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We report on the passive measurement of time-dependent Green’s functions in the optical frequency domain
with low-coherence interferometry. Inspired by previous studies in acoustics and seismology, we show how
the correlations of a broadband and incoherent wave-field can directly yield the Green’s functions between
scatterers of a complex medium. Both the ballistic and multiple scattering components of the Green’s function
are retrieved. This approach opens important perspectivesfor optical imaging and characterization in complex
scattering media.

Waves propagating in complex media can experience com-
plicated trajectories through scattering off objects or reflec-
tion and refraction at interfaces. All these events are nonethe-
less captured by the Green’s function formalism.Mathemat-
ically, the Green’s function is the solution of the wave equa-
tion with a point source term [1]. It connects the wave-field
to any excitation by means of time and space convolutions
with the source distribution.In random multiple scattering
and reverberating media, the temporal Green’s function thus
provides a unique signature of the propagation of waves be-
tween the source and observation points. This property has
been put to profit to focus waves in acoustics and electromag-
netism, where temporal Green’s function are easily accessi-
ble, through the concept of time reversal [2, 3]. Similarly,
temporal Green’s functions have been proved to allow imag-
ing of complex media, either using statistical approaches or
through numerical reconstruction [4–7]. In optics, there have
been recently exciting proposals to measure Green’s functions
of complex media [8–11], and use them for imaging or focus-
ing purposes, mostly owing to the development of wave front
shaping techniques [12, 13].

Incidentally, previous studies in acoustics have proposed
a simpler and elegant route towards a passive measurement
of temporal Green’s functions without the use of any source
[14, 15]. The cross-correlation (or mutual coherence function)
of an incoherent wave-field measured at two points A and B
can yield the time dependent Green’s function between these
two points. Provided that the ambient field is equipartitioned
in energy, the time derivative of the correlation function at two
positions is actually proportional to the difference between
the anticausal and causal Green’s functions. This property
is a signature of the universal fluctuation dissipation theorem
[16–18] and has been derived following different approches
[14, 18–22]. An elegant physical picture is provided by an
analogy with time reversal [15, 23, 24]. In the frequency do-
main, this result manifests itself as the link between the spa-
tial correlation of the wave-field and the local density of states
[29, 30]. This fundamental quantity is actually proportional to
the imaginary part of the monochromaticself-Green’s func-
tion.

Previously and independently developed in helioseismol-
ogy [31], the Green’s function estimation from diffuse noise
cross correlations has received a considerable attention in seis-

mology in the 2000s [32]. The cross-correlation of seismic
noise recorded by two stations over months has allowed to re-
trieve the Green’s functions between these observation points
as if one was replaced by a virtual coherent source. By pas-
sively measuring the elastic Green’s functions between a net-
work of seismic stations, an imaging of the Earth’s crust has
been obtained with unprecedented high resolution [33]. More
recently, thermal radiation noise has also been taken advan-
tage of to measure passively electromagnetic Green’s func-
tions in the microwave frequency domain [34].

The aim of this paper is to demonstrate the passive mea-
surement of time-dependent Green’s functions in optics. For
this proof-of-concept, the first sample under study consists in
dispersed microbeads that are used as passive sensors. This
scattering sample is isotropically illuminated by an incoherent
halogen light source. The correlation of the scattered wave-
field is measured by means of a Michelson interferometer and
recorded on a CCD camera. In this Letter, we first show that
the cross-correlation of the wave-field coming from two scat-
terersA andB converges towards the ballistic Green’s func-
tion gAB(t) between them. In a second example, we show
that the multiple scattering components of the Green’s func-
tion can also be retrieved. This is illustrated by measuring
the autocorrelation of the field coming from the scattererA.
The resultingself-Green’s functiongAA(t) is shown to ex-
hibit the time-resolved multiple scattering echoes between the
scatterersA andB. At last, we show that our approach can
also be extended to a strongly scattering medium made of
ZnO nanoparticles. The correlation of the scattered wave-
field directly yields the time-dependent Green’s functionsbe-
tween each pixel of the CCD camera. With a moderate in-
tegration time, the resulting Green’s functions are shown to
emerge from noise for times of flight at least twenty five times
larger than the transport mean free time. Hence, this simple
and powerful approach directly yields a wealth of information
about the scattering medium. It opens important perspectives
for imaging and characterization in strongly scattering media.

