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An original approach of fuel cell diagnosis is presented. It is based on the solving of an inverse linear problem linking the magne tic 

field signature outside of the fuel cell to the current density distribution inside . The searched solution is a linear combination of 

conservative current distribution obtained by a set of electrokinetic problems solved by a finite face element method. As the problem is  

ill-posed, the solution is stabilized using a truncated singular value decomposition. The approach is validated to reconstruct a 3D 
current density distribution in a stack simulator and in a fuel cell stack operating in laboratory conditions. 

Index Terms— Fuel cell, non-invasive diagnosis, current density identification, magnetic measurements, inverse problem. 

I. INTRODUCTION

UEL cell stack is an electrochemical device which

produces electrical energy from a reaction of hydrogen and 

oxygen and is obtained by assembling elementary cells in 

series.Up to now, cost and durability of fuel cells represent the 

most significant challenges to achieve clean, reliable, and 

cost-effective systems, in particular for transport applications. 

Multiphysic phenomena in a fuel cell expose the different 

materials of the stack (membrane, electrodes, bipolar plate, 

etc.) to several constraints  on some parts of the stack. 

Repeated constraints lead inevitably to the degradation of fuel 

cell components. According to the material heterogeneity or 

simply operating conditions within the stack, the current 

density distribution became heterogeneous. The knowledge of 

local current density flowing within the system is fundamental 

to prevent components ageing. The total current produced by 

the stack is easy to measure by using an ammeter but getting 

the local one needs the use of some more sophisticated 

methods. As an example, an invasive S++® device can be used 

to direct measure the local current distribution in some part of 

the stack section but this invasive system presents the 

drawback to disturb the stack operation. 

To avoid interferences with the stack operation, non-

invasive methods based on the external magnetic field 

measurements has been proposed [1]-[2]. This original 

technique uses magnetic sensors placed around the stack to 

measure the magnetic signature of the current distribution 

inside it. In [1], the magnetic field cartography around a stack 

is obtained by using a 3-axis magnetic sensor mounted on a 

moving robotic arm. One hundred points of measurement were 

needed to get a good resolution for the current cartography. 

The important drawback of such a tool is the time of the 

acquisition and the calculation which is about 15 minutes. In 

such a time, the internal state of the stack can be modified, so 

the current density estimation can be wrong. A more recent 

work is based on the solving of an optimization problem [3]. It 

proposes to minimize an objective function defined as the 

difference between the real magnetic measurements and those 

obtained by random combinations of current densities. The 

magnetic field is obtained from 2000 configurations realized 

on 36 magnetic three-axis sensors. The model which is 

computationally expensive has been validated on a device 

containing only one cell but not on a whole stack. 

On our previous works [4]-[5], an alternative approach has 

been proposed. It is based on an original reconstruction of a 

current density basis by using Fourier series coupled to a finite 

volume modelling of a stack. A sensors array configuration 

which is only sensitive to the current’s inhomogeneity due to 

faults occurring inside the stack has also been proposed. It was 

demonstrated that a set of only 30 external and fixed magnetic 

measurements around a stack could be used to build a 2D 

current density distribution in a short time (i.e 1 min). 

However, the approach has been developed only for the 

diagnosis of global faults which affects identically all the cells 

of the stack. This is why the denomination of 2D fault 

identification has been adopted. In this paper, we go a step 

forward by adapted this approach to more localised faults 

involving only few adjacent cells in a stack and by proposing 

an original 3D faults identification method. 

II. 3D MAGNETIC TOMOGRAPHY APPROACH

A. Forward modelling

Changes of the operating conditions (stoichiometry, relative

humidity) and apparition of local faults (hot spots, materials 

degradation) modify the current density distribution inside a 

fuel cell stack [4]. In this section, a model is proposed to 

simulate the current and streamline distributions taking into 

account these effects by considering a local change of the 

conductivity in the stack. 

The forward modelling is divided in two steps. The first 

step consists in computing the current density knowing the 

electric conductivity and the global current flowing into the 

stack (solving of an electrokinetic problem). The second step 

is to compute the magnetic field outside (i.e in the air region) 

from the current density distribution (solving of a 

magnetostatic problem). 

The electrokinetic problem is solved by the Finite Element 

Method (FEM). The geometry is discretized and the 

conservative current flux vector quantity j is interpolated by 

face shape functions (Whitney 2-form). This choice of shape 
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function is justified by the fact that they naturally ensure the 

conservation of the flux of current density between two 

adjacent elements. Two equations have to be solved 

simultaneously: 

( ) 0div j  (1) 

V

 

j
grad (2) 

where V is the electric potential and σ the conductivity. A 

Galerkin’s projection of the first equation on face shape 

functions ω leads to a linear matrix system: 
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and I is a vector containing the flux flowing in the faces of the 

mesh. It has been demonstrated in [6] that (3) can be 

interpreted as the matrix representation of an equivalent 

electric circuit composed in this case of a network of 

resistances. In this circuit, each face of the mesh is associated 

to a resistance and each element of the mesh to a circuit node. 

