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Introduction

In France, 15% of the railway traffic is made with an autonomous train. The majority of these trains use a diesel engine. The electric power architecture of this kind of train is composed of a diesel generator which provides, through an electrical alternator, the traction power to the electric motor(s) and the auxiliaries (see Fig. 1).

Fig. 1. Architecture of the diesel-electric train However, the increasing traffic in railway, the new standard goals and the growing concerns of environmental issues bring new ideas to reduce the consumption and pollution of this kind of train. One of the best solutions is to use a hybrid diesel power supply [START_REF] Chan | The state of art of electric, hybrid and fuel cell vehicles[END_REF]. The architecture of such a hybrid train is adapted from the original architecture: storage devices are added and connected, through a static converter, to the DC bus (see Fig. 2). Adding energy storage systems (ESS) allows for example: to save the braking energy at each braking phase, to use more often the diesel motor at its best operating point (the storage elements are used to adjust to the power demand), to start in electric mode in railway station (less noises and air pollution) or sometimes to provide energy traction in backup mode [START_REF] Thiounn | Evaluation of the hybrid locomotive "Plathee" -A Platform for Energy Efficiency and Environmentally Friendly Hybrid Trains[END_REF]. Thus, the purpose of the energy management system is to define at each time step the reference power of each source. The number of energy storage elements depends on the energy used during typical trips (railway mission, see Fig. 3). However, the embedded ESS increases also the mass and the volume of the global system which is limited, so, an optimum must be found [START_REF] Letrouvé | Different hybridization rate of a diesel-electric locomotive[END_REF]. In this context, the design method needs to integrate the cycle (railway mission), the energy management system and the physical characteristics of each power source. In the paper, the second section introduces the design methods. The third section deals with the modeling of embedded multi-sources. The fourth section presents the adaptation of this modeling to an optimization oriented problem. Finally, a study case with results is presented.

Design approaches

Sizing approaches

The design of a hybrid train needs the knowledge of typical trips. Such a railway mission is defined by the power, for each time step, requested by the loads: traction motor and auxiliaries systems (as a cooling system, compressor …) in order to go from one railway station to the other (see Fig. 3). For instance, the railway mission in Fig. 3 last 920s with two stops at a train station.

Knowing the mission let two possible sizing methods. Firstly, it is possible to consider only the more restrictive points: the maximum power demanded by the mission or its average power (in this last case, the standard power of the diesel motor is set to this value and the storage systems are sized to complement the demand of power). With this method, the modeling of the system demands only global variables. The second method consists in taking into account not only extremes points but the whole cycle. The size of the model is really dependent on the chosen method. Indeed, in the first case, only a few operating points of the mission are selected. However, for the second method, since the whole cycle is taken into account, it is necessary to work with time variables (vector variables). Thus, the modeling is different as the size of the model. In the paper, the second method is used.

Simultaneous sizing and energy management method

The electrical motor of the conventional diesel-electric train has only one power source: the diesel generator. Thus, the energy management is obvious. However, in the case of the hybrid train, the power provided to the traction system is composed of several sources (diesel generator and one or multiple energy storage systems). So, the energy management is no longer a trivial problem. It is possible to separate the energy management from the sizing problem. There, the energy management is applied after the design of the hybrid train. In this case, only the global variables resulting from the sizing are interesting (see Fig. 4). Fig. 4. First method to find the design and the energetic management However, this method is less performing since the energy management and the sizing have a strong interaction with each other [START_REF] Bossi | Optimal power flow with storage in DC electrified railways[END_REF]. So, another method is applied in the paper. In this case, the energy management and the sizing are considered simultaneously using an integrated optimal design approach. To do so, vector variables are considered and the optimization problem is to find simultaneously an optimal profile for the energy management of the source and also the sizing of the hybrid train (see Fig. 5). 

Considered study case

The hybrid train is composed of a diesel motor and storage systems (ESS). The chosen ESS is composed of batteries and supercapacitors. These two technologies can be considered complementary since the supercapacitors have a high power density whereas the batteries have a high energy density. Using a combination of them allows to supply the power at each time step of the mission with better performances. The diesel motor, the batteries, and the supercapacitors are connected to the DC bus through static converters, and then the DC bus is connected to the electric motor (see Fig. 2). The paper problematic is to find how each energy source answers to the demand for power on the DC bus. To do so, it is necessary to determine the sizing of the energy sources (to know the available power) but also their energy management.

