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Abstract: In this paper, a model-based prognosis method using a particle filter that takes
model uncertainty, measurement uncertainty and future loading uncertainty into account is
proposed. A nonlinear analytical model of the degradation that depends on loading parameters
is established, and then a particle filter is used to estimate and forecast these unknown inputs at
the same time as the degradation state. Moreover, adding to this joint input-state estimation,
a two-sided CUSUM algorithm is implemented to detect load variations. This would help the
prognosis module to adapt to a change in the degradation state evolution, in order to correct the
remaining useful life prediction. Real data from fatigue tests on fiber-reinforced metal matrix
composite materials are used to demonstrate the efficiency of the proposed methodology for
crack growth prognosis.
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1. INTRODUCTION

Failure prognosis aims at calculating the remaining useful
life (RUL) of a system, which is the time available until
the monitored system no longer behaves properly. Because
of economic and human safety challenges, the prediction of
the RUL must be as reliable as possible to allow risk-based
decisions. For this purpose, prognosis methods should ac-
count for the different uncertainty sources that affect the
estimation of the current and future health state of the
system, and thus provide a measure of the uncertainty
affecting the predicted RUL (Tang et al., 2009; Baraldi
et al., 2013). The main types of uncertainty that inevitably
influence RUL prediction are measurement uncertainty,
modeling uncertainty and future loading uncertainty (Gu
et al., 2007). Measurement uncertainty is due to sensor
inaccuracy, modeling uncertainty is characterized by the
difference between the crack growth model and its real
behavior, and future loading uncertainty is caused by
various environmental factors that could possibly affect
the evolution of the crack length. In order to correctly deal
with these uncertainties, appropriate uncertainty represen-
tation and propagation methods must be chosen (Orchard
et al., 2008).

In the literature, various model-based crack growth prog-
nosis methods using a probabilistic approach for uncer-
tainty representation and propagation have been devel-
oped (Saha and Goebel, 2008). For instance, (Corbetta
et al., 2015) proposed a particle filter sequentially up-
dated via a Metropolis-Hastings (MH) algorithm for crack
growth prognosis on helicopter fuselage panels. A machine
learning approach based on artificial neural networks was
used to estimate the stress intensity factor (SIF) range,
which is required to calculate the crack growth at each

cycle. In (Zárate et al., 2012), the SIF range was modeled
by a polynomial equation with stochastic coefficients that
were computed through Bayesian inference. The future
crack length was then predicted using a Markov Chain
Monte Carlo algorithm. The ability of these methods to
predict the RUL of components subject to fatigue crack
growth under measurement and modeling uncertainty has
been proved through numerical examples. However, they
have assumed known values of the current and future
loading, which is not the case in real life scenario.

In order to address this issue related to the estimation
of the loading amplitude, other researchers have intro-
duced crack growth prognosis methods based on structural
health monitoring data. The main idea is to use real-time
monitoring data to build models that characterize fatigue
loading history, and then based on these models, the future
loading can be predicted. In (Ling and Mahadevan, 2012),
both flight parameters data related to acceleration and
mass and data recorded from strain gauges were used to
estimate and predict loading sequence through an autore-
gressive integrated moving average (ARIMA) modeling
method and a Bayesian approach for the update process.
The evaluation of the SIF range required for the crack
growth calculation was made with a Gaussian process
surrogate model that was previously trained with data
from a finite element analysis. In (Pais and Kim, 2015),
usage monitoring data from an aircraft (acceleration, air-
speed, angle of attack, fuel quantity and Mach number)
were converted into a stress time history which was then
transformed into a cyclic stress history via a rain-flow
counting algorithm. The resulting cyclic stress history was
used to consider the effects of variable amplitude loading in
the determination of the crack growth direction. However,



it was suggested that it could be used as the input into
a prognosis method. What these proposed methodologies
have in common is that real-time monitoring data related
to the loading or flight parameters are required to build
a model that characterizes the stress history. Moreover, a
finite element model was needed for the calculation of the
SIF range or to train its surrogate model.