The experimental set-up is displayed in Fig.1. An incoher-
ent broadband light source (650-850 nm) isotropically illumi-
nates a scattering sample in adark-fieldconfiguration.The co-
herence properties of the incident wave-field are shown in the
Supplemental Material [24]. The incident wave-field exhibits
a coherence timeτc ∼ 10 fs and a coherence lengthlc ∼ 3
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FIG. 1: (a) Experimental set up. A broadband incoherent light source
isotropically illuminates a scattering sample (here consisting of two
beads). The spatio-temporal correlation of the scattered wave field is
extracted by means of a Michelson interferometer and recorded by a
CCD camera. HL : halogen lamp. MO : microscope objective. BS :
beam splitter. M : mirror. PZT : piezoelectric actuator. (b)Intensity
image recorded by the CCD camera displaying the two beads and
their superimposed image at the center. (c,d,e) Field measured by
the CCD cameravia phase-shifting interferometry at different optical
path differenceδ: (c) δ = 0, (d) δ = L, (e) δ > L. Each field has
been normalized by its maximum range.

µm . The scattered wave-field is collected by the microscope
objective and sent to a Michelson interferometer. The beams
coming from the two interference arms are then recombined
and focused by a lens. The intensity recorded by the CCD
camera at the focal plane can be expressed as,

S(r, r+∆r, t) =

∫ T

0

||E(r, t+τ)+E(r+∆r, τ)||2dτ (1)

with τ the absolute time,r the position vector on the CCD
screen,E(r, τ) the scattered electric field associated to the
first interference arm andT the integration time of the CCD
camera. The tilt of mirrorM2 allows a displacement∆r of
the associated wave-field on the CCD camera. The motorized
translation of mirrorM1 induces a time delayt = δ/c be-
tween the two interferometer arms, withδ the optical path dif-
ference (OPD) andc the light celerity. The interference term
is extracted from the intensity pattern (Eq.1) by phase shifting
interferometry (“four phases method” [8]) using a piezoelec-
tric actuator placed on mirrorM1. It directly yields the mutual
coherence functionC of the scattered wave-fieldE:

C(r, r+∆r, t) =

∫ T

0

E(r, t+ τ) ·E(r+∆r, τ)dτ (2)

If the incident light is spatially and temporally incoherent, the
time derivative of the correlation functionC(rA, rB, t) be-
tween two points A and B should converge towards the dif-
ference between the causal and anti-causal Green’s function,
such that

∂tC(rA, rB, t) ∼
T→∞

gAB(t)− gAB(−t). (3)

A theoretical proof for this fundamental result is provided
in the Supplemental Material [24]. Our argument is based
on symmetries of reciprocity, time-reversal invariance and
diffraction theory.

The aim of this Letter is to prove experimentally this re-
sult and measure time-dependent Green’s functions with the
basic experimental setup displayed in Fig.1. As a proof-of-
concept, we first study a sample made of 3µm-diameter mag-
netite beads (Fe3O4) randomly embedded in a transparent
polymer matrix (poly-L-lysine) on a microscope slide. The
correlation function between two scatterers can be measured
by tilting mirrorM2 such that the images of the two beads are
superimposed on the same CCD camera pixel [see Fig.1(b)].
Figs.1(c,d,e) display the interference pattern recorded by the
CCD camera at different OPD for an isolated couple of beads,
A andB, separated by a distanceL =7 µm. At δ = 0, the
straight fringes observed on the CCD camera result from a
residual coherence of the incident wave-field [Fig.1(c)]. At
δ = L, a strong interference signal is observed in the area
where the images of the two beads overlap [Fig.1(d)]. As we
will see, it corresponds to the direct echo betweenA andB.
For δ > L, the field measured by the CCD camera corre-
sponds to noise that results from the interference between un-
correlated random wave-fields [Fig.1(e)].

