Pont-Bourquin landslide was equipped with the RFID material proposed previously by Le 111 

Breton et al., (2017) that reduces the influence of water and temperature on the phase. The acquisition system was 112 

composed of a stable station, 19 moving tags, and a remote server. The station was installed on a tree 3 m above the 113 

landslide’s surface and comprised a reader, an antenna and a computer (SR420 from Impinj and model 80010643 from 114 

Kathrein). It typically required 20 W power under continuous operations, which was provided through the Swiss power 115 

grid. The station collected about 20 Mo of data per day by measuring the phase difference of arrival and the 116 

temperature on 30 tags per second, using a randomized tag interrogation order (EPC Gen2, 2015). This corresponds to 117 

the slowest and most accurate mode of interrogation available on the reader (Dense M8). The reader was chosen 118 

because it provided the most precise phase measurements and the best sensitivity (and therefore reading range) and is 119 

well adapted for use with slow-moving objects. The phase-shift measured was limited within the range [0, π] (Miesen 120 

et al., 2013b). The tags were installed on 0.9-m-high fiber-glass stakes that were planted in the unstable slope (Fig. 121 

1.d). The tags were elevated above the ground because preliminary tests indicated that placing tags near the ground 122 

considerably reduced the RSS, down to -30 dB at ground-level. These tags were placed within the zone covered by the 123 

RFID antenna, which measured approximately 40x10 m (Fig. 1.b-c), and remained within the line-of-sight of the 124 

station antenna during the experiment. The tags (Survivor B, from Confidex) comprised a solid plastic casing 125 

(155×26×14 mm) protecting a patch antenna (+0.6 dBi effective gain and ±65 °E / ±80 °H beam-width at 3 dB) and a 126 

battery-assisted microcircuit (EM4325 from EM Microelectronic).  While assisted by a tiny button cell to boost their 127 

reading range, the tags remain passive: they backscatter the interrogator carrier wave the without amplification, and the 128 

exactly same technique work with batteryless tag. In term of lifetime, the tag’s battery may last 5 to 20 years under 129 

continuous interrogation, given the cell of 290 mAh and the typical micro-circuit current of 1.7-6 μA (EM 4325 Spec., 130 

2015). This lifetime may be shortened by battery aging and by the extra temperature measurements, but still last 131 

several years according to the tag manufacturer (Confidex, 2014) and to our own experience. 132 

To validate the RFID measurements, we installed a wire extensometer (ASM WS17KT) between a metallic stake 133 

(0.5-m-high, 0.7-m-deep and 1 meter away from tag No. 10) and the bottom of the station antenna. We extended the 134 

original 2.5-meter Invar wire with a 20-meter Kevlar wire. An acquisition card (Campbell CR1000) measured the 135 

length of the extensometer wire every minute, representing a radial displacement along the line of sight of the antenna. 136 

During processing, the displacement from both the extensometer and the RFID was averaged every hour. 137 
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We also measured the 3D coordinates of the tags and base station on 27 July and 6 October using two manual total 138 

station surveys (Leica TCR805), to compute the 1D tag-station radial distance and its difference between the two 139 

surveys. The positions of the extensometer and tags No. 10 and 11 were measured using a fixed reflector, with an 140 

accuracy of ± 5 mm. For the other tags, the manual positioning of the prism resulted in lower accuracy, estimated at ± 141 

2 cm. Hence, the accuracy of the relative displacement between two total station surveys was ± 1 cm for tags No. 10 142 

and 11, and ± 4 cm for the other tags. 143 

Finally, we used data provided by MétéoSuisse related to fresh snow height and total snow height (measured daily at 144 

6 am at Diablerets village, 1 km away), precipitations, humidity, air temperature (every 10 minutes at Col des Mosses, 145 