In this paper, it is assumed that only crack length mea-
surements are available, and no finite element model is
used. Indeed, the effort was focused on the derivation of an
analytical model of the SIF range, which contains param-
eters that are directly related to the applied load. It was
then decided to perform the joint estimation of the crack
length and of the unknown loading parameters through the
use of a particle filter. The ability of the particle filter to
perform uncertainty propagation but also to deal with the
high nonlinearities of the SIF range analytical model has
motivated this choice. Moreover, as the particle filter is a
Bayesian filter method, the RUL predictions are improved
as new crack length data are collected.

The article is organized as follows. Section 2 gives infor-
mation about the composite material that was used to
collect the data, and then a detailed description of the
crack propagation model is provided. In Section 3, the joint
input-state estimation methodology with the particle filter
is presented, as well as the two-sided CUSUM algorithm.
Then, numerical results which illustrate the efficiency of
the prognosis method on real fatigue crack growth data are
reported in Section 4. Finally, a general conclusion about
the proposed prognosis methodology and perspectives for
future work are summed up in Section 5.

2. PROBLEM STATEMENT

In this section, a model to assess dynamic crack propa-
gation in fiber-reinforced metal matrix composites is pre-
sented. Before introducing this model, the experimental
procedure to collect the real crack growth data used in
this work is described.

2.1 Material and experimental procedures

A composite material is the combination of two or more
different materials in order to create a superior material
with different properties (stronger, lighter, . . . ). Compos-
ites are mainly made up of two constituent materials:
matrix and reinforcement. There are three main kinds of
materials that are used for the matrix (polymer, metal
and ceramic) and also different kind of forms for the rein-
forcement material (particles, fibers or laminates). In this
work, the proposed methodology is applied to fatigue crack
growth prognosis in titanium metal matrix composites
with silicon carbide fibers used as reinforcement materials.
The fatigue test data were previously used in (Maire et al.,
2000) to establish and validate a model to describe the
fatigue crack growth in the concerned specimens, but the
problem of RUL prognosis was not addressed. For consis-
tency, the experimental protocol is summarized in what
follows.

The titanium-matrix composite studied was SCS-6/Ti-
6242. Ti-6242 is a near alpha titanium alloy with the
composition Ti-6Al-2Sn-4ZR-2Mo (percent by weight),

and this matrix was reinforced with 140 µm diameter
SCS-6 Textron fibers. The fibers are regularly spaced in
the matrix in such a way as to obtain a unidirectional
composite. A parallelepiped notched specimen (Fig. 1)
with a nominal width of 8 mm, thickness of 2.1 mm
and length of 160 mm was machined from the composite
material in a manner that the length of the specimen is
parallel to fiber axis. The elliptic notch of 0.75 mm length
is located in the middle of the specimen.
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Fig. 1. Schematic of the specimen showing the dimensions
and the loading axis parallel to fiber direction

The crack length data that are used in this work are
from a specimen that was tested under variable amplitude
loading. The cyclic loading was uniaxial and oriented along
the fiber direction. The stress ratio R = σmin/σmax was
equal to 0.1. The fatigue tests were performed at room
temperature and at 400◦C under a frequency of 50 Hz.
In order to measure the crack length, photographs of
the crack extension were recorded by a digital camera
monitored by a computer. The typical cracking geometry
involved the propagation of a crack in the matrix on
each side of the notch, propagating perpendicularly to the
loading direction.

The crack propagated through all the thickness of the
specimen and across its entire width without causing the
rupture of the composite material. This phenomena is due
to unbroken fibers that have bridged the matrix crack.
Indeed, as the fiber stress level did not exceed the value of
the fiber strength, no fiber broke during the experiments.
The constraints of these bridging fibers can be modeled by
the distribution of a closure pressure P (x) acting in the
direction opposite to the applied stress σa in the bridged
zone (Fig. 2). In this case, the bridged zone is equivalent
to the crack length minus the notch length 2a0.

