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We present a new approach to separate air traffic trajectories in an area constrained by operational 
procedures. This technique is applied on a set of real trajectories in Toulouse terminal manoeuvring area 
(TMA). The resulting clusters foster good understanding of the structure of traffic and of how controllers 
schedule landings at Toulouse–Blagnac airport; on the other hand, a group of peculiar trajectories emerge 
with useful information calling for further analysis and paving the way for a probabilistic approach to risk 
assessment in air traffic safety.

© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Identifying air traffic flows is a topic of interest [1–3] with room 
for improvement in regard to several applications such as traf-
fic analysis [4], load balancing on sectors monitored by air traffic 
controllers [5]; anomaly detection of events [6] or diverging be-
haviours that have a higher risk of leading to traffic incidents (loss 
of separation, runway excursion, etc.).

A way to assess rare aircraft incidents (e.g., runway excursion) 
is to identify contributing factors (e.g., late braking, long landing, 
inappropriate flare, unstable approach) and to build a dependency 
tree (e.g., long landing may be the result of an unstable approach 
not followed by a go around) that describes the causality between 
these factors. Probabilities are then fed into such models in or-
der to evaluate the assessed risk. Identifying air traffic flows is a 
key issue in such treatment as it contributes to identify and es-
timate the probability to observe an aircraft with a non standard 
behaviour. In other words, we aim at detecting trajectories that do 
no fall in a common flow of trajectories. We can then place them 
in context in order to understand and model what makes them 
outliers. The understanding we get from this kind of study should 
provide insight and improve our models of contributing factors.

Trajectories are mathematical objects used to describe the evo-
lution of a moving object. They are described by a state vector 
with parameters (x(t), y(t), · · · ) that evolve in time. In practice, 
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this state vector is only known at some sampled times. The term 
(xi, yi, · · · ) represents the state vector at time ti . For clarity con-
cerns, we will name trajectory a sequence of recordings associated 
to a moving object. The explosion of recorded (and sometimes, 
available) data makes the study of trajectories a popular topic and 
opens new fields of research in data mining common patterns and 
identifying outliers from recorded trajectories [7].

The literature in trajectory clustering addresses the issue in 
various ways; the relevancy of each method is highly dependent 
on the nature of the moving objects tracked and on the kind 
of information we want to extract from the data. Lee et al. [8]
present a clustering method based on the identification of common 
sub-trajectories and apply their techniques to the study of hurri-
canes. Gariel et al. [9] address the specificity of aircraft trajectories 
around San Francisco airport: they perform a clustering on turning 
points of trajectories followed by a sequence mining on these clus-
ters. However, the spatial distribution of all turning points on our 
set of data does not separate well into clusters. Puechmorel et al. 
[10] manipulate trajectories as purely mathematical functional ob-
jects: they warp trajectories so as to highlight more intelligible 
tracks and define distances as a minimum energy necessary to 
bundle trajectories. However as their approach modifies the data 
records, it may not be appropriate for safety analysis.

The key to a proper clustering of trajectories lies in the proper 
definition of a distance. Jeung et al. [11] present different popu-
lar metrics, like the Hausdorff distance but it does not apply well 
on converging air traffic flows. Li [12] or Conde [13] consider re-
sampling trajectories so as to transform them into n-dimensional 
vectors on which Euclidean distances are computed. This approach 
is relevant in some applications but can be problematic as an air-
craft being put on holding stacks before landing may see this part 
130
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Fig. 1. An instant view of traffic as seen by a Radarcape antenna.

of the trajectory trimmed out after resampling. In general, it is 
rather difficult to define a meaningful distance that separates tra-
jectories well, generalises on full trajectories and computes in a 
reasonable time.

We present a different approach to identify patterns in landing 
with two objectives: understand how controllers schedule landing 
on a specific airport, then analyse outlier trajectories with respect 
to the risk of runway excursion. The proposed algorithm computes 
a clustering on subsets of significant points of trajectories while 
keeping a dependency tree of their temporal chaining (Section 3); 
then associates trajectories to root-to-leaf paths in the dependency 
tree based on the clusters they cross (Section 4). The full process 
is rather quick, efficient and robust, and detects outlier trajectories 
calling for further analysis (Section 5).