Fig.2 displays the time-dependence of the cross-correlation
function between beadsA and B for different integration
times. This interferometric signal contains a random contri-
bution that should vanish with average and a deterministic
contribution due to the stationary interferences between the
two beads. The latter one should directly lead to the Green’s
function gAB(t) as stated by Eq.3. ForT = 10 ms, noise
predominates and no coherent signal can be clearly detected
[Fig.2(a)]. ForT = 40 ms, three time-resolved echoes start
to emerge from noise but the signal-to-noise ratio is still per-
fectible [Fig.2(b)]. At last, forT = 750 ms, noise is suffi-
ciently averaged out to obtain the stationary interferencesig-
nal with a good precision [Fig.2(c)]. As a reference, Fig.2(d)
displays the cross-correlation function obtained betweenan
isolated beadD and the background wave-field for the same
integration time and tilt ofM2. Each interferometric signal in
Figs.2(c,d) exhibits an echo aroundδ = 0 that corresponds to
the straight fringes displayed by Fig.1(c). Although the two
beadsA andB are separated by a distanceL > lc, the in-
cident wave fields,E0 andE′

0, seen by each of them remain
slightly correlated[24]. This gives rise to a stationary inter-
ference between the single scattering pathsE1 andE′

1 around
δ = 0 [Fig.2(f)]. Unlike the signal associated to the isolated
beadD [Fig.2(d)], the cross-correlation between beadsA and
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FIG. 2: Passive measurement of the Green’s functiongAB(t) be-
tween the two beadsA andB. (a,b,c) Cross-correlation signals ver-
sus time delay / OPD for different integration times:T =10 ms (a),
T =40 ms (b) andT =750 ms (c). (d) Interferometric signal ob-
tained for the isolated beadD (T = 750 ms). (e,f,g) Sketch of the
scattering events accounting for the different pulses emerging from
the signals in (c) and (d).

B clearly exhibits two echoes aroundδ = ±L [Fig.2(c)]. It
corresponds to the strong interference signal previously high-
lighted in Fig.1(d). These two echoes are the expected causal
and anticausal parts of the ballistic Green’s function between
A andB. They originate from the interference between the
single scattering pathE1 and the double scattering pathE2

depicted in Figs.2(e,g). Normally, the causal and anticausal
parts of the Green’s function should be of same amplitude due
to reciprocity. This is not strictly the case here because the
illumination is not perfectly isotropic.

This first experiment has demonstrated the ability of
measuring a direct echo between two scatterers with low-
coherence interferometry. However, one can go beyond
and also measure the multiple scattering components of the
Green’s function. As a demonstration, we show the measure-
ment of the autocorrelation function associated to the bead
A. This is performed by simply canceling the tilt of mir-
ror M2 such that∆r = 0 in Eq.2. The autocorrelation func-
tion C(rA, rA, t) should lead to a measurement of theself-
Green’s functiongAA(t) [Eq.3]. In this case, the beadA vir-
tually acts both as the source and the receiver while the bead
B only acts as a passive scatterer. Our aim is to detect the
presence of beadB in gAA(t) through the multiple scattering
echoes that take place between the two beads. Fig.3 compares
the autocorrelation signal obtained for the beadA [Fig.3(b)]
and for the isolated beadD [Fig.3(a)]. In the latter case, the
autocorrelation function only exhibits a single echo around
δ = 0 due to the interference of the scattered fieldE1 with
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FIG. 3: Passive measurement of theself-Green’s functiongAA(t)
associated to the beadA. (a)-(b) Autocorrelation signal versus time
delay / OPD for the isolated beadD (a) and the beadA placed at
the vicinity of beadB (b). (c)-(f) Sketch of the scattering events
accounting for the different pulses emerging from the autocorrelation
signals in (a) and (b).

itself [Fig.3(c)]. For beadA, six supplementary echoes are
visible at δ = ±L, δ = ±2L and δ = ±3L. Each of them
can be associated to a stationary interference between mul-
tiple scattering paths depicted in Figs.3(d,e,f). The signal at
δ = ±L results from the interference between the single scat-
tering pathE1 and the double scattering pathE′

2
[Fig.3(d)].