Fig. 2. The closure pressure in the crack wake



2.2 Description of the crack propagation model

It is assumed that the composite has a linear elastic
behavior except in a very small region at the crack tip,
therefore the principles of linear elastic fracture mechanics
can be applied. The following modified Paris’ law that was
previously used in (Maire et al., 2000) to study the same
fatigue test dataset can then be used to model the Mode
I crack propagation:

da

dN
= C(∆Km −Kth)m (1)

where a is the crack size, N is the number of cycles. Since
the crack growth observed in the composite material was
limited to the matrix cracking, the effective crack-driving
force is assumed to be the SIF range ∆Km experienced
by the matrix. The constants C, m and Kth depend on
matrix properties. Kth is the threshold value of the SIF
below which no crack growth occurs.

The calculation of the SIF range ∆Km is the main chal-
lenge in this modeling stage. A simple expression of the
SIF range can be available. However, in more complex
structures as composite materials, an analytical closed
form of the SIF does not always exist or is too complicated
to establish. In these cases, finite element simulations can
be run to calculate the SIF values associated to different
crack lengths. Then, based on the obtained database of
SIFs, a regression model is used to allow the evaluation of
the SIF for any crack length. This technique was used in
(Corbetta et al., 2015) where a machine learning approach
based on artificial neural networks was used to provide es-
timates of SIFs. In (Neerukatti et al., 2014), two regression
techniques were used, namely least absolute shrinkage and
selection operator (LASSO) and relevance vector machine.
Although very efficient to obtain good estimations of the
SIF, the main drawback of such an approach is the high
computational time induced. In this work, an analytical
expression of the stress intensity factor for bridged cracks
in composite materials was established, based on different
studies found in (Johnson et al., 1996).

The first step to determine ∆Km is to relate it to the con-
tinuum SIF range ∆Ktip which is the homogenized com-
posite stress intensity factor. Many discrete-continuum
relationships were proposed, and three of them were com-
pared in (Bakuckas and Johnson, 1993). In their study,
the one that gave the best results in the modeling of fiber-
bridging effect on ∆Km was established by (McMeeking
and Evans, 1990):

∆Km = ∆Ktip (2)

In order to calculate ∆Ktip, the weight function technique
proposed by (Bueckner, 1970) that allows to calculate a
stress intensity factor for arbitrary stress distributions is
applied. In this case study, the applied stress range on the
crack surface is ∆σbr = ∆σa −∆P (x), therefore we have:

∆Ktip = 2

∫ a

0

(∆σa −∆P (x))G(x, a, c)dx (3)

where G(x, a, w) is a weight function that depends on the
geometry of the specimen, c is the specimen width and 2a
is the crack length.

For a center crack configuration in a finite width speci-
men, the following expression of ∆Ktip is finally obtained

(Zheng and Ghonem, 1996):

∆Ktip = F∆σa
√
πa− 2F

√
a

π

∫ a

a0

∆P (x)√
a2 − x2

dx (4)

where F is a geometric factor that depends on the spec-
imen width (various expressions can be found in (Tada
et al., 1973)), 2a0 is the length of the unbridged zone
(i.e. notch length) and x is the distance from the crack
center. It can be noticed that this expression of ∆Ktip

takes into account both the contribution of the applied
remote stress ∆σa and the contribution of the bridging
stress ∆σbr produced by unbroken fibers in the crack wake.

Finally, the model that describes crack growth propagation
in the studied specimens is given by:

da

dN
= C

(
F∆σa

√
πa− 2F

√
a

π

∫ a

a0

∆P (x)
√
a2 − x2

dx−Kth

)m

(5)

The determination of the change in closure pressure ∆P (x)
is the critical issue of the fatigue crack propagation prob-
lem in fiber reinforced composites. In the literature, two
types of analytical models have been widely used to cal-
culate ∆P (x): (i) the shear-lag model and (ii) the fiber
pressure model. For more details about these two ap-
proaches, the reader may refer to (Ghosn et al., 1992). As
an alternative to these methods, (Davidson, 1992) has used
a uniform closure pressure over the entire bridged zone and
obtained satisfying results for SCS-6/Ti-6Al-4V composite
materials. This approach was considered in this paper as it
allows to avoid the integration of P (x) to calculate ∆Ktip,
which highly decreases the computational time. Indeed,
this is an important criteria for online RUL prognosis.