2. The dataset

ADS-B is a cooperative surveillance technology for air traffic 
control. An aircraft determines its position via satellite, inertial and 
radio navigation and periodically emits it (roughly 1 Hz) with other 
relevant parameters to ground stations and other equipped aircraft. 
A decent ADS-B receiver antenna can receive messages from cruis-
ing aircraft located up to 400 km far away (Fig. 1); the range is 
lower for aircraft flying in low altitude.

We present in this paper the result of three weeks of ADS-B 
recording from 5 to 30 December 2016.1 Apart from positional 
messages, aircraft also emit a callsign, i.e. an 8-character identi-
fier (like "EZY62FN") for a flight (the EasyJet flight from Berlin–
Schönefeld and scheduled to land in Toulouse–Blagnac at 19:30). 
After filtering out all flights not landing in Toulouse, we simplified 
trajectories as they enter the TMA through a Douglas–Peucker al-
gorithm [14,15] as on Fig. 3, with ε = 1 km (i.e. roughly: remove 
points less than ε far from a straight line) and reduced about 5 GB 
worth of data to less than 200 kB for 1991 trajectories. Most tra-
jectories now consist of 5 to 7 points, but can reach 20 points for 
aircraft being put on holding stacks.

Fig. 2 displays all trajectories we consider in this paper, as they 
are trimmed within the TMA. We can already remark that the traf-
fic bound for Toulouse airport is heavily unbalanced, with its major 

1 The dataset has been made available at the following link: https://doi .org /10 .
5281 /zenodo .891468.
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Fig. 2. The full dataset: three weeks of recorded trajectories. The border delimits the 
convex hull of the TMA.

Fig. 3. Douglas–Peucker simplification of two sample trajectories (in red) with ε =
1 km. The dashed lines connect the points selected by the algorithm. A trajectory 
put on holding stack yields more points than a regular approach. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this 
article.)

part coming from the North-East side of the map. Unbalanced den-
sity is a common difficult pattern in clustering that we propose to 
address with our algorithm.

Aircraft may land from the South-East (QFU32, or 323◦) or from 
the North-West (QFU14, or 143◦). QFU is a Q-letter code naming 
the magnetic direction (or number) of the runway to be used. Air 
traffic management concertedly determines a QFU based on wind.

3. Clustering and sequencing significant points

Fig. 4(a) represents Toulouse–Blagnac airport with the last air-
borne positions recorded for each flight. The quality of the recep-
tion is variable; yet, we can distinguish two main clusters accord-
ing to the direction of landing. Fig. 4(b) looks one step backward 
and displays all one-before-last stored points for aircraft landing 
on QFU14. The cluster that pops out corresponds to the moment 
aircraft aligned with the runway, also called roll-out point.

Again, we select the points in all trajectories that fall in the 
area delimited by our cluster, look one step backward and filter 
out points that are in the current cluster. Fig. 4(c) links the new 
resulting clusters (full lines) to previous cluster (dashed lines) in 
our backward-looking process. A basic recursion (to be formalised 

https://doi.org/10.5281/zenodo.891468
https://doi.org/10.5281/zenodo.891468
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Fig. 4. Recursive clustering of significant points on recorded trajectories.

further) builds a full dependency tree of common trajectory seg-
ments as reflected on Fig. 5.

We compute clusters with a standard dbscan algorithm and se-
lect points that lie within a cluster through Kernel Density Estima-
tion. Density-Based Spatial Clustering of Applications with Noise 
(dbscan) is a common density-based clustering algorithm [16,17]. 
It finds clusters based on a density criterion ε and a minimum 
sample value n: the cluster forms from core elements having at 
least n neighbours within an ε distance, and grows by finding new 
neighbours to the clusters until no other element can be added. 
Outliers are elements that do not belong to any cluster.

dbscan could predict whether a new point falls inside an exist-
ing cluster, but as we will need more than a yes/no answer further 
in our presentation, we use Kernel Density Estimation to evaluate 
the distribution of samples inside a cluster. Let �u1, · · · �un be a set 
of independent and identically distributed random samples in di-
mension d with unknown Probability Density Function (pdf) f . We 
can estimate f with a Kernel Density Estimator (kde) as:
C
TE