Modeling

Generalities

The objective is to determine the pre-sizing of the energy sources. This system is composed of several variables and the issue is to estimate the solution space that respects the numerous constraints. Therefore, the chosen model formulation is simple. Once the solutions space is determined, it will be possible to use a more complex representation of the energy sources to refine the sizing. Thus, the hybrid train is represented with a power flow model. Such modeling is well adapted for pre-sizing. The considered limitations will be only on power and energy and not on current or voltage. The power of every source is considered as the inputs of the global model. Moreover, the energy of the different sources is computed with the Crank-Nicholson integration method (1). The convention of sign chosen is a positive power when this power is provided to the traction system and negative when it is stored in the storage systems (generator convention).

𝐸 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑡 + 𝑑𝑡) = 𝐸 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑡) -𝑑𝑡 * [𝑃 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑡 + 𝑑𝑡) + 𝑃 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑡)]/2 (1) 
Where Esource the energy of the source (J), Psource its power (W), t the time (s) and dt the time step (s). These vector variables allow to determine the size of the energy sources but also their management. The purpose is to find for each time step (dt) the value of the power and so the energy of each source.

Storage systems

Once the total cycle of each storage source is calculated, it is possible to compute the number of storage elements nbstock (2):

𝑛𝑏 𝑠𝑡𝑜𝑐𝑘 = max[(max[𝐸 𝑠𝑡𝑜𝑐𝑘 (𝑡)] -min[𝐸 𝑠𝑡𝑜𝑐𝑘 (𝑡)])/𝐸 𝑠𝑡𝑜𝑐𝑘,𝑐𝑒𝑙𝑙 , max[|𝑃 𝑠𝑡𝑜𝑐𝑘 (𝑡)|] /𝑃 𝑠𝑡𝑜𝑐𝑘,𝑐𝑒𝑙𝑙 ] (2)
Where Estock,cell and Pstock,cell are respectively the specific energy (J) and power (W) of one cell of the storage system. Estock(t) and Pstock(t) are respectively the energy (J) and power (W) of the storage system at the instant "t". The specific power can be the specific charging or discharging power according to the most restrictive case.

Once the numbers of cells are known (nbbt and nbsc for the batteries and the supercapacitors respectively), it is possible to compute the cost (3), the volume (4) and the mass (5) of these systems:

𝐶𝑜𝑠𝑡 𝑠𝑡𝑜𝑐𝑘 = 𝑛𝑏 𝑠𝑡𝑜𝑐𝑘 * 𝐶𝑜𝑠𝑡 𝑠𝑡𝑜𝑐𝑘,𝑐𝑒𝑙𝑙 (3) 
𝑉𝑜𝑙 𝑠𝑡𝑜𝑐𝑘 = 𝑛𝑏 𝑠𝑡𝑜𝑐𝑘 * 𝑉𝑜𝑙 𝑠𝑡𝑜𝑐𝑘,𝑐𝑒𝑙𝑙 (4) 
𝑀𝑎𝑠𝑠 𝑠𝑡𝑜𝑐𝑘 = 𝑛𝑏 𝑠𝑡𝑜𝑐𝑘 * 𝑀𝑎𝑠𝑠 𝑠𝑡𝑜𝑐𝑘,𝑐𝑒𝑙𝑙 (5) 
Where Coststock,cell (k€/cell), Volstock,cell (m 3 /cell) and Massstock,cell (kg/cell) are respectively the specific cost, volume, and mass of one cell of the storage system. The supercapacitors are assumed to be able to do millions of cycles, so this storage system is bought only once in the lifetime of the train. Contrary to them, the batteries are more damaging systems in term of cycling but also in term of calendar aging. So, in the paper, their aging is considered. There are a lot of model of batteries in the literature ( [START_REF] Trippe | Charging Optimization of Battery Electric Vehicles including Cycle Battery Aging[END_REF] or [START_REF] Valentina | Battery Aging Estimation for Eco-Driving Strategy and Electric Vehicles Sustainability[END_REF]). The model from [START_REF] Serrao | An Aging Model of Ni-MH Batteries for Hybrid Electric Vehicles[END_REF] is applied since it deals with the kind of battery chosen for this study case. The computation of the cycles of the batteries is made by using a "rainflow" algorithm [START_REF] Nieslony | Rainflow Counting Algorithm[END_REF]. This algorithm identifies the cycles and their depth of discharge. Then the aging model uses this information to quantify, according to the capacity of the batteries, the damages suffered by the storage system during the railway mission (in terms of calendar and cycle aging). These damages are called "consumed life" (cf. Fig. 6). Once the life of the batteries is totally consumed, it means that it is necessary to buy again this storage system. So, it is possible to identify how many years the batteries can be used on this kind of mission. Since the study of the train is made on 30 years, it is possible to know how many times the batteries will be changed during these 30 years. To conclude, the model of the storage system is linear for the most part (computation of investment cost, volume and mass) but the re-buying cost of damaged batteries is estimated with non-linear functions.