It remains to ensure the current solenoidality of j i.e the 

equation (1). It can be achieved by finding a set of equivalent 

independent loops in the circuit in order to change the 

problem: 

[ ] [ ] [ ] [ ]     T T

loop S
M R M I M U U  (6) 

where [M] is the branch-fundamental independent loop 

incidence matrix (where the value of each element can be -1, 0 

or 1), Us is the vector of source voltages (often equal to 0) and 

Iloop the current flowing into independent loops. The matrix 

system is solved by a linear solver and face currents are 

obtained by applying the reverse transform process : 

[ ] T

loop
I M I  (7) 

This formulation ensures the free-divergence of the current 

which is fundamental in order to get an accurate computation 

of the external magnetic field like in [4]. Moreover, this 

approach can deal with any discretized element-type and is 

easy and natural to couple with external electric circuit. It is 

why FEM has been preferred to finite volume method initially 

proposed in [4]. 

Once FEM electrokinetic problem has been solved and 

current distribution density has been computed, a 

magnetostatic problem has to be solved in order to compute 

the magnetic field at any point around the stack. It can be 

efficiently achieved by numerically integrating the Biot-Savart 

law because of the absence of ferromagnetic material: 
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where B is the magnetic induction at position r, j the current 

density at the integrating point rs, Ωs the stack domain and µ0 

the magnetic permeability of the vacuum. 

B. Inverse problem parametrization

1) Generalities

The problem being linear, the current density in the case of

a faulty operation mode is the sum of two modes: A common 

mode, which corresponds to a reference state of the stack, and 

a differential mode, which corresponds to the variation of the 

current density caused by a fault (Fig.1.). 

Fig. 1. Current mode decomposition [4]. Total curren t m ode ( a); co mm on 

current mode (b) and differential current mode (c). 

Both modes create an external field defined as the sum of: 

tot c d B B B   (9) 

where Btot is the magnetic induction created by the total mode, 

Bc the magnetic induction created by the common mode and 

ΔBd the magnetic induction created by the differential mode. 

We assume that the reference state is known because it 

corresponds to the healthy state (or a reference one) and it can 

be determined by an ammeter which measures the total current 

flowing into the stack. Bc can then be determined by 

modelling or better by measurement on the reference state. By 

subtracting it to the measurements, ΔBd can be estimated. The 

Biot-Savart law being linear, the numerical integration of (8) 

leads to the following matrix system: 

[ ]d d  B S j (10) 

where S is the discretized Biot-Savart operator and Δjd and 

ΔBd define the discretized differential current and differential 

magnetic field respectively. It remains to find adequate basis 

for both currents and magnetic measurements to efficiently 

parameterise the inverse problem. 

2) Choice of the current density basis

In a first step, the FEM problem is solved to determine the

common mode. An average electrical conductivity of 5x103 S 

m-1 is chosen for the active region [5]. The conductivity for

end plates is 5x107 S m-1, classically much higher than the

previous one. A reference value for current density jc is

computed considering a healthy stack. In order to compute Δjdi

the element i of Δjd, the stack domain is divided into 555 

volume parts. A zero electric conductivity is set to one of the

125 volumes, all the other ones being set to the normal 

conductivity. The problem is solved thanks to the FEM

electrokinetic model and the current density obtained is

subtracted to jc in order to get a Δjdi current distribution. ΔBd

is computed using the Biot-Savart law (8). The process is

repeated 125 times, setting successively a null conductivity to

each volume in order to get the whole basis. Another current

basis has been investigated in [7] but according to our

experience, this current basis seems more efficient.

3) Choice of the magnetic field basis

In previous works [4], the sensors axes are oriented in order

to measure only the differential magnetic field (radial 

+  A 
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direction) and to be insensitive to the common mode. In this 

previous study, only one sensors array of 30 magnetic sensors 

was used and was located in the middle of the stack (middle 

sensor array Fig. 2). In this study and in order to get more 

information about the stack state along its axis, the sensor 

array has been translated (Fig. 2) and the magnetic field has 

been measured on three different planes (middle of the stack, 

middle left and middle right). Two components are measured, 

the radial (Br) one and the axial one (Ba). 

 
Fig. 2: Sensors arrays locations around a fuel cell stack 

 

Two examples of faults among 125 are presented in Fig. 3a. 