D
 P

R
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O
F

f̂h(�u) = 1

Nhd

N∑
i=1

K
( �u − �ui

h

)
, (1)

where K is a multivariate kernel (a non-negative symmetric func-
tion that integrates to one) and h a parameter called bandwidth. 
We set the same bandwidth parameter for each of the two di-
mensions of �u, namely the x, y coordinates (conformal conic pro-
jections from latitudes and longitudes). There are many available 
kernels (e.g., Gaussian, uniform, sigmoid, etc.); we prefer here the 
Epanechnikov kernel that is appropriate with bounded support dis-
tributions:

K(�u) ∝
(

1 − �uT · �u
)
1(�uT ·�u≤1) (2)

We fit a pdf on all core elements from each cluster, with h = ε

(that is the density criterion from dbscan). Since all elements of 
a cluster fall within distance ε of one of the core elements, the 
domain delimited by this cluster is defined as:{
(x, y) ∈R2 s.t. f̂ε(x, y) > 0

}
(3)

We may now formalise the proposed clustering method of this 
article in Algorithm 1. We name � the set of all (x, y)-coordinates 
that constitute our full set of trajectories; and �̂ a sequence of pdf

f̂ i built through recursion.

Algorithm 1 Dependency tree of trajectory segments
function grow_tree(clusters, �̂)

for all c ∈ clusters do
fit density ̂ f to all (xi , yi) ∈ core elements of c
add ̂ f as a new child node to the tree
S ′ ← {

(xi , yi) ∈ � s.t. f̂ (xi , yi) > 0
}

S ← {
(xi , yi) ∈ � s.t. (xi+1, yi+1) ∈ S ′} 
 look backward

for all f̂ � ∈ �̂ do 
 see dashed lines on Fig. 4(c)
S ← S − {

(xi , yi) ∈ S s.t. f̂ �(xi , yi) > 0
}

end for
if card S > threshold then

grow_tree(dbscan(S), �̂ ∪ { f̂ })
end if

end for
end function
� Now we start the recursion
grow_tree(dbscan(last positions), �̂ = { })

4. Labelling trajectories

Algorithm 1 produces a tree whose root node is the airport and 
all paths to leaf nodes describe a potential flow of aircraft follow-
ing landing procedures. Fig. 5 plots a geographical representation 
of this tree. A potential pattern p is therefore described as a suite 
of pdf

(
f̂ p i

)
, i ∈ {0, · · ·np}, np being the depth of the leaf node as-

sociated to p.
As our algorithm considers segments of trajectory, we shall 

keep in mind that some dense segments may emerge as part of 
a set of flights that gets more sparse in later parts of the trajec-
tory. We insist on this aspect as we study the outliers in Section 5. 
Therefore, there may be a number of leaf-to-root paths in our tree 
that do not result in clusters.

We represent all trajectories t in � as a sequence of 
( �u j

) =(
x j, y j

)
, j ∈ {0, · · ·n}. In addition, we describe every possible path 

p by a sequence of 
(

f̂ p i

)
, i ∈ {0, · · ·np}. We define as mp

t the fol-
lowing (np, n)-matrix:(
mp

t

)
i j = (

f̂ p i

( �u j
))

i j (4)

that is, a probability for each point of the trajectory to fall 
within one of our cluster. A square and diagonal matrix mp

t with 
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Fig. 5. Dependency tree (map view to the left, unfolded view to the right) as produced by grow_tree algorithm of Algorithm 1. Latin (resp. Greek) letters label nodes for 
aircraft landing on QFU 14 (resp. QFU 32).
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⎜⎜⎜⎜⎜⎝

0 •
• 0

• •
•

0 •
•
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Fig. 6. Patterns for matrix mp
t ; a • means f̂ p i

( �u j
)
> 0.

∀i, f̂ p i

( �ui
)
> 0 and ∀i 
= j, f̂ p i

( �u j
) = 0 would mean that our can-

didate trajectory passes through all gates of the candidate path, 
and that for each gate, exactly one point of the trajectory falls into 
that gate.

A gate is a nice metaphor to describe a node of our tree as part 
of a procedure, i.e. a candidate leaf-to-root path. We say a point 
of a trajectory falls into a gate if the evaluation of its associated
pdf is strictly positive, that is the trajectory goes through one of 
the bubbles of Fig. 5. A gate can be compared to a distribution 
probability centred around a procedure point that the aircraft must 
fly over before landing.