It corresponds to the direct echo between the two beads. It
would not emerge if the incident wave fields seen by the two
beads,E0 andE′

0
, were totally uncorrelated. However,as

shown in the Supplemental Material [24], a residual coher-
ence subsists for the incident wave-field at such a distanceL.
The echo atδ = ±2L results from the interference between
the single scattering pathE1 and the triple scattering pathE3

[Fig.3(e)]. As these two paths involve the same first scattering
event, it would exist even for a perfectly incoherent incident
wave-field. This signal corresponds to a way and return echo
between the two beads. At last, the echo atδ = ±3L results
from the interference between the single scattering pathE1

and the quadruple scattering pathE′

4 [Fig.3(f)]. As for the
echo atδ = L, it is only visible because of the residual co-
herence of the incident wave-field. Hence, the relevant echoes
here are the ones associated to a roundtrip scattering event
between the beads as they would exist even for a perfectly in-
coherent wave-field. They correspond to the causal and anti-
causal parts of the Green’s functiongAA(t) associated to bead
A and yield an information about its local environment,i.e the
presence of beadB at a distanceL. Hence this experiment
demonstrates the ability of measuring passively the multiple
scattering contribution of a temporal Green’s function from an
incoherent wave-field. In this example, the single, double and
triple scattering events are nicely retrieved. Note that, in prin-
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ciple, it would be possible to measure higher order scattering
events. To that aim, the integration time should be increased
in order to lower the noise level but it would be at the cost of
a longer measurement.
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FIG. 4: Passive measurement of theself-Green’s function in a mul-
tiple scattering sample made of ZnO nanoparticles. The autocorrela-
tion signal obtained for one pixel of the CCD camera is shown as a
function of the time delay / OPD. The CCD image of the sample as
well as the location of the selected pixel are displayed in the bottom
left inset. The intensity of the autocorrelation signal averaged over
24 neighbour pixels versus time delay / OPD is shown in the topright
inset in a log-log scale. The averaged intensity (continuous blue line)
is fitted with the expected power lawt−5/2 (dashed red line).

Now that the ability of measuring time-dependent Green’s
functions between individual scatterers has been demon-
strated, the case of a strongly scattering medium is now inves-
tigated. The sample under study is a layer of slighly pressed
ZnO nanoparticles (Sigma Aldrich 544906) on a microscope
slide. The sample thickness and the transport mean free path
l∗ are of the order of 50µm and 5µm, respectively. The
measurement of the autocorrelation signal for one pixel of the
CCD camera is shown in Fig.4. It directly yields theself-
Green’s functiongAA(t) for a virtual sensorA placed at the
surface of the sample. Its characteristic size is given by the co-
herence lengthlc of the incidentwave-field. The integration
time has been fixed to 1250 ms to get rid of noise in the inter-
ference signal. The Green’s function shown in Fig.4 is char-
acteristic of a strongly scattering sample with a long tail that
results from the numerous multiple scattering events that take
place within the scattering medium. Here, we have access to
a satisfying estimation of the Green’s function over 130µm
in terms of OPD (or 430 fs in terms of time delay), which
corresponds to scattering paths of26l∗. In the multiple scat-
tering regime, a probabilistic approach is generally adopted
to extract information from the measured Green’s functions.
One can for instance study the intensity of theself-Green’s
function averaged over several pixels of the CCD camera [see
inset of Fig.4]. This leads to an estimation of thereturn prob-
ability, a key quantity in multiple scattering theory [35] that

describes the probability for a wave to come back close to its
starting point. For a source placed at the surface of a scatter-
ing medium, the return probability is supposed to decrease as
t−5/2 in the diffusive regime [36, 37]. As shown in the top
right inset of Fig.4, such a power law decay is recovered in
our measurements for an OPDδ > 70 µm, i.e when the dif-
fusive regime is reached. This observation demonstrates that
the measured Green’s functions follow the temporal behavior
predicted by diffusion theory, thus confirming the validityof
our approach.

In summary, this study demonstrates for the first time
the optical measurement of time-dependent Green’s functions
with low-coherence interferometry. As a proof-of-concept,we
have first been able to retrieve the time-resolved ballisticand
multiple scattering contributions of the Green’s functionbe-
tween individual scatterers. This approach has also been suc-
cessfully applied to a strongly scattering medium. A whole
set of time-dependent Green’s functions can be measured be-
tween each point of the surface of a scattering sample. The ex-
perimental access to this Green’s matrix is potentially impor-
tant in many applications of wave physics in complex media
whether it be for imaging [38], characterization [39], focusing
[8–11] or communication [40, 41] purposes.
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