Adopting this constant approximation of the closure pres-
sure leads to the following model:

da

dN
= C

(
F∆σa

√
πa− 2F

√
a

π
∆P

∫ a

a0

1
√
a2 − x2

dx−Kth

)m

(6)

where ∫ a

a0

1
√
a2 − x2

dx =
π

2
− arcsin

(
a0

a

)
. (7)

Finally, the model that is used for crack growth prognosis
in the studied fiber-reinforced titanium matrix composite
material is:
da

dN
= C

(
F∆σa

√
πa− 2F

√
a

π
∆P

(
π

2
− arcsin

(
a0

a

))
−Kth

)m

(8)

The model (8) that was obtained contains two terms that
are directly related to the applied load, namely ∆σa and
∆P . Therefore, a joint input-state estimation will allow
the constant monitoring of external loads while estimating
the crack length. A particle filter is used in this study not
only because of its ability to perform this joint estimation
but also to deal with uncertainty propagation and high
nonlineartities.

3. PARTICLE FILTER AND TWO-SIDED CUSUM
ALGORITHMS FOR JOINT INPUT-STATE

ESTIMATION

In the proposed methodology for model-based prognosis
in presence of unknown loading inputs, a particle filter for
joint input-state estimation is combined with a two-sided



CUSUM algorithm. The idea is to jointly estimate the
degradation state along with the unknown loading inputs
with the particle filter, while monitoring the estimation
of the inputs with the two-sided CUSUM algorithm to
detect load variations. In the case where a load variation is
detected, the CUSUM algorithm informs the particle filter
which has then to reinitialize the loading inputs values in
order to improve the quality of RUL predictions after load
variation.

In this section, the sequential importance resampling
(SIR) particle filter is first introduced, then the two-sided
CUSUM algorithm is presented, and finally model-based
prognosis process under unknown loading inputs that uses
the combination of these two techniques is described.

3.1 Particle filter for joint input-state estimation

Particle filter allows to recursively calculate and update
the probability density function (pdf) of a state vector xk
based on the following discrete state-space system:

xk = f(xk−1, uk−1, wk) (9)

yk = h(xk, vk) (10)

where x ∈ Rn denotes the state, u ∈ Rm represents
the inputs vector, y ∈ Rp is the measured outputs and
k ∈ N is a discrete time step. The functions f and h
describe respectively the nonlinear evolution of the state
and the measurements over time. The variables w and v
are respectively the process and measurement noises.

In this work, the unknown loading inputs denoted by the
vector u ∈ Rm are included in the state vector x ∈ Rn.
This allows to form an augmented state vector X = [x u]
in order to perform the identification of the unknown
inputs in conjunction with state estimation using the
particle filter.

In the particle filter approach, the state pdf at time
instant k is approximated by a set of Npart particles

{Xi
k}
Npart

i=1 representing points in the state space, and

a set of associated weights {ωik}
Npart

i=1 denoting discrete
probability masses:

p(Xk|y0:k) ≈

Npart∑
i=1

ω
i
kδ(Xk −Xi

k) with

Npart∑
i=1

ω
i
k = 1 (11)

where δ is the Dirac delta function.

There exist several PF algorithms (Arulampalam et al.,
2002). One of the most used is the sequential importance
resampling (SIR) particle filter. It is based on three main
steps that are prediction, update and re-sampling:

(1) Initialization
• Draw particles Xi

0 ∼ p(X0)
• Compute the initial weights ωik = 1

Npart

Prediction
• Simulate the state equation (9) to generate a

new set of Np particles X
i=1:Npart

k which are
realizations of the predicted pdf p(Xk|y0:k−1).