The corresponding magnetic signatures to both previous 

current density vectors are also presented ( Fig. 3b). 

 

  

1dj  
2dj  

(a) 

  
1dB  

2dB  

(b) 
Fig. 3: Example of two vectors used to build the current and magnetic basis: 
Current vectors (a) and related magnetic field magnitude vectors (b) 

 

4) Inverse problem resolution 

The inverse problem is ill-posed meaning that the solution 

is not unique and very sensitive to the magnetic noise. In order 

to regularize the solution, a classical truncated pseudo-inverse 

approach is used [8]. A Singular Value Decomposition (SVD) 

of [S] is made and its spectrum is truncated to get [S trunc] 

where small singular values which amplify the measurement 

noise have been suppressed. The solution is obtained with: 
#[ ]d trunc d  j S B     (11) 

where [S trunc]# is the pseudo inverse of [S trunc]. 

As the approach is validated with a stack simulator and a 

Proton Exchange Membrane Fuel Cell stack with different 

sections and length, the number of sensors is different for each  

device (30 and 24). The system of equations is overdetermined 

and contains 180 (real stack) or 144 (stack simulator) 

equations (number of sensors x 3 positions x 2 components of 

the magnetic field) for 125 unknowns. 

III. EXPERIMENTAL RESULTS 

The developed approach has first been tested on a stack 

simulator in order to validate the methodology. Finally, the 

system has been deployed around a real fuel cell stack. 

A. Stack simulator results 

Two graphite blocks with a cut part (Fig. 4a and Fig. 4b) 

has been built in order to mimic a faulty stack with an 

important conductivity change (cuts of 24% and 3% of the 

volume respectively). The common mode is determined by 

measuring the field around the same graphite block but 

without the cut part. Each graphite block is caught between 

copper end plates and supplied by an external circuit. The 

stack simulator including the external magnetic field 

measurements system of 24 sensors is presented on Fig. 4. The 

sensors array is translated along the stack simulator length to 

perform measurements on the three locations (see Fig. 2). In 

order to maximize the signal to noise ratio, sensors are located 

as close as possible to the stack simulator (35 mm). 

  
(a) (b) 

  
(c) (d) 

Fig.4: Stack simulator experiment : Graphite block with 24% cut part (a), 
Graphite block with 3% cut part (b); Sensors array (c) and whole device wit h 
sensors array(d) 

 

The magnetic field is  recorded at I = 25 A and the common 

mode measurement is subtracted to get only the differential 
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one. The inverse problem is solved and the current density 

distribution is obtained for both configurations (Fig. 5b and 

Fig. 5d). The difference ε between the simulated current 

density distributions target (Fig. 5a and Fig. 5c) and the 

identified one is calculated with (12) and it is about 25% and 

35%. 

T
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max max
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where jtar is the simulated current density distribution, jidn the 

identified current density distribution and jtarmax is the 

maximal current target value. 

In the both cases, the current reconstruction shows a low 

current density close to the faults location. 

  
(a) (b) 

  
(c) (d) 

Fig.5: Results obtained with the stack simulator. Simulated cur r ent den sity  
24% cut part (a); identified one from external magnetic field 24% cut part (b); 
Simulated current density 3% cut part (c) and identified o n e f rom ex ternal 

magnetic field 3% cut part (d). 

B. Fuel cell stack result 

A GENEPAC fuel cell stack with 100 cells [5] (Fig. 6.a) is 

used to validate methodology. To do this, five cells, shown on 

Fig. 6b, are voluntary damaged and assembled on the stack. 

 
 

 
(a) (b) 

Fig.6: Real stack experiment : GENEPAC Fuel Cell stack surrounded by a 
magnetic sensors array (a); Example of MEA with 20 % of  t he active ar ea 
inhibited using a resin (b). 

The identified differential current mode is  shown in Fig. 7. 

As expected, the identified current density distribution 

becomes heterogeneous in the plane containing the fault and it 

is highly modified to force the current to pass through the 

healthy part of the cells because of the higher resistance 

caused by an inactive area (Fig. 6b). The measurements 

process is made in less than 1 minute and the computation 

time is very low (<1s), the 125 FEM problems being solved 

only one time before inverse resolution. 

 
Fig.7: Identified current density difference from the external magnetic  f ie ld.  
The magnetic measurements have been made at I = 100A for reference 

conditions to get the common mode.   

IV. CONCLUSION 

A magnetic tomography approach to locate different kinds 

of faults on a fuel cell was presented. The tool makes possible 

the identification of the 3D current distributions in the fuel cell 

independently of the size of the fault within the limit of the 

precision of the sensors. The validation has been carried out 

on both a simulator and a real fuel cell stack. 
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