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This article deals with the use of the Volume Integral Method (VIM) to compute the magnetic anomaly created by a non-conductive 
ferromagnetic thin shell placed in a static inductor field. An original facet integral formulation considering the magnetic induction as 
unknowns is presented. The use of thin shell element assumption leads to a surface mesh decreasing highly the number of elements so 
the computation cost. The method is very performant in terms of speed and accuracy.  

Index Terms— Magnetostatic, volume integral method, thin shell element, shielding modeling. 

I. INTRODUCTION

An alternative to the finite element method is to solve a

magnetostatic problem with integral methods. The advantage is 
that it does not require the mesh of the air region reducing the 
number of degrees of freedom and improving the accuracy 
when the field in air has to be computed. The well-known 
drawback is the parabolic increase of the integration time but 
today, the emergence of matrix compression techniques has 
made this kind of methods very competitive. 

An attractive field of application for integral formulations is 
the modeling of shieldings. Because these devices present a 
high ratio between air volume and active region volume, 
integral approaches are particularly relevant in such a context. 
Another very suitable application can be the calculation of a 
static magnetic anomaly created by navy ships. 

A magnetostatic integral method based on first order facet 
elements interpolation of the magnetic flux density has already 
been proposed in [1]. A very similar formulation based on the 
edge interpolation of the magnetic vector potential can also be 
found in [2]. Unfortunately, both approaches have been 
developed for volume regions and cannot be simply applied to 
thin shell geometry because the thickness has to be meshed, 
leading to a huge number of elements.  

In this paper, we propose an original formulation which is 
very efficient for the solving of problems associated to thin 
regions. The use of the thin shell element assumption 
introduced in the VIM proposed in [1] leads only to a 2D 
discretization of the medium surface of the ferromagnetic 
region, decreasing dramatically the number of degrees of 
freedom and saving computational time. The accuracy of the 
method is demonstrated by comparing results obtained with an 
analytical solution. A more complex problem is also solved and 
it is shown that the formulation is well adapted to the use of 
matrix compression techniques. 

II. MAGNETOSTATIC INTEGRAL EQUATION

Let us consider a magnetic problem composed of a 
ferromagnetic region with a relative permeability µr and a static 
inductor magnetic field H0 (Fig.1). For such problem, it is 
classical to assume that the magnetic material is linear and 
isotropic. It will be the case in the following. However, the 

proposed method is enough general to be easily extended to 
nonlinear and anisotropic cases. In the magnetic domain, the 
total field can be decomposed as a sum of an inductor field H0 
and a reduced field Hred due to the magnetization M, which is 
the material’s reaction to H0. Hred derives from a scalar reduced 
potential φred.  

𝐇(𝐫) = 𝐇𝟎(r) + 𝐇𝐫𝐞𝐝(r) = 𝐇𝟎(r) − 𝛁φ୰ୣୢ(r) (1) 

Fig. 1. Domain under study with ferromagnetic region Ω and inductor field H0. 
As mentioned before, the ferromagnetic domain is associated 

to a linear behavior law. 
𝐌 = (µ୰ − 1)𝐇 = χ 𝐇 (2) 

The Helmholtz decomposition permits to write  φ୰ୣୢ as [3]: 

φ୰ୣୢ =
1

4π
න

𝐌. (𝐫 − 𝐫ᇱ)

|r − rᇱ|ଷ

 

Ω

 dΩ (3) 

Equations (1) and (2) combined to the integral expression of 
φ୰ୣୢ leads to the magnetostatic integral equation with the 
magnetization M as state variable:  

𝐌

χ 
+

1

4π
𝛁 න

𝐌. (𝐫 − 𝐫ᇱ)

|r − rᇱ|ଷ

Ω

 dΩ = 𝐇𝟎 (4) 

A point matching method or a Galerkin projection can be 
used to solve directly this equation with the M components as 
degrees of freedom [3]. In such an approach, 0-order shape 
functions for each component are classically used. This 
formulation is known as Magnetic Moment Method (MMM) 
[3]. The MMM is able to give accurate results for simple 
problems but is not general and can lead to inaccuracies in some 
configurations. Others authors have proposed to solve (4) using 
more sophisticated approaches based on others quantities 
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discretized on adequate functional spaces as unknowns. For 
instance, let us mention the scalar potential associated to nodal 
shape functions [4] or the magnetic field associated to edge 
shape functions [5].  