(2) Update
• Each sampled particle is assigned a weight based

on the likelihood p(yk|Xk):

ω
i
k = ω

i
k−1p(yk|X

i
k−1) = ω

i
k−1

p(yk|Xi
k)p(Xi

k|X
i
k−1)

p(Xi
k
|Xi

k−1
, yk)

(12)

• Normalize the weights:

ω
i
k = ω

i
k

(
Npart∑
i=1

ω
i
k

)−1

(13)

(3) Re-sampling
• Degeneracy problem: the weight variance in-

creases and after a few iterations all but one par-
ticle may have a negligible weight (Daum, 2005).
Particles with small weights are eliminated so
that the computational efforts are concentrated
in those having large ones.
• Re-sampling condition: if the effective sample size
Neff is under some threshold Nth, a re-sampling
procedure is done. An estimate of Neff is

N̂eff =

(
Npart∑
i=1

(ω
i
k)

2

)−1

(14)

• Using the inverse cumulative distribution func-
tion method (Arulampalam et al., 2002) and the

current set {Xk}Npart

i=1 , a new set {X̃k}Npart

i=1 is
drawn to replace the current one. Finally, with
ω̃ik = N−1

part, the state is given by:

X̂i
k =

Npart∑
i=1

ω̃ikX̃k
i

(15)

This basic SIR particle filter algorithm is applied during
the first step of the prognosis process which consists in
estimating the current augmented state vector using data
from the different sensors. This step is realized as long
as measurements are available until the prediction time
kp from which a prediction of the future augmented state
vector is performed. During the forecasting step, no more
measurements are collected. However, the update of the
particle weights depends on the acquisition of new mea-
surements. To overcome this difficulty, the state is prop-
agated only using the state model (9) while the particle
weights are propagated in time without any changes. In
other words, only the prediction step is repeated until the
chosen failure threshold is reached. Considering that the
particle weights are invariant for time instants k > kp leads
to a negligible approximation error with respect to other
sources of error such as wrong choices of noise parameters
or model inaccuracies (Orchard and Vachtsevanos, 2007).

The efficiency of this particle filter algorithm has already
been proved for joint state and model parameters estima-
tion in (Robinson et al., 2016). However, in this paper, the
main challenge concerns the estimation of the unknown
inputs, whose initial values have to be set for the ini-
tialization step of the particle filter algorithm. As there
is an uncertainty related to this value, it is proposed to
consider that it is included in an interval I0 = [I0, I0]. It is
demonstrated in Section 4 that this assumption holds as
the proposed particle filter has the ability to readjust the
estimation thanks to the model and to the measurements.

3.2 Two-sided CUSUM algorithm

A basic two-sided CUSUM algorithm is used for the
detection. It is the combination of two CUSUM algorithms,



where one is for the detection of an increase in the mean
of the monitored variable, and the other one to detect a
decrease in the mean. The general idea is to calculate a
cumulative sum Sk that depends on the monitored process
∆x, on its initial mean value µ0 and on the minimal size of
change to detect denoted by ν. And when the value of the
sum exceeds a defined threshold value Sth, a change in the
mean value is detected. Therefore, the two-sided CUSUM
algorithm is based on the following equations:


S+
k = max

(
0, S+

k−1 + ∆xk − µ0 −
ν

2

)
S−k = max

(
0, S−k−1 −∆xk − µ0 −

ν

2

)
Ndetect = min{k : S+

k ≥ Sth ∪ S−k ≥ Sth}
(16)

where Ndetect is the time at which the detection is made.
There are two parameters that have to be chosen in this al-
gorithm: Sth and ν. This choice depends on how the signal
to process looks like, and for a Gaussian distribution, one
can set Sth = 2σ∆x

ν where σ∆x is the standard deviation
of ∆x. Further information about the two-sided CUSUM
algorithm can be found in (Blanke et al., 2006).