6 km away) and pressure (every 10 minutes at Les Diablerets). 146 

 RFID ranging methods 147 

This study first compares two absolute ranging techniques (FD-Phase and RSS) with a relative displacement 148 

technique (TD-Phase). Firstly, the relative radial displacement of a backscattering tag can be computed in free space 149 

using the Time-Domain Phase Difference of Arrival technique (TD-Phase) (Nikitin et al., 2010), as presented in Fig. 2, 150 

with 151 

 
4 air

v
r

f
δ δϕ

π
= −   (1) 152 

where 153 

φair  phase-shift resulting from propagation through air; 154 

r   distance between the station and the tag; 155 

v    RF wave velocity in the medium (≈ 2.998∙108 m/s); 156 

f    carrier frequency (= 865.7, 866.3, 866.9 or 867.5 MHz as defined by ETSI-EN 302-208 (2016)). 157 

 158 

In this application, the reader measures the phase difference of arrival between [0, π] modulo π. Using equation (1), 159 

this phase interval is equivalent to a distance of 8.6 cm, or ± 4.3 cm. Larger displacements are ambiguous to measure 160 

directly and require phase unwrapping, by adding or subtracting 8.6 cm when the difference between two consecutive 161 

measurements exceeds ± 4.3 cm.  162 



 
 

8 
 
 

 163 

Secondly, the absolute distance r can be computed by measuring the phase at different frequencies, based on the 164 

Frequency-Domain Phase Difference of Arrival (FD-Phase) technique (Nikitin et al., 2010) : 165 

 04
air v

r r
f

δϕ
δ π

= −  (2) 166 

where  167 

air
δϕ  phase difference resulting from the change in carrier frequency; 168 

fδ   difference in frequency between two carrier frequencies (0.6 MHz); 169 

0r   offset due to wave propagation in cables and instruments (11 m). 170 

The resulting distance r was computed for each of the three available frequency intervals and averaged. As long as tags 171 

are placed at less than 125 m (minus
0r ) away from the station antenna, this technique provides an absolute distance 172 

without ambiguity. The unique offset 
0r used on all the tags was initially calibrated from tag No. 10 as 11 m, for 173 

which the range to the station (22 m) was measured using the total station on July 27.  174 

Thirdly, the absolute distance r can be estimated from the attenuation of the received power (RSS) over a two-ways 175 

propagation (Griffin and Durgin, 2009). As the RSS depends on the station and tag gain, their relative orientation, and 176 

the environmental conditions (Dobkin and Weigand, 2005), it requires calibration based on reference tags placed at a 177 

known distance (Ni et al., 2003). We computed one virtual reference tag, from the average RSS and tacheometric 178 

distances of all the tags over the first month. The absolute range 
ir  of tag i can then be estimated by comparing its 179 

received power P to that of the reference tag, using:  180 

Fig. 2. Schematic representation of how tag displacement is tracked by a static 
station. The phase variation measures the radial displacement dr between two 

acquisitions. 

Stable station

Moving tag

RFID

Reader 1ϕ
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 4
i ref ref ir r P P≈   (3) 181 

These three absolute and relative ranging techniques are compared in section 3.1. The remainder of the article then 182 

focuses solely on the TD-Phase relative displacement measurements. 183 

3. RESULTS  184 

 Performance of the different RFID ranging techniques 185 

The absolute distance covered by each tag was computed from the Frequency-Domain Phase (using (2)) and the RSS 186 

(using (3)) and compared to the total station laser measurements (Fig. 3). The range values were computed every hour 187 

and averaged over a 5-month period. The vertical bars represent the drift over this whole period, based on the 90% 188 

confidence interval. The curve shows that the RSS-based ranging measurements follow an increasing trend with 189 

distance from the station, but that some strong outliers are found, as are large drifts of up to ±15 m. These datapoints 190 

were due to the strong impact of uncontrolled parameters: environmental variations, antenna orientation and ground 191 

reflection interference. Therefore, the method cannot be considered reliable. In contrast, the distances obtained with 192 

the FD-Phase method gave a good fit with the distances measured with the total station, with a maximum drift of ± 2 m. 193 

This level of error is still too high for our monitoring purposes, but it can be reduced by using relative displacement 194 

techniques. 195 

 196 

The relative displacements of tag No. 10 over time, computed from variations in FD-Phase, RSS, and TD-Phase are 197 

compared in Fig. 4, along with the total station measurements. The FD-Phase and RSS show significant variations over 198 