In practice, those matrices are not square, so it may happen 
that a point falls into two consecutive gates, or that several con-
secutive points of a trajectory fall into the same gate. Yet if all 
points of the trajectory fall in the right order into each gate of a 
possible leaf-to-root path, we can assert that the trajectory flies ac-
cording to this path and may form a cluster with other trajectories 
meeting this criterion.

Fig. 6 shows possible patterns for matrix mp
t . Pattern a) is an 

extension of the diagonal matrix described here above: some con-
secutive points of the trajectory fall in the same gate. Pattern b) is 
representative of trajectories that fly only through gates of a path, 
yet miss one of its gates pi . Pattern c) is a trajectory which fol-
lows a path, yet has one point outside the gates. It cannot match 
the path as the trajectory is too distorted compared to the set of 
other trajectories matching this path.

Pattern d) is similar to c) but must be considered as match-
ing. From the structure of the tree represented on Fig. 5, some 
leaf nodes do not reach the border of the TMA: the origin of the 
trajectories converging to this node is not dense enough to form 
EC
TE

D
 P

R

Fig. 7. Resulting clusters for traffic in Toulouse TMA; significant trajectories for every 
cluster are in full lines, two outliers complete the picture in dashed lines. Crosses 
and dotted lines reflect official procedures currently implemented.

clusters. However, we can bundle all these trajectories as long as 
they fly through all the gates of the path.

Based on this analysis, we associate a numerical score sp
t

from mp
t :

sp
t =

⎧⎪⎨
⎪⎩

0 if ∀i ≥ 0,
∑

j

(
mp

t

)
i, j = 0

0 if ∃t ≥ 0 s.t. ∀ j ≥ t,
∑

i

(
mp

t

)
i, j = 0∑

i max j

((
mp

t

)
i, j

)
otherwise

(5)

Trajectory t matches pattern p if ∀p′ 
= p, sp
t > sp′

t . If sp
t = 0

for all patterns p, trajectory t is flagged as outlier. Optionally, we 
can set a threshold number of flights matching a path to consider 
them as a cluster. Potential clusters with a number of flights below 
the threshold may redistribute the trajectories to other candidate 
patterns or to the pool of outliers.

Fig. 7 plots one flight (the one with the highest score) for each 
cluster determined by our method (with a threshold number of 
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Fig. 8. Outliers with respect to our clustering of trajectories: incomplete trajectories.

flights of 5). The structure of traffic becomes clear, with several di-
rections of incoming flights and different ways to align on both 
QFU. We added to this plot two types of information: two outlier 
flights in dashed lines complete the picture for flights coming from 
the South; crosses and dotted lines reflect standard arrival proce-
dures (STARs) ruling approaches at Toulouse airport.

The dense traffic from the North and bound for QFU 14 splits 
into several clusters showing how aircraft are scheduled according 
to a pattern of linear hold: aircraft are scheduled by timing their 
turn into final approach so as to land no less than two minutes 
apart. One of the clusters is formed from trajectories being warped 
even further in order to respect tight scheduling constraints; on 
the other hand, a cluster forms from flights from the North which 
get clearance from the ATC to shortcut the entry point to the TMA 
and align directly into final approach.

These two emerging clusters show how STAR procedures pub-
lished by eAIP2 are not sufficient to describe traffic flows around 
airports. To sum up, it is interesting to see how official procedures 
somehow emerge from the clustering we produce, and how the 
picture is also completed with common practices used to regulate 
the traffic, i.e. giving aircraft the best approaches for their direction 
of travel according to the current traffic and weather conditions.

From a performance point of view, the building of the depen-
dency tree described in Section 3 took few seconds to compute 
with the implementation of dbscan provided by scikit-learn (In-
tel Core i5 2.40 GHz). The labelling was the most intensive part as 
it took about 6 minutes with our pure Python implementation to 
label all trajectories.

5. A study of the outliers

Our clustering of trajectories yields about 30% of outliers. The 
study of the outliers is interesting as these trajectories may contain 
information about the circumstances under which a landing proce-
dure may differ from the norm and result in dangerous behaviour, 
or worse, traffic incidents.