Diesel generator

The fuel consumption is calculated from the power and energy profile of the diesel generator. To do so, it is necessary to know the standard power of the diesel generator and to have the corresponding consumption cartography. In the paper, a normalized cartography is used. According to the standard power and the power profile of the diesel generator, using this normalized cartography, the fuel consumption is calculated at each time step. The sum of the fuel consumption at each time step gives the total consumed energy amount and thus, the costs are deducted. According to linear functions, the standard power of the diesel generator can give the investment cost, volume and mass of this technology. So, the diesel motor is modeled using linear equations but the fuel consumption is computed using a non-linear function (polynomial of five order).

Energy management

Variables type and time consideration

A full operating cycle is considered. Thus, there are two types of variables which compose the model:

 scalar variables (e. g. mass, volume, cost)  vector variables (e. g. the power of the diesel engine which is a time-dependent variable) These last variables can introduce a problem in term of size of an optimization model. Indeed, we have three sources so, three vector variables: the power of the batteries (PBT), the power of the supercapacitors (PSC) and the power of the diesel generator (PDG). They have to answer the demand of the railway mission (Pmission) for each time step [START_REF] Valentina | Battery Aging Estimation for Eco-Driving Strategy and Electric Vehicles Sustainability[END_REF]:

𝑃 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝑡) = 𝑃 𝐷𝐺 (𝑡) + 𝑃 𝑆𝐶 (𝑡) + 𝑃 𝐵𝑇 (𝑡) (6) 
So, the size of these vector variables is directly linked to the length of the mission. The longer the mission lasts, the greater they are. For example, a mission of ns time samples implies to have three vector variables with a size of ns: PBT [ns], PSC [ns] and PDG [ns]. The purpose of the energy management is to find how each source will answer to the railway demand. Equation [START_REF] Valentina | Battery Aging Estimation for Eco-Driving Strategy and Electric Vehicles Sustainability[END_REF] has to be true for each time step which implies for an optimization oriented model, numerous equality constraints. This has a huge impact on the optimization convergence but also on the computation time. In the following section, different methods of energy management are introduced. Then, some energy management methods are chosen in order to reduce the number of these time-dependent variables.

State of the art of energy management methods

There are several methods of optimal energy management. These methods have common features such as a criterion to minimize (or maximize) and the possibility to add constraints (e.g. constraints due to the characteristics of the energy sources or linked to the global system). The first step using a method of optimal energy management is to choose the criterion and to formulate the problem to take into account the possible constraints. For example, in the paper, the criterion is the minimization of the fuel consumption.

Different methods of energy management are possible such as:

-frequency management [START_REF] Akli | Energy management and sizing of a hybrid locomotive[END_REF],

-rule-based methods [START_REF] Li | Development of integrated rule-based control and equivalent consumption minimization strategy for HEV energy management[END_REF], -Pontryagin's minimum principle [START_REF] Pontryagin | Mathematical Theory of Optimal Processes[END_REF],

-linear quadratic [START_REF] Lancaster | Algebraic Riccati Equations[END_REF], -dynamic programming [START_REF] Bertsekas | Dynamic Programming and Optimal Contol: 4th edition[END_REF].