 
Fig. 3. Comparison of the radial distances between the tags and the station 
antenna estimated by RFID ranging techniques (RSS and FD-Phase) with this 
same distance measured by a manual total station, for the 19 tags deployed. The 
vertical bars represent the amplitude of the drift over the 5-month period, and the 
width of the 1:1 ratio line represents the true displacement over 5 months. The 
centimeter-scale total station error is negligible, and was therefore not 
represented. 
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time, which can be up to 4 m. In contrast, the TD-Phase measurement appears much more stable and accurate than the 199 

RSS and FD-Phase ranging techniques when monitoring relative displacements. Indeed, the relative displacement is 200 

more sensitive to phase or frequency errors in equation (2) compared when applying (1). The TD-Phase results appear 201 

coherent with those provided by the total station, and are validated in more detail in the next section by comparison 202 

with standard ranging techniques. 203 

 204 

 Validation of the TD-Phase RFID technique 205 

The TD-Phase displacements are compared with the automatic wire extensometer measurements over 4 months and 206 

with the two manual total station surveys (Fig. 5). The tag studied (No. 10) was installed next to the extensometer 207 

stake. The RFID curve appears to match the extensometer data although a slight discrepancy appeared in September, 208 

which progressively increased to around 5 cm difference at the end of the observation period. The total station data 209 

showed that this discrepancy was caused by a true differential displacement between the tag and the extensometer, 210 

which were installed on separate stakes. Another difference was that the wire extensometer curve was noisier and 211 

exhibited several strong spikes from mid-October, which appear to be linked to snowfall (Fig. 5b): snow accumulation 212 

bent the wire down, pulling the cable along by several decimeters, such as on October 20. This extra length remained 213 

until snowmelt or until the cable was manually dug out from under the snow. RFID tracking thus provided better 214 

continuity and accuracy over time than the wire extensometer. In particular, the error due to snowfall was smaller and 215 

restricted in time to the precipitation episode. 216 

 
Fig. 4.  Relative radial displacement between RFID tag No. 10 and the station 
antenna over a 5-month period, using the Received Signal Strength (RSS), the 
Frequency-Domain Phase Difference of Arrival (FD-Phase) and the 
Time-Domain Phase Difference of Arrival (TD-Phase) techniques, compared to 
the radial displacement computed from total station measurements. The darker 
lines for RSS and FD-Phase represent a 24-h moving averaged.  
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 217 

The landslide velocity computed from the RFID (tag No. 10) and the extensometer data are shown in Fig. 6.a-b. 218 

Each velocity was derived from the displacement, after the application of a low-pass filter (1-day moving average) to 219 

reduce the cyclic daily drift. The RFID velocity curve appears more stable than the extensometer velocity curve. 220 

Indeed, rain- and snow-fall (Fig. 6.c-d) created numerous positive and negative peaks on the extensometer velocity 221 

curve. That resulted from the additional water or snow weight that temporarily increasesd curvature in the wire. In 222 

comparison, the RFID velocity curve shows almost no perturbation due to rain and the artifact caused by snow was 223 

much smaller (± 1 cm/day). 224 

 
Fig. 5. (a) Cumulative radial displacement measured over 4 months on the 
Pont-Bourquin landslide, using a wire extensometer, the phase of RFID tag 
No. 10, and a manual laser total station. (b) Total snow height. The snow 
considerably perturb the wire extensometer measurements. 
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 225 

To illustrate its capacity to monitor multiple tags, the RFID cumulative displacement (Fig. 7) and the velocity for all 226 

tags (Fig. 8) were plotted over the five-month period. The cumulated displacement ranged between 0.69 and 0.94 m 227 

(extremes measured for tags No. 12 and No. 7, respectively). The shape of the displacement curves was similar on all 228 

tags, suggesting that the zone studied moved in the same way during the observation period. Locally, some 229 

displacement measurements may have been affected by a rotational motion of the stick, observed from pictures as ± 7° 230 

during the 5-month period. Such motion of the stick would cause a ± 12 cm displacement of the tags, which is the same 231 

magnitude as the motion discrepancy between tags. However, the similarity between all the curves indicates that this 232 

effect was progressive and smaller than the ground displacement. The velocity for all tags is shown in Fig. 8. The 233 