In previous papers, it has been proposed to solve (4) choosing 
B as unknown [1] or even the magnetic vector potential [2]. 
However, these formulations were limited to volume magnetic 
regions and their use in the context of magnetic shielding is not 
efficient in terms of computation time. In this following article, 
the application of the B-formulation to thin ferromagnetic 
sheets leading to surface meshes is presented. 

III. MAGNETOSTATIC INTEGRAL B-FORMULATION 

Let us consider the constitutive laws of the material with its 
reluctivity ν linking B to M. 

𝐇 =  ν 𝐁 
𝐌 = (ν − ν)𝐁 

(5) 
(6) 

According to (5) and (6) the integral equation (4) can be 
rewritten with B as unknown:  

ν 𝐁 +
1

4π
𝛁 න

(ν − ν)𝐁. (𝐫 − 𝐫′)

|r − rᇱ|ଷ

 

Ωౣ

 dΩ୫ = 𝐇𝟎 (7) 

This equation is solved with the unknown B interpolated by 
facet shape functions (Whitney 2-form) [1]. The advantage of 
using such an interpolation is to ensure the continuity of the 
normal component of the magnetic induction to the facet 
between two adjacent elements. 

When volume elements have a small thickness with respect 
to their other dimensions and are associated to a high 
permeability, the assumption of the thin element can be used. It 
considers that the magnetic induction is tangential to the sheet 
and uniform across its thickness "t" [6] (Fig. 2).  

 
Fig. 2.Figure showing the behavior of the magnetic induction for a thin element: 
the induction is constant across the thickness and tangential to the surface. 
 

Under this assumption, the magnetic flux density is chosen 
as a state variable and associated to degenerated facet functions 
on an equivalent surface mesh (often known as Raviart–
Thomas basis functions). The number of unknowns is then 
decreased, all the normal components along the thickness being 
suppressed. A first order interpolation is used: 

𝐁 =  𝒘

𝛷 

t 

 

ୀଵ

=  𝒘𝛷 



ୀଵ

 
(8) 

 

 
where Nf is the number of facets (i.e. edges of the surface 
mesh), 𝐰   the facet function pondering 𝛷  which is the total 
flux flowing through the facet. 

Besides, the following properties are verified: 

𝒘. 𝐧𝒇 = 𝑤 = ±
1

l
 

𝛁 . 𝒘 = ±
1

S

 

(9) 
 

 
(10) 

where l  is the length of the facet and S is the area of the 
element. The sign of (9) and (10) depends on the orientation of 
the facet “𝑓”. 

Let us notice that these facet functions lead to a linear 
interpolation of B on each element of the surface mesh (Fig. 3).  

 

 
Fig. 3. A representation of B by facet functions on a surface mesh. 

  
Equation (7) is discretized with (8) and a Galerkin projection 

using  𝒘′   (the same Raviart–Thomas function) is applied: 

 ቆන ν 𝒘ᇱ
  . 𝒘𝒇 𝑑Ω

 

Ω

ቇ 𝛷  

ே

ୀଵ

 

+ න 𝒘′  . 𝛁𝜑ௗ𝑑Ω

 

Ω

= න 𝒘′  . 𝑯𝟎𝑑Ω

 

Ω

 

(11) 

This can be written:  

where 𝚽𝒊𝒏 ∈ ℝ×ଵ is the internal flux flowing through the 
facet in the mesh, 𝐑 ∈ ℝ×, 𝑰 ∈ ℝ×ଵ and 𝑼𝟎 ∈ ℝ×ଵ. By 
applying the divergence theorem and properties (9) and (10), 
and by considering that fluxes flowing through the facet on the 
boundary of the domain are equal to zero, it comes: 

𝐼୧ = න 𝒘. 𝛁𝜑ௗ𝑑Ω

 

Ω

= 𝜑ௗభ
− 𝜑ௗమ

 (16) 
 

 
Fig. 4. Domain composed by 2 surface element “e1” and “e2” adjacent to a facet 
“𝑖” associated to the function 𝒘 . 𝐧

 is the normal vector to the facet. 
 

where 𝜑ௗభ
 and  𝜑ௗమ

 are the averaged reduced scalar 
potential on surface elements “e1” and “e2” adjacent to a facet 
“i”. Let us notice that equation (16) can be seen as a difference 
of averaged reduced scalar potential value between elements 
inside the domain sharing a given facet.  

Equation (12) can be interpreted as the matrix representation 
of an equivalent circuit composed, in this case, of a network of 
reluctances. In this circuit, each facet of the mesh is associated 
to a reluctance and each barycenter of the mesh elements to a 
circuit node. At this step, the vectors 𝛷  and 𝐼 are unknown. It 
is necessary to take into account the flux going from the shell 
to the air in order to complete the system. 