The frequency management allows to separate the power of a cycle according to its dynamic (high-frequency power and low-frequency power). So, it is well-adapted to a multi-sources system with energy sources of complementary energy and power density. The rule-based method consists in a series of order one rules evaluations. According to the result of these tests, some decisions are made (e.g. operating with only the diesel generator, using two sources ...). This method demands a good knowledge of the characteristics of the sources (especially their best operating point). Other methods such as Pontryagin or linear-quadratic are more mathematical. The problem is formulated with mathematical functions (e. g. Hamiltonian) which simplify the problem formulation. So, it is easier to solve the system. Finally, dynamic programming uses the mesh of the state variables to evaluate all the possible paths and then the algorithm chooses the one with the least cost. In the paper, the frequency management has been chosen to separate the power according to the dynamic of the energy sources. A dynamic programming algorithm is also used.

Frequency management

The hybrid train is composed of two different storage sources: batteries and supercapacitors which have different dynamics. A frequency management [START_REF] Akli | Energy management and sizing of a hybrid locomotive[END_REF] is used. The cycle is filtered by a first order low-pass filter which split the railway mission power into two powers which represent two different dynamics (see Fig. 7). With their high power density, the supercapacitors suit more to provide the high-frequency power whereas with their high energy density, the batteries, helped by the diesel generator, provide the low-frequency power (see Fig. 7). The first advantage of this method is to ensure that the sources operate at their best operating point. The second advantage is that the number of vector variables is considerably reduced. Indeed, with such an approach, only the power of the diesel generator is considered since the power of the storage systems are determined according to the low-pass filter. So, the two other vector variables are replaced by one scalar variable which is the frequency of the first order low-pass filter.

In this way, two methods are studied. Firstly, the power of the diesel motor is determined by the optimization algorithm (model 1). Then, it is possible to deduce the power provided by the batteries and their energy. A second model with two energy management methods is studying. In this case, the frequency management is coupled with a dynamic programming method to determine the behavior of the diesel generator and the batteries (model 2). This second energy management method is presented in the following part. In the paper, the two models are compared.

Dynamic programming

Method of dynamic programming

Dynamic programming is a well-known method for energetic management used in several different applications such as smart building [START_REF] Favre | Etude de stratégies de gestion énergétiques des bâtiments par l'application de la programmation dynamique[END_REF], transportation [START_REF] Noda | Methodology to apply dynamic programming to the energy-efficient driving technique of lithium-ion battery trains[END_REF], microgrid [START_REF] Haessig | Dimensionnement et gestion d'un stockage d'énergie pour l'atténuation des incertitudes de production éolienne[END_REF]… This method used the Bellman's optimal principle which shows that if a path is optimal on a small time interval, then, it is a part of an optimal path on a bigger time interval [START_REF] Bertsekas | Dynamic Programming and Optimal Contol: 4th edition[END_REF].

The dynamic programming algorithm meshes a chosen variable named state variable according to the time (in the paper it is the energy stored in the batteries). Thus, the 2D-space [time; state variable] is sampled according to its two dimensions (see Fig. 8):

-Δk for the time step -ΔEBT for the batteries energy step So, the "time-state" variable frame is cut off in several small rectangles. For each time step, for the duration of the railway mission (see Fig. 3), there are several possible values for the state of energy stored in the batteries (see Fig. 10). Thus, it is possible to draw several paths of EBT (see Fig. 12).

However, the size of a mesh is limited by the characteristics of the batteries pack. Indeed, to go from a state to another, the generated or stored power has to be lower than the maximum discharging and charging power (see Fig. 9). So, the size of a mesh has to be two, three … times smaller than this maximum (for example, see in Fig. 10, the possible choices in the case of a mesh twice smaller than these maximum limits). A thinner mesh should give better results (more possible paths) but costs higher in terms of computation time, so, a compromise has to be carried out. 

). So, the three paths became 3*3 = 9 paths and recursively, the number of possibilities increase. However, some paths are suppressed if the limits of the domain are reached. Indeed, the energy stored in the batteries is limited by a maximum capacity and a minimum capacity (physical characteristics, see A in Fig. 11). Moreover, the power characteristics of the storage system give constraints in terms of convergence and divergence. Indeed, the energy state cannot diverge too fast from the initial point because the power is limited by the maximum charging and discharging power (see B in Fig. 11). Likewise, it is not possible to have a too fast convergence to the final point (see C in Fig. 11). These limitations give the operating area of the meshing (see Fig. 11). At each time step, the energy management has to determine the quantity of energy stored in the batteries. Several choices are possible, i.e. paths exist (see Fig 12). The decision is made recursively from a chosen final state of charge. At each time step, the choice depends on the cost variable. In the paper, the cost variable is the fuel consumption. In the dynamic programming process, the cost at a specific time step is the sum of all the cost at the previous time steps plus the transition cost between the two last steps. So, at the initial time step, the total cost of every possible path is known. Thus, it is possible to choose the less expensive path which will determine the energy management to apply to the batteries and then, to deduce the power provided by the diesel motor. 