curves were ordered according to a noise indicator, computed as the standard deviation of the detrended total 234 

displacement, with additional weight for the heavy rainfall recorded between September 30 and October 3. As a result 235 

of this ordering, the more accurate curves are placed at the bottom of the figure. Each tag measured the true 236 

displacement of the landslide surface, added to an instrumental artifact due to rain. The amplitude of this rain artifact 237 

was quite distinct from one tag to another (e.g. between September 30 and October 3) and results in heterogeneous 238 

accuracies. 239 

 
Fig. 6. Comparison of radial velocities between (a) RFID tag n°10 and (b) 
extensometer after filterAing for daily variations. (c) Rainfall and (d) fresh 
snowfall are also shown.  
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 240 

 241 

 Precision, trueness and robustness of the TD-Phase technique 242 

To determine the validity limits of the RFID TD-Phase technique, we tried to quantify its precision, trueness and 243 

 
Fig. 7. Radial displacement curves for all tags over 5 months. The curves are 
ordered based on their cumulative displacement using a vertical offset to facilitate 
vizualization. The inset indicates the snow height. 

 
Fig. 8. Radial velocity curves for all tags, ranked by decreasing noise levels from 
top to bottom.  
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robustness from the five-month experiment. The accuracy indicators are computed from the experimental data and 244 

summarized in Table I for precision and trueness, and Table II for robustness. The accuracy is then given by the 245 

combination of the precision and the trueness. 246 

Precision 247 

The precision is given by the random measurement error estimated from the phase standard deviation over one 248 

minute, a timespan that is short enough to allow systematic error due to meteorological variations to be neglected. This 249 

random measurement error was then plotted against the RSS (Fig. 9). The random measurement error appears to obey 250 

the relation /r Pσ α=  (4) with the received power P, using an interrogator-dependent coefficient 251 

α=9.5∙10-9 m∙W1/2. The curve obtained is coherent to the phase signal-to-noise ratio observed by Vossiek and Gulden 252 

(2008) that depends on the distance. On a single measurement, our random measurement error 3σ represent 0.1 to 253 

1.3 cm (Table I), for a received power of 10-8.3 to 10-6 mW. This random error can be statistically decreased to 254 

0.01-0.17 cm by averaging 60 measurements over one minute, it thus becomes negligible compared to the systematic 255 

measurement error presented below.  256 

 257 

 258 

 
Fig. 9. Random measurement error represented as the standard deviation σr

computed every minute for each tag, plotted against the received power P, on a 

logarithmic scale. The curve shows a clear linear relation between √� and σr. 
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 259 

Trueness 260 

The trueness is given by the systematic measurement error, estimated as the bias between the true value and the 261 

mean of the measured values. It includes the drift over time (days to months) and the inaccuracy over spatial 262 

displacements. Table I shows the displacement accuracy computed from the difference between the RFID technique 263 

and the total station surveys used as reference measurements. The average displacement measured for all tags by both 264 

methods differed by only 6 mm. Hence, the displacement of all the RFID tags appears coherent and, on average, 265 

unbiased compared to the total station data. However, the results are spread statistically over ± 53 mm within the 266 

99.7% confidence interval. This spread mostly corresponds to the error when placing the optical reflector on the tags 267 

for the manual total station surveys: we have estimated this survey error to be ± 40 mm for most of the tags. The tags 268 

No. 10 and 11 were installed on a single stick, which improved the estimated survey error to ± 10 mm. For these two 269 

tags, the difference compared to the RFID measurements remained below 0.5 mm, which, given the small number of 270 

samples, corresponds to a potential error of ± 10 mm within the 99.7% confidence interval. In fact, the reference 271 

technique – manual total station – appears as or less accurate than the RFID method that is tested, and thus another 272 

method is required to assess the trueness.  273 

The systematic measurement error with RFID is mostly due to environmental variations such as temperature, 274 

humidity and moisture, which vary over the course of a day (Le Breton et al., 2017). To estimate this systematic 275 

measurement error, we computed the RFID residual displacement amplitude after removing the 276 