𝑹𝚽𝒊𝒏 
+ 𝑰 = 𝑼𝟎 

with: 

𝑅୧୨ =
1 

t 

න ν 𝒘. 𝒘 𝑑Ω

 

Ω

 

𝑈୧ = න 𝒘. 𝑯𝟎𝑑Ω

 

Ω

 

𝐼୧ = න 𝒘. 𝛁𝜑ௗ𝑑Ω

 

Ω

 

(12) 
 
 
(13) 
 
(14) 

 
(15) 
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Fig. 5. Mesh composed by four face elements, it highlights the equivalent 

circuit with a node at the infinity. 
 
To complete the circuit, a node is added at the infinite and its 

potential imposed (fixed) to zero (Fig. 5). The expression of the 
difference of averaged potential between a surface element and 
the infinite node is: 

Δ𝜑ௗ →ஶ
= න

𝜑ௗ

S

𝑑S

 

ୗ

 (17) 
 

According to (3), the expression of the contribution of surface 
element e to the potential after applying divergence theorem is: 

𝜑ௗ = − 
1

4π
න ൬

𝐌. 𝐧

|r − rᇱ| 
൰ 𝑑Γୣ  

 

 



ୣୀଵ

+ 
1

4π
න

𝛁௦ . 𝐌

|r − rᇱ| 
dSୣ

 

ୗ



ୣୀଵ

 

(18) 
 

where Nୣ is the surface element number, Γୣ  is the boundary of 
the element, 𝐧

 is the normal vector going out from element e 
and tangential to the average surface (Fig. 4). Considering the 
reluctivity  ν constant in the material, B.n is preserved as M.n, 
on the facet. The first terms of the integral (18) are canceled two 
by two on the mesh because the normal vectors are opposed. 
We get a new expression for the potential: 

𝜑ௗ =
1

4𝜋
 න

(νିν)𝛁௦. 𝐁 

|r − rᇱ| 

 

ௌ

𝑑𝑆

ே

ୀଵ

 
(19) 

 

Let us notice that the surface divergence of B, which is 
interpolated by facet shape functions, is constant per element. 
If B is replaced by the expression (8) in (19), a new equation is 
obtained from (17): 

𝚫𝝋𝒓𝒆𝒅ಮ
+ 𝑳𝜱ஶ = 0 

 

𝐿, =
1

4𝜋

൫νିν൯

𝑆𝑆

න න
1

|r − rᇱ| 
𝑑𝑆

 

ௌೕ

𝑑𝑆

 

 

ௌ

 

(20) 
 
 
(21) 

 
The final algebraic system is then: 
 

ቂ
𝐑 0
0 𝐋 ቃ 

𝚽𝒊𝒏

𝚽ஶ
൨ + ቈ

𝚫𝝋𝒓𝒆𝒅𝒊𝒏

𝚫𝝋𝒓𝒆𝒅ಮ

 = ቂ
𝐔𝟎

 

 0
ቃ 

 
(22) 

where 𝚽ஶ ∈ ℝ×ଵ is the vector of external fluxes flowing 
from each element to the air. Let us notice that R is a finite 
element matrix (sparse) while L∈ ℝ× is an integral matrix 
coupling all the elements of the mesh by the Green’s function. 
This matrix is full but can be efficiently and easily compressed 
by standard compression techniques like Fast Multipole 

Methods (FMM) or Adaptative Cross Approximation (ACA). 
𝐔𝟎 can be easily obtained by the numerical integration of 𝐇𝟎 
computed by Biot-Savart’s law on the mesh. 

 
Fig. 6. This picture shows five loops for this mesh. In fact, only four loops are 
independent. 

 
The final circuit equations is: 

(𝑹 + 𝑳)𝜱 + 𝚫𝝋𝒓𝒆𝒅 = 𝑼𝟎 
with: 

𝚫𝝋𝒓𝒆𝒅 
= ቆ

𝚫𝝋𝒓𝒆𝒅𝒊𝒏

𝚫𝝋𝒓𝒆𝒅ಮ

ቇ 

(23) 
 

(24) 

It remains to ensure the free-divergence of the induction in 
the equivalent circuit. It can be achieved by finding a set of 
equivalent independent loops associated to the equivalent 
circuit (Fig.6). Classically in the domain of circuit analysis, we 
have: 