Second model with dynamic programming

Contrary to the previous model (see 4.3), the power of the diesel motor is not determined by the optimization algorithm but by an optimal energy management method (dynamic programming). The frequency management is still used to split the power between the supercapacitors and the {batteries; diesel motor} (see Fig 13). So, the dynamic programming algorithm is used on the low-frequency power. 

Optimization oriented model

Common features of the two models

Inputs variables: parameters

The model inputs are a railway mission which corresponds to the power demanded by the traction to achieve the route from one railway station to the next. This railway mission is a fixed vector input (a parameter) since it cannot be changed. To determine the sizing of the model, the characteristics of each source (cost, volume, mass of one cell, normalized function of the cartography, ..) are inputs of the optimization oriented model. These characteristics are also fixed parameters for the optimization process.

Output variables with constraints

Several model outputs variables are constrained. Indeed, the study case is the hybrid diesel train with an embedded system. So, the mass and volume must be limited to a maximum value. Since there are three sources, the constraints of mass and volume deal with the sum of the volume and mass of the different sources (see Table I). There are also fixed constrained on the state of charge of the energy storage systems. It is assumed, in this case, that the embedded storage systems are fully charged at the beginning of the mission and they have to finish the mission at the same state of charge. So, the constraint is about the difference between the initial and the final states of charge, which has to be equal to 0. To relax this condition, the equality constraint is changed into an interval constraint (see Table II). The other output variables (e.g. the number of storage elements), are free to change during the optimization process and are computed for analysis aspects.

Table I: Maximum constraints on the outputs

Outputs Maximum constraints Total mass of the hybrid train [T] ≤23.5 Total volume of the hybrid train [m3] ≤52

Table II : Fixed constraints on the outputs Output Fixed constraint Difference of state of charge [-0.01; 0.01] between the initial and final state

Objective function

The objective function is the ownership cost of the system. It is composed of: the investment cost, the discounted cost due to the consumption of fuel for all the missions made in one year and the discounted cost due to the replacement of the batteries. The purpose of the optimization process is to minimize that cost.

Specific features of each model

Model with only frequency management

The optimization oriented model has two inputs which are free to evolve during the optimization process (see Fig. 14). These two inputs variables are a vector input which is the power of the diesel generator at each time step and a scalar input which is the frequency of the low-pass filter for the frequency management. These inputs are constrained between two boundaries (see Table III). The frequency of the first order low-pass filter could be a time vector. However, in the case of this application, we have made a study which shows that the improvement of the objective function is small whereas having another time vector as optimization variable costs a lot in terms of computation time. So, we choose a scalar frequency management. 

Model with frequency management and dynamic programming

For this model, there are three inputs variables: a scalar input which is the standard power of the diesel generator, a scalar input which is the frequency of the low-pass filter for the frequency management and a scalar input which is the number of cells of the storage system (see Fig. 15). These inputs are constrained between two boundaries (see Table IV). 

Railway study case application

Application to a real case

The method presented in section 2 and the models developed in sections 3, 4 and 5 are now applied to a real study case: a diesel-electric train where embedded batteries and supercapacitors are added. The chosen mission is a journey with several local stops (see Fig. 3). This railway mission comes from real data measured on a conventional diesel-electric train. The issue is to sizing a hybrid train which will accomplish the same route. The railway mission last 920s with a time step of 1s. It means that the size of the vector variables will be of 920 points and the jacobian will be a matrix greater than (920x30) (i.e. 27600 components).

The main characteristics of the two optimization oriented models previously presented are: -The first one is composed of one energy management method (see Fig. 7) and, so, it has two inputs variables (see Fig. 14): the power of the diesel generator (vector variable) and the frequency of the low-pass filter (scalar variable). -The second is composed of two energy management methods (see Fig. 13) and, so, it has three inputs variables (see Fig. 15): the standard power of the diesel generator (scalar variable), the frequency of the low-pass filter (scalar variable) and the number of batteries cells (scalar variable).