TABLE I 
TRUENESS AND PRECISION OF THE RIFD TECHNIQUE 
 Number of 

samples 
Deviation 

99.7% confidence(a) (cm) 
Radial Trueness    
Versus total station – all tags 19 5.3 (centered on 0.6) 
              tags No.10&11 
only(b) 

2 1.0 (centered on -0.05) 

Versus 24h-smoothed data 60 000 1.1 
During the first snowfall(c) 19 8.0 
Radial Precision   
of a single reading(d) 7x107 0.1-1.3 
over one minute 4x106 0.01-0.17 

 
(a) The 99.7% confidence interval was computed from the Student law when there 
were less than 2000 samples and directly from the equivalent quantile when there 
were more than 60 000 samples. The distributions were verified to ensure they 
were close to a normal law. 
(b) Tacheometric surveys were more accurate for tags No. 10 & 11, and their 
fixation on a single sealed stick was more stable. 
(c) The first snow fell between October 21, 18:00 and October 24, midnight, when 
tags showed a strong measurement bias. This was the worst bias accuracy 
observed. 
(d) The precision of a single reading was linear with the signal amplitude, and 

followed the law / Pϕσ α=   , with α=1∙10-8 m∙W1/2 
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1-day-moving-averaged trend. These calculations showed a daily drift of less than 11 mm 99.7% of the time. Finally, 277 

the worst errors were observed during the first snowfall (see photo in Fig. 11), which triggered reversible displacement 278 

peaks of up to 79 mm, either positive or negative. 279 

Hence, we estimate the trueness of this RFID method to be approximately 1 cm on a real landslide application under 280 

mixed meteorological conditions (dry, rain, snow), except for the first snowfall which appeared to limit the trueness to 281 

about 8 cm. Because the systematic error is much larger than the random one after averaging, we consider that this 282 

trueness also represent the total accuracy. 283 

 284 

 285 

The measurement error could be partly related to the tag-station distance. To verify this relation, the standard deviation 286 

was plotted against the distance (Fig. 10). This analysis shows that the systematic measurement error tends to increase 287 

the measured distance by about 50 parts per millions (ppm), or 150 ppm for 3σ. This trend could be related to the 288 

following distance-dependent effects: Firstly, the atmospheric conditions influence on wave velocity (Gage and 289 

Balsley, 1980) could induce a +/- 3.4 ppm standard deviation (after detrending), computed from the  meteorological 290 

data. Secondly, the interrogator frequency instability could result in variations of +/- 10 ppm, in line with the 291 

regulations (EPC Gen2, 2015). Thirdly, the amount of vegetation crossed by ground-reflected waves will increase with 292 

the distance, and its properties (such as height or water content) may vary over time and affect the overall signal (Kim 293 

et al., 2012). Fourthly, the greater the distance between the tag and the station, the more opportunities for multipathing 294 

due to the topography, and therefore potentially the greater the systematic error due to multipathing. 295 

 
Fig. 10. Standard deviation of the 1-hour resampled RFID displacement after 
trend removal, plotted against the tag radial distance, for each tag. The deviation 
tends to increase with distance, at a rate of about 50 parts per million. 
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 296 

Robustness 297 

The robustness can be defined as the ratio between the total monitoring time and the time when the RFID is 298 

operational. This is an important indicator for operational monitoring. Failure to identify the tags disqualifies the 299 

monitoring. Table II shows the availability ratio for each tag over the observation period; 14 out of 19 tags were 300 

available 97.5% of the time. The 2.5% unavailability was the result of software and network errors on the station. The 301 

availability of the other tags ranged from 96 to 55%. Snowfall clearly affected communication with tags No. 16 and 20. 302 

For other tags, the RSS was close to the limit of interrogator sensitivity (-83 dBm) due to either their distance (No. 12 303 

and No. 14) or their angle relative to the station’s antenna (No. 17). Signal strength may have been reduced by 304 

destructive multipath interference at a specific tag position, and increased again once the tag moved forward. 305 

 306 

4. SAMPLE APPLICATIONS: COUPLING BETWEEN DISPLACEMENT AND PRECIPITATIONS. 307 

This example demonstrates how all-weather, dense displacement measurements can help to better characterize 308 

landslide behavior, by analyzing the relation between rainfall and velocity data. 309 

 
Fig. 11. Photo illustrating the two main sources of inacurracies in this experiment  
the snow (particularly the first snowfall) and the angle of the tag supports, which 
created a reversible error of 4.9 cm (3σ) at the end of October and a slow drift 
roughly estimated at up to 5 cm per month, respectively. Apart from those two 
specific problems, the accuracy remained below 1.1 cm (3σ). 