3.3 Prognosis methodology with the particle filter and the
detection algorithm

The constant monitoring of inputs with the detection
algorithm allows not only to detect abrupt load variations
but also to reinitialize the input value right after the
alarm. This would help the particle filter to converge
more quickly and more easily to the actual degradation
state. This procedure leads to the introduction of a new
uncertain parameter which is the initial loading input
value after load variation. In most cases this value is
unknown, but the user may have an order of magnitude
of it. Indeed, depending on the monitored system, the
critical input value that can accelerate the degradation
state evolution can be obtained from expert knowledge.
Therefore, because of the uncertainty associated to this
value, it is included in an interval I = [I, I] as it was
the case for the initial input value at the beginning of the
particle filter algorithm.

An illustration example is given in the next section in
order to have a better comprehension and to quantify the
efficiency of the proposed methodology for model-based
prognosis.

4. NUMERICAL RESULTS

In this section, the results of the application of the pro-
posed methodology for model-based fatigue crack growth
prognosis are provided. Real data from fatigue tests on the
fiber-reinforced composite material presented in Section 2
is used.

4.1 Initialization of the prognosis algorithm

For the study, the following discrete-time form of the crack
growth model (8) is used:

(17)
ak+1 = ak + C∆N

[
F∆σak

√
πak

−2F

√
a

π
∆Pk

(
π

2
−arcsin

(
a0

ak

))
−Kth

]m
This model is randomized in order to take the different un-
certainty sources into account. Modeling and measurement
uncertainty are integrated by adding zero-mean Gaussian
noises to the state and measurement equations, that are
respectively wk and vk. Moreover, the unknown loading
parameters ∆σak and ∆Pk are considered as random vari-
ables. The variances of all these stochastic variables that
were used for the implementation of the particle filter
algorithm are listed in Table 1.

Table 1. Distributions of random parameters

Parameter ∆σa ∆P w v

Variance 5× 10−3 5× 10−3 10−6 6× 10−3

The objective here is to jointly estimate and forecast the
crack length and the two unknown loading parameters,
therefore the augmented state vector is defined as x>k =
[ak ∆σak ∆Pk].

The values of the initial state vector have to be determined
for the initialization of the particle filter algorithm. The
initial crack length a0 is supposed to be known because
the prognosis module is launched only if a crack growth
is detected in the monitored component. In the tested
specimen, this value is a0 = 0.7mm. Concerning the inputs
loading parameters ∆σa and ∆P , their initial values are
assumed to be included in the interval I0 = [300, 400].

In this work, the material parameters m and C are as-
sumed to be constant variables as the focus is placed on the
estimation of the unknown inputs related to loading am-
plitude. They have already been calculated in a previous
work, and we have m = 2.4 and C = 5.4× 10−11. Finally,
a total number of 500 particles was used by the filter. In
the figures that will be presented in the next subsections,
the plotted curves correspond to the mean estimation.

4.2 Fatigue crack growth under constant amplitude loading

In this subsection, the case of fatigue crack growth under
constant amplitude loading is treated.

The first step of prognosis consists in jointly estimating the
current crack length a and the unknown inputs ∆σa and
∆P using the crack growth model and the collected crack
length data at each time step k corresponding to a cycle
number N . Then, from a prediction time cycle Np, the
forecasting of the future state vector is performed without
any measurements.

First of all, in order to demonstrate the robustness of
the proposed particle filter to the initial unknown loading
inputs values, the prognosis results for different initial
values of ∆σa and ∆P in I0 have been plotted in Fig. 3.
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It can be seen that despite the uncertainty in the initial
loading input values, the particle filter always manages
to converge to the actual crack length. This is an impor-
tant feature of the proposed joint input-state estimation
algorithm because in real-time prognosis, this value is
unknown.