There are also some parameters (the railway mission and the characteristics of the sources). Finally, the optimization oriented model has several outputs: the number of storage elements (scalar variable and free), the standard power of the diesel generator (scalar variable and free), the total mass and volume of the hybrid train (scalar variables constrained by a maximum value) and the total discounted cost (scalar variable which is the objective function). Now we will compare these two models.

Optimization algorithm

To perform the optimization, the Sequential Quadratic Programming (SQP) algorithm is chosen. This determinist algorithm has a fast convergence (if it is correctly initialized) and it is able to handle numerous constraints which are really adapted to our problem. Indeed, the vector input variable represents a huge number of constraints. Moreover, the size of this variable is directly linked to the size of the mission. So, the SQP algorithm is well adapted to this problem and its size in term of constraints. However, the main drawback of this algorithm is the necessity to work with the model gradients to find the next iteration. In this case, it is essential to be able to compute the gradient of the optimization oriented model. In this way, CADES framework has been chosen [START_REF]Vesta Cades[END_REF]. It uses ADOL-C [START_REF]Adol-C -COIN-OR[END_REF], [START_REF]AD Tools for C/C++[END_REF] to make the automatic derivation of code [START_REF] Enciu | Automatic DIfferentiation for Sensitivity Calculation in Electromagnetism: Application for Optimization of a Linear Actuator[END_REF], [START_REF] Enciu | AD for Optimization in Electromagnetism Applied to Semi-Analytical Models Combinning Composed Functions[END_REF]. The SQP algorithm implemented in this framework is VF13 [22]. Some previous study has proved that the use of the exact jacobian instead of an approximation method such as the finite differences, improves the convergence of the SQP algorithm [START_REF] Delinchant | Manifold mapping optimization with or without true gradients[END_REF]. CADES framework has the main advantage to propose this automatic exact derivation of model(s) described by equations in C programming language. However, this automatic derivation takes time and demand a lot of hard disk memory (around 60Go for model 2) but, once the derivation tree is built, the jacobian will be stable for all operating points and, so, it will ensure a faster convergence.

Implementation of the model

Formalism and software tools

For the implementation, CADES framework was chosen. This framework proposes different languages to implement the model: sml (for simple analytical equations), C or java language (for model described by an algorithm). According to the specificities of the different languages, the optimization oriented model is split into several parts. The energy management (e.g. the frequency management and the dynamic programming) is implemented in C language since it requires algorithmic formulation whereas the sizing model of the different sources is implemented in sml language (see Fig. 16). Then, these models are translated into software component (named MUSE) which can be called in several environments (CADES, MATLAB, ...) for computation and also for optimization. For only computation aspect, the energy management should be implemented in a separate model (see Fig. 17). In this case, the sizing optimization model receives the selecting operating point vector (SOPV), from the energy management, as a vector parameter (see Fig. As presented in section 2, the paper aims is to take into account the mutual influence between the energy management and the sizing of the system by doing simultaneous optimization. So, it is necessary to keep the dynamic programming algorithm inside the sizing model (see Fig 18). In this case, the SOPV is an optimization variable for the sizing model. However, SQP algorithm demands the jacobian gradients. So, the dynamic programming should be derivable but it is no so. So, it is impossible to consider SOPV as an optimization variable. So, the paper proposes to keep the dynamic programming inside the model but to break the derivation chain at the input of this energy management method (see Fig 19). In such a way, the SOPV is seen by the optimization algorithm as a fixed variable even if the SOPV is changed at each iteration step. Indeed, at each iteration step, the number of batteries is changed and so the dynamic programming is computed for this new value. With this last chosen method, the global behavior of the derivation tree is modified. However, the impact of this break of the derivation chain is assumed to be small on the final derivative tendencies. The possible induced mistakes are assumed to be small enough to not disturb the convergence and the global optimization results, but this really allows to consider the interaction between the sizing and the energy management. Table V gives the jacobian computed by CADES for the objective function and two optimization variables (the number of batteries cells and the cut-off frequency of the first order low-pass filter) and the figures 20a and 20b the evolution of this objective function according to these two variables. The Table V proves that the global derivation tree is maintained between the optimization variables and the objective function. The graphs confirm the level of influence of each optimization variable on the objective. Even if the model is locally discontinuous, finite differences may be used for the global energy management to obtain this jacobian. However, according to the size of the inputs (some thousands of variables) and the size of the outputs (some hundreds of variables), the size of the jacobian can be great. Moreover, the choice of the derivation step for each input may be different, so this can induce a drastic increase of the computation time and possible divergence of the optimization algorithm.