TABLE II 
OVERALL MEASUREMENT AVAILABILITY 

Tags Availability(a) Major cause of problems 
74% of the tags 97-98% Software/network errors 
No.20 96% Snowfall of 29 Nov.  
No.16 87% Snowfall 
No.12 82% Large distance + interferences 
No.17 55% Station antenna directivity + interferences  
No.14 55% Largest distance 
 
(a) Availability was computed after resampling the data every hour 
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 Computation of the rainfall-related impulse response 310 

Precipitations often control the displacements of reactivated landslides by the intermediate of groundwater 311 

infiltration (Corominas et al., 2005) and subsequent changes of rheology, we will examine this effect in this section.  312 

The velocity/precipitation curves shown in Fig. 6 suggest that Pont-Bourquin landslide reacts directly to precipitation. 313 

The Impulse Response (IR) of velocity to rainfall on a reactivated landslide (Belle et al., 2014; Bernardie et al., 2015) 314 

can provide empirical insights into the behavior of this type of landslide, as long as no dramatic rupture occurs 315 

The shape of the IR was first estimated by cross-correlating the precipitations with the velocity of the tag No. 10 316 

between 3 July and 1 October. The cross-correlation on Fig. 12 shows a peak velocity approximately 1.2 days after the 317 

rainfall followed by a decrease in velocity until day 5-6, as already observed on this site (Bièvre et al., 2018). However, 318 

the correlation technique results in a poorly defined IR, producing an unrealistic reaction of the landslide’s velocity 319 

before the start of the precipitations.  320 

To improve the resolution, the IR was deconvoluted using the linear Lasso regression (Tibshirani, 1996) 321 

implemented in the scikit-learn library (Pedregosa et al., 2011), to minimize the following cost function: 322 

 
2

2 1
0.5J Y X β λ β= − +   (5) 323 

where 324 

β IR vector; each �� corresponds to the response after � 	 0,1…� hours of lag, N=120 here; 325 

Y  velocity vector; each �� corresponds to the velocity during the � 	 0,1 …� hours of the observation period, 3 326 

months here; 327 

X  precipitation matrix, where each ��,�corresponds to the precipitations measured � � � hours after the start of 328 

the observation period;  329 

λ  regularization parameter, to avoid over-fitting and causing the β  parameters to tend toward zero. A value of 330 

0.04 was chosen based on preliminary cross-validation tests. 331 

 This process provided a slight under-estimation of the IR amplitude because the regularization factor causes the 332 

values of β  to tend toward zero. For this reason, the IR was later corrected with a factor (1.7 in this study) to equalize 333 

the measured and modeled velocities (the modeled velocity is presented in the next section). 334 

 Impulse response and velocity model 335 

The IR (Fig. 12) was estimated using data collected from tag No. 10 between 3 July and 1 October (before snow). 336 
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This response suggests that the landslide remained stable for five hours after rainfall, then accelerated rapidly until it 337 

reached a peak velocity after 18-24 h, and finally returned to a null velocity after 4.5 days. This pattern might 338 

correspond to an initial infiltration in the superficial layers while the landslide remains stable, followed by a pore 339 

pressure increase and then decrease in the aquifer as the landslide accelerates then decelerates. The lag before the 340 

velocity peak was coherent with the 20-hour delay prior to elevation of the water table, measured previously in this 341 

zone (Brönnimann, 2011). In addition, the shape of the IR curve is similar to a typical water infiltration process 342 