Moreover, one can notice that the crack length does not
increase and the estimated unknown loading parameters
remain constant after the transient state (Fig. 4). Indeed,
as the tested specimen was under plane stress, the crack
will stop growing if the applied load is kept constant.
Therefore, the crack growth reaches a steady-state and
the failure threshold will not be reached.
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Fig. 4. Crack length evolution with Np = 7.702×106 cycles

In the next subsection, a case of crack growth under
variable amplitude loading is treated to prove the ability
of the proposed methodology to jointly estimate the crack
length and the unknown loading parameters even in these
circumstances.

4.3 Fatigue crack growth under variable amplitude loading

In this subsection, crack growth prognosis under vari-
able amplitude loading is considered. The crack length
measurements are from the real dataset obtained during
fatigue test on fiber-reinforced titanium matrix composite
materials presented in Section 2.

As a first step, the estimation of the crack length and the
unknown loading parameters is performed using the avail-
able measurements. Then, the forecasting step is realized
from the prediction time cycle Np. Before load variation,
the prognosis results are the same as described in the
previous subsection. After load variation, the forecasting
of the future crack growth without new measurements is

made at different prediction time cycles Np. The evolution
of the future crack length predictions are depicted in Fig. 5.
The first part of the crack length evolution is not shown
as it is the same as in Fig. 3.
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Fig. 5. Evolution of the crack length at different predic-
tion cycles Np

The higher amplitude of the external applied load has led
to an increase in the crack length, which indicates that the
critical stress has been attained. The results show that the
particle filter has some difficulties to converge even after
several time cycles of estimation using the measurements.
Indeed, the particle filter needs more data in order to
estimate the unknown loading parameters whose values
have significantly increased after this abrupt load varia-
tion. This problem could be addressed by increasing the
number of particles. In this study, 500 particles were used,
and a test with 3000 particles was realized. The results
were almost the same, and this number cannot be further
increased because the computational time would be too
important, which is not suitable for online applications.

In order to circumvent this issue, the two-sided CUSUM
algorithm presented in Section 3 is integrated to the par-
ticle filter. The estimated values of the unknown loading
inputs ∆σa and ∆P are constantly monitored to detect the
sudden load variation. Indeed, as these inputs are related
to the applied load, when the loading amplitude changes,
their values change as well (Fig. 6). It can be seen that
this monitoring must start after the transient state to
avoid any false detection. The minimal size of change to
detect in the unknown inputs variables was fixed to ν = 2
MPa. The two-sided CUSUM algorithm has detected the
variation at Ndetect = 10.881× 106 cycles while the actual
load variation time is Nload = 10.868× 106 cycles.
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Fig. 6. Abrupt change in ∆σa and ∆P after load variation

After the detection of load variation, the values of ∆σa
and ∆P are reinitialized. The choice of the interval I is
based on the a priori knowledge of the necessary load
amplitude that may cause a rapid propagation of the crack
in the considered specimen. The values ∆σacrit and ∆Pcrit
associated to the critical load are known to be around
450 MPa. Therefore, in order to take the uncertainty
associated to this value into account, it was considered
that the reinitialized values of ∆σa and ∆P belong to the
interval I = [400, 500]. This has allowed to estimate and
then forecast an interval that contains the crack length
after load variation. The bounds of this interval are derived
from two extreme loading cases. The evolution of this
confidence interval for different prediction cycles Np is
shown in Fig. 7.
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Fig. 7. Evolution of the crack length at different predic-
tion cycles Np with the detection algorithm

First of all, the gain of the detection algorithm and the
reinitialization of the inputs values is highlighted in these
figures. It can be seen that even if the input values after
the load variation are uncertain, the confidence interval
that was derived from the interval I in which the reini-
tialized values of ∆σa and ∆P are included still give an
accurate prediction of the future crack length. Moreover,

the predictions improve as more data is available. Even
if the plotted results give an idea about the efficiency of
the proposed methodology, a more precise performance
evaluation using metrics such as accuracy, precision and
timeliness has been performed.