Results of the study case

To find an optimal solution, the optimization process takes 1min on a PC with a processor Intel(R) Core(TM) i-3770 CPU @3.40GHz and a RAM of 16Go 64bit for 4 iterations of the first model and 10min for 4 iterations for the second model. The hybrid train has the specifications presented in Table VI. The optimization process gives both the features of the hybrid train and the energy management of the different sources (see Fig. 21 and Fig. 22). According to the management chosen, the sizing of the model is really different. When the optimization algorithm chooses the power produced by the diesel motor, the batteries provide the complement and the use of supercapacitors is negligible. Whereas, when a dynamic programming is added, the supercapacitors are more used than the batteries. This difference of energy management has a strong impact on the global cost. Indeed, since the batteries are used at 80% of deep of discharge for the first model, the batteries pack has to be frequently recharged whereas, the second model proposes a smaller deep of discharge (30%) which preserves them. To conclude, the model with dynamic programming method offers a better choice in terms of economic cost (the total cost and fuel consumption are lowest). However, the optimization lasts longer and demand much more computing memory. This model presents some limitations for a railway mission which would last longer than an hour (with the same time step of 1s). 

Conclusion and perspectives

The paper has presented a design method based on the sizing by optimization on an operating cycle to take into account an entire mission. Moreover, since the sizing and the energy management have a strong influence on each other, the optimization process takes into account both of these aspects. The application is a multi-source embedded system composed of storage devices and a diesel generator. The variables of the model are scalar but also vectorial with constraints. There are also outputs constraints and the objective of the optimization is the minimization of the global cost (investment and exploitation). These method and modeling have been applied to a real railway application of SNCF. The model of the hybrid diesel-electric train has been implemented in CADES framework and the optimization has been performed with SQP algorithm.

In the paper, the dynamic programming energy management method has been used. However, this method has been implemented in a derivable model even if it is not derivable. So, the derivation chain has been broken which can create computing errors. At the present time, it is assumed that the impact on the rest of the derivative is small. In future works, it would be interesting to verify this by comparing the automatically generated derivation with a derivation by finite difference. However, finite derivatives are not easy to implement since the model is composed of thousands of variables. Moreover, it might be possible that each variable has a specific derivation step which implies to do a sensitivity analysis and so induces high computation cost. So, a future interesting work would be to compute the derivation by finite difference and to compare it with the proposed derivation to ensure that adding the dynamic programming method inside the model do not generate problematic errors. It will allow to verify the derivation chain break hypothesis made in the paper and maybe to improve the optimization convergence and the solution.

Finally, in the case of the model 2 with dynamic programming, the automatic derivation use a lot of hard disk memory. It prevents to use a thinner mesh of the state variable and so to improve the energy management. So, another future interesting work would be to use a method of automatic derivation which demands less hard disk memory for the derivation tree.
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Table III :

 III Boundaries of the inputs

	Inputs	Boundaries
	Power of the diesel generator [kW]	[0; 1800] (apply to each time step)
	Frequency of the low-pass filter [Hz]	[0; 2]

Table IV :

 IV Boundaries of the inputs

	Inputs	Boundaries
	Standard power of the diesel generator [kW]	[0; 1800]
	Frequency of the low-pass filter [Hz]	[0; 2]
	Number of batteries cells	[450; 2100]

Table V .

 V Example

	of the jacobian		
	Cut-off frequency	Number of batteries cells
	Objective (total cost)	2.904*10 4	1.906*10 -1

Table VI .

 VI Sizing of the train after optimization

	Total cost [k€]	27 000	5 900
	Fuel consumption [L]	27	25
	Characteristic	Value model 1	Value model 2
	Frequency of the low-pass filter [Hz]	0.03	0.001
	Number of cells for supercapacitors	1 132	7 250
	Number of cells for batteries	3 633	484
	Standard power of the diesel generator [kW]	480	650
	Total volume of the energy sources [m 3 ]	22	40
	Total mass of the energy sources [T]	13	13
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