(Iverson, 2000). 343 

 344 

As the landslide may behave differently depending on the point measured or instrument used, the IR for all tags and 345 

the extensometer are shown in Fig. 13. For the RFID, the darkest curves correspond to less noisy data, based on a noise 346 

indicator, which represents both the instrumental sensitivity to rain and the random noise (see section 3.2). All the tags 347 

showed a similar IR, and the discrepancy observed mostly depended on the instrumental bias due to rain, which is 348 

added to the landslide IR. In contrast, the IR computed from the extensometer data was very different for the first two 349 

days, showing a maximum peak almost during the rain event, before decreasing a null value and finally showing 350 

similar results as from RFID after the second day. This pattern of landslide behavior is unrealistic, and can be explained 351 

by a domination of the instrumental response, affected by the rain. This domination consequently prevents the 352 

extraction of synthetic information from the landslide, such as the IR peak velocity, the lag time before it is reached and 353 

the deceleration rate. 354 

 
Fig. 12. Impulse response of landslide velocity (cm/day) following precipitation 
(cm/day) estimated by cross-correlation and Lasso regression deconvolution on 
rainfall and displacement data from tag No.10 over the 5-month period. 
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 355 

 Convolution of the IR with the precipitations can be used to compute a rain-based velocity model (Belle et al., 2014; 356 

Bernardie et al., 2015). Fig. 14 shows this velocity model superimposed on the velocity measured. Visually, the model 357 

appears coherent with the measurements, except on October 23, when the first snowfall was recorded. This coherence 358 

is confirmed by the cross-correlation of both curves that reach their maximum coefficient of 0.76 after a zero-hour lag. 359 

 360 

 Advantages of RFID data for the IR approach 361 

This empiric IR method produced a relatively good fit between the measured and modeled velocity, for which the 362 

advantages and limitations are discussed in (Belle et al., 2014; Capparelli and Versace, 2011). This example 363 

emphasizes the potential of dense and continuous in situ displacement data, as provided by the RFID technique. As the 364 

IR is likely to be heterogeneous across a landslide area, placing multiple sensors enables the delimitation of these zones 365 

and provides a redundancy benefit. In this example, continuous data unaffected by rain and fog, with an hourly 366 

sampling time and sub-centimetric accuracy was also required to compute the IR. Observation of how this response 367 

 
Fig. 13. Impulse response of the landslide velocity (cm/day) to precipitation 
(cm/day) deconvoluted using a Lasso regression on the velocity measured by all 
the RFID tags and the extensometer. For the RFID, darker lines represent more 
accurate tags, presenting lower noise and a lower sensitivity to rain. 

 
Fig. 14. Landslide radial velocity measured on tag No.10 compared to the model 
obtained by convoluting the precipitation with the deconvoluted impulse 
response. The time-series starts in July, one month earlier than that shown in Fig. 
6. 
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changes over time could provide an additional risk indicator, and would require continuous time series covering 368 

several months or years. RFID is once again compatible with these measurements because of the low investment 369 

necessary and the reduced maintenance cost. This application therefore highlights several advantages of the RFID 370 

technique, which will be more fully discussed in the next section 371 

5. ADVANTAGES AND LIMITATIONS  372 

The assessment of RFID relative ranging on a landslide has shed light on its advantages and limitations, which will 373 

help guide future monitoring applications.  374 

The major advantage identified in this study is that RFID works at night and under all meteorological conditions. 375 

Indeed, radio-frequency waves are known to propagate in rain, fog, snow (Monserrat et al., 2014) and vegetation 376 

(Intrieri et al., 2018a). Passive RFID in particular has been tested without line-of-sight (Wang and Katabi, 2013), 377 

outdoors (Le Breton et al., 2017) and with snow on the tags (Nummela et al., 2008). This real-world test confirms that 378 

RFID adapts very well to natural outdoor areas despite periods of fog and precipitation, although minor accuracy and 379 

readability degradations were noted in the presence of snow. This degradation may be due to detuning effects in the 380 

vicinity of the tag and station antenna (Dobkin and Weigand, 2005) and to changes in the propagation paths (Kim et al., 381 

2012) due to snow (Larson et al., 2009) or vegetation (Kim et al., 2012). Displacement accuracy outdoors was found to 382 

be ±1 cm with vegetation, precipitations, fog or frost, and in rare cases ±8 cm after snowfall. The technique is thus well 383 

adapted for outdoor applications to measure displacements ranging from 1 cm to several meters. 384 