Accuracy measures the degree of closeness of the predicted
RUL to the actual RUL, and its values are between 0 and
1 where 1 gives the best accuracy. Precision evaluates the
narrowness of the interval in which the RUL predictions
fall, and ranges between 0 and 1 which reflects the highest
precision. Finally, timeliness indicates the relative position
of the predicted RUL pdf along the time axis with respect
to the occurrence of the actual failure event. There are
three cases: (i) the failure occurs after the predicted failure
time, (ii) the failure occurs at the same time as the
predicted failure time, and finally, (iii) the failure occurs
earlier than predicted. This last case must be absolutely
avoided, that is why the timeliness function allows to
penalize late predictions. Timeliness has positive values
and 0 is the best score. More details about the formulation
of these metrics can be found in (Robinson et al., 2016).

The metrics were calculated for several reinitialization
values of ∆σa and ∆P included in I. Indeed, it allows to
take the uncertainty related to these values into account.
The mean values and the standard deviation of each
metrics in the predicted confidence interval are given in
Table 2.

Table 2. Performance evaluation results

Prediction time Accuracy Precision Timeliness

11.058× 106 0.59 (±0.04) 0.62 (±0.02) 4.56 (±1.05)

11.197× 106 0.65 (±0.04) 0.75 (±0.02) 2.74 (±0.73)

11.335× 106 0.81 (±0.08) 0.86 (±0.04) 0.92 (±0.46)

12.337× 106 0.87 (±0.15) 0.59 (±0.07) 207.12 (±486.04)

The calculated metrics confirm that the proposed method-
ology gives satisfactory results in terms of accuracy, pre-
cision and timeliness despite the high uncertainty on the
reinitialized values of the unknown loading inputs after
load variation. Moreover, the obtained values show the
usefulness of the timeliness metric. Indeed, we can see
that the highest value of timeliness is at the prediction
cycle Np = 12.337 × 106. This is explained by the fact
that a significant part of the predicted RUL have fallen
after the actual RUL value. Thus, even if the accuracy
is the highest one, the timeliness value must be taken
into account carefully to optimize maintenance decisions
and avoid catastrophic events. As for the performance
evaluation in the absence of the detection algorithm, the
metrics could not even be calculated because the particle
filter was not able to predict the acceleration of the crack
growth and thus the threshold was never reached.

5. CONCLUSIONS

A model-based online prognosis method that is able to es-
timate and forecast unknown loading inputs was proposed
in this paper. A particle filter was used for the joint input-
state estimation and a two-sided CUSUM algorithm was
integrated to detect load variations. Indeed, it was noticed
that after an abrupt load variation, the particle filter
had some difficulties to converge to the degradation state
whose trajectory had suddenly changed. Therefore, the



role of the CUSUM algorithm is to monitor the unknown
loading inputs values, and to give an alert when a load
variation is detected. Once the particle filter has received
this alert, the estimated values of the unknown loading
inputs are reinitialized in an interval that is chosen from a
priori knowledge. The association of these two algorithms
has enabled to keep the RUL predictions accurate even
after load variation.

The efficiency of the proposed methodology has been il-
lustrated on real crack growth data from fatigue tests on
composite materials. The performance evaluation metrics
(accuracy, precision and timeliness) gave satisfactory re-
sults, and have demonstrated the ability of the method
to deal not only with high nonlinearites but also with
the various uncertainty sources that affect the prognosis
process: modeling uncertainty, measurement uncertainty,
external input uncertainty, and uncertainty related to the
initial values of the unknown loading inputs. Finally, the
proposed methodology has the advantage that it can be
applied to various problems as long as an analytical model
with unknown inputs is available. Even if simplifications
have been realized on the model, as it was the case in this
work, the algorithm is still able to adapt the estimation
thanks to measurements from sensors.

In future work, the proposed prognosis method will be
applied to fatigue crack growth data with more load vari-
ations. Moreover, other analytical models will be consid-
ered.
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