𝐏𝚫𝝋𝒓𝒆𝒅 = 0 (25) 
where P∈ ℝా× is the branch-fundamental independent loop 
incidence matrix (the value of each matrix element is -1, 0 or 1) 
which links the flux of branches (i.e. facet) to independent loops 
fluxes. NBI is the number of independent fluxes. It comes: 

𝑷(𝑹 + 𝑳)𝐏௧𝜱𝒍𝒐𝒐𝒑 = 𝑷𝑼𝟎 (26) 

An iterative solver using the generalized minimal residual 
method (GMRES) is used to find the solution. Once the system 
is solved, the fluxes in branches are obtained with: 

𝜱 = 𝐏𝒕𝜱𝒍𝒐𝒐𝒑 (27) 

 
Fig. 7. Equivalent circuit for T shape geometry. 

 
The formulation can also be used when T-shape shell 

geometry are under study. The building of the equivalent circuit 
needs to put an additional circuit node on the facet sharing more 
than two elements and to connect the final circuit like presented 
in Fig. 7. Let us notice that to take into account T-shape 
geometry is easy with B-formulation presented here but not 
natural with vector potential formulation [2]. 
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IV. POST-PROCESSING 

After the solving, the field in air has to be computed on a 
point located at a distance |r − rᇱ|  from the device. For each 
element e, the field contribution is: 

𝑯𝒓𝒆𝒅 = −
1

4𝜋
𝛁  න

 (νିν)𝛁௦. 𝐁

|r − rᇱ| 

 

ௌ

 𝑑𝑆

ே

ୀଵ

 (28) 

 
The computation of the derivative of the Green’s kernel in 

(28) is not trivial when the distance between the point P and the 
integration point is very small. Its high singularity (~r/r3) would 
involve using too many Gauss points in order to obtain an 
accurate result in the context of a numerical integration. This is 
why our solution consists in the use of analytical expressions 
for quadrangles and triangles [6]. This method ensures to 
compute the field close to the shell with a very good accuracy. 

V. RESULTS 

The formulation has been tested on an academic problem 
whose an analytical solution [7] is known. In Fig. 8, it is a linear 
ferromagnetic hollow sphere magnetized by a uniform inductor 
field 𝐇𝟎 oriented in x direction with a value of 1A/m.  

 
Fig. 8. Hollow sphere composed with 12114 surfaces elements, with a diameter 
of 200 meters, a thickness of 4 cm and a relative permeability of 100. A semi-
circle is set as a computation support to validate the method. 

 
In order to compare reference and results, the following error 

criterion is defined: 
 

E୧% =
||B୧,୰ୣ − B୧,ୗ୳୰||

max ||B୰ୣ||
 (29) 

 
Spatial components of the magnetic induction are computed 

around the hallow sphere on a semi-circle. The computation 
support is located on a curve line located at the distance R. This 
distance will be reduced to 1mm to compare the results and the 
reference very close to the shell. 

 

 
Fig. 9. Normal component of the magnetic induction. Very good match between 
the analytical solution (dots in gray) and the solution obtained with the integral 
surface method (black) at 1mm from the mesh. 

 

 
Figure 10: Maximal normal error (black) and maximal tangential error (gray) 
around the hallow sphere obtained with the integral surface method for several 
computation distance from the shell. 

 
Fig. 9 and Fig. 10 show the accuracy of the formulation and 

the analytic post-treatment. The accuracy of the calculated 
magnetic induction is very good. Although the sphere is meshed 
by facets (edge’s length: 4 meters), the maximal error is under 
2.5% (the average error on the computation line at 1mm from 
the hull is under 1%) is obtained extremely close to the hull. As 
shown in Fig. 11, studies of more complex devices like the 
magnetic anomaly created by a submarine hull have been 
performed. This formulation coupled to matrix compression 
algorithms remains acceptable in terms of computational 
resources. 

 
Figure 11: Surface magnetic flux density of a submarine model with 33.298 
surfaces elements, 83.245 branches, and 49.947 independent loops, solved in 
12 min (i5-6600, 6GB DDR3) with a matrix compression ratio of 89.5 % 
(ACA).  

IV. CONCLUSION 

The VIM has been used to solve a magnetostatic problem 
with a face interpolation. This method has been adapted to thin 
magnetic regions and limited to a surface mesh. The method 
does not require the mesh of the air region and it enables the 
modeling of shielding problem with a very reasonable 
computation time. The obtained results are very accurate even 
if a light mesh is used. The method can be applied to the 
computation of the magnetic anomaly created by a submarine 
placed in the earth magnetic field [8]. 
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