The second advantage of RFID is its low cost, allowing displacements to be measured with a high spatio-temporal 385 

resolution. Current prices are about 20 € per tag and 4 k per station. Moreover, the instruments were found to be robust 386 

and reliable, requiring little maintenance during the experiment (zero maintenance on the tags, three reboot of the 387 

station operated remotely, and one replacement of network cables degraded by animals) and providing a data 388 

completeness rate of 97% over five months for most tags. Because of their low cost, a large number of tags can be 389 

deployed on landslides, providing a high spatial resolution to delineate and characterize moving zones. From a 390 

technical point of view, unique tag identifiers and anti-collision algorithms make simultaneous reading of hundreds of 391 

densely stacked tags possible (Caizzone and Marrocco, 2011) at a rate of up to 800 tags per second (EPC Gen2, 2015; 392 

Klair et al., 2010). This capacity results in a high spatio-temporal resolution with lightweight time series that are easy 393 

to transmit and process almost in real-time. Because of these characteristics, the method could easily be incorporated in 394 

an early-warning-system (Intrieri et al., 2012) and appears to be well suited for low-cost, dense monitoring applications 395 
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in high-risk environments such as landslides where devices may be destroyed.  396 

The final advantage is the continuous development of tags to become multi-parameter sensors (Zhang et al., 2017). 397 

In this study, the tags were equipped with a temperature sensor that we used for phase calibration. Recently, other 398 

sensors have been incorporated into tags, to gather data related to tilt (Lai et al., 2018), soil moisture content (Aroca et 399 

al., 2018; Pichorim et al., 2018) and vibrations (Jayawardana et al., 2016). All these parameters could be of interest 400 

when monitoring landsides, opening new perspectives in dense sensing.  401 

As for the limitations, the first one on landslides is currently the tag’s reading range, which was limited to 60 m in 402 

this application. However, this limit (Nikitin and Rao, 2008) should rapidly evolve with the development of 403 

ultra-sensitive tags (Amato et al., 2018; Durgin, 2016) and directive tag antennas (Kim and Yeo, 2012). Therefore, a 404 

range of a few hundred meters seems to be an achievable goal in the near future.  405 

Secondly, the measurement is limited to 1D radial displacement. Measuring a 2D or 3D translational displacement 406 

field is technically possible, but would require additional antennas and may alter measurement accuracy (Miesen et al., 407 

2013a; Wang and Katabi, 2013). Furthermore, it is not enough to measure a purely translational displacement, as a 408 

progressive tilt of the tag’s supporting stick can create a discrepancy between the ground and tag displacements that 409 

must be accounted for. This tilt could be measured in real-time by joining multiple tags (Lai et al., 2018) and corrected 410 

in the next future.  411 

Finally, the displacements measured are affected by an ambiguity of 8.6 cm that originates from phase difference 412 

measurements. To address this problem will require first a high time resolution without missing data to avoid 413 

differential displacements exceeding this ambiguity, and second an unwrapping of the phase (Zuo et al., 2016). 414 

Unwrapping noisy or incomplete data produced by a tag could be guided by nearby high-quality data if a large number 415 

of tags are deployed, or by a previously defined rain-based model such as that presented in the application section. 416 

6. CONCLUSIONS 417 

RFID displacement tracking appears effective for monitoring surface deformations on a landslide, with unpreceded 418 

spatio-temporal sampling, at a significantly lower cost than GPS or ground-based radar and with an overall 1-cm 419 

accuracy within a range of 60 m including a distance-dependent error of around 150 ppm. 420 

In the future, the technique could be enhanced by monitoring displacements in 3D, increasing the reading range, 421 

correcting for tilt of the tag support, and assessing performance in the presence of obstacles (e.g. snow, vegetation, 422 

rocks or concrete). New environmental applications could be developed by exploiting sensor tags (e.g. temperature, 423 
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tilt, soil moisture or vibrations), developing a real-time surveillance system that exploits the rapid time sampling 424 

(3-30 ms), measuring very fast displacements, and testing new outdoor applications (e.g. volcanoes, civil 425 

infrastructure, rocks, snow or vegetation). Finally, the fast pace of technological developments in RFID should lead to 426 

considerable improvements to the technique in the near future. 427 
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