With our procedure for attributing a label to a trajectory, we 
outcast by default those that lack data around landing. Fig. 8 plots 
all trajectories for which the last recorded points do not end in 
one of our original clusters above the runways (refer to Fig. 4(a)). 
We find on the lower left-hand side a series of trajectories which 

2 https://www.sia .aviation -civile .gouv.fr/.
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Fig. 9. Outliers with respect to our clustering of trajectories: trajectories on holding 
stacks.

do not seem to land at Toulouse airport. After investigating this 
anomaly, we found that the callsigns associated to these trajec-
tories correspond to flights from Nantes or Bordeaux, which land 
in Toulouse before taking off again and flying further to their fi-
nal destination (here Tenerife, Canaries and Agadir) with the same 
callsign. As we made this mistake in the preprocessing of our 
trajectories (the trajectories should have been trimmed after the 
aircraft landed) in good faith,3 we mention them here as they 
demonstrate that the method we present was robust enough to 
keep them out of any cluster.

Fig. 9 plots trajectories being put on holding stacks of various 
orientations and positions. We remark that the northernmost hip-
podrome could be dense enough to form some kind of cluster. 
However, as no clear way out of this pattern emerges (linear holds
are pushed to extremes in such saturated situation), our algorithm 
will not make a pattern out of these trajectories. It could be in-
teresting to study their distance to statistically standard landings 
once they are back on a regular track. More generally, some trajec-
tories enter the TMA from areas of lesser density, yet still match 
existing clusters on the latter part of the landing; we could craft a 
refined way to match a trajectory to a cluster and use this degree 
of matching to evaluate some degree of risk in an approach.

The outlier trajectory on Fig. 10 is associated to callsign
AF526KB on December 26. This flight started its approach for 
QFU 32 but changed halfway and aligned on QFU 14. Indeed, a 
QFU change at the turning point of this trajectory is consistent 
with the landing history of that day. If we look more closely on 
Fig. 11, we can see that the altitude profile (pale dashed lines) is 
not surprising, yet there seems to be a sudden change in ground 
speed (full line) and vertical speed (dotted-dash) at 20:52 on that 
day, about 50 seconds before the aircraft changes its trajectory. 
As sudden as the change may look, the aircraft managed to align 
properly on QFU 14.

A late QFU change may lead to unstable approaches, which may 
lead to a late touchdown on the runway (long landing), which is 
a potential risk of runway excursion. In practice, the estimation of 
the different conditional probabilities involved in the estimation of 
the risk of runway excursion (like the probability of an unstable 
approach for flights subject to a late QFU change), may only be 

3 Institutions like Eurocontrol try to enforce using a different Globally Unique 
Flight Identifier (GUFI) for each leg of this kind of flights rather than callsigns that 
are subject to such misinterpretations. GUFIs would still be helpless with rerouted 
flights.

https://www.sia.aviation-civile.gouv.fr/
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Fig. 10. Trajectory clusters and outlier flight AF526KB (bold) on December 26.

Fig. 11. QFU change appears in speed plots on outlier flight AF526KB on December 
26, 20:52.

roughly evaluated by experts since those events are not properly 
recorded or reported by airlines. A good analysis of outlier tra-
jectories yielded from a bigger amount of data could improve the 
estimation of such conditional probabilities, hence improve the es-
timation of such risks.

6. Conclusion and future works

We presented a new method to cluster aircraft trajectories be-
fore landing and compared the resulting clusters to official STAR 
procedures for Toulouse airport: the clustering complements the 
procedures well as it adds insight concerning common practices of 
the ATC in charge of approaches. Then we explained how the study 
of outliers may nurture a more precise risk assessment analysis. In 
the specific case of outlying trajectory we address, we find a late 
QFU change to a shorter STAR procedure: a further analysis on a 
larger time scale of trajectories subject to a late QFU change could 
be a valuable result. More generally, we believe that a source of 
data with a global view on traffic (such as ADS-B) in addition to 
other data from flight data managers (owned by airline operators) 
announces promising perspectives as it considers each aircraft in 
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context, with information about how other aircraft fly in the same 
environment.

Future works may include a validation on other airports with 
various runway configurations, a better metric measuring a devi-
ation from a trajectory cluster core. A study of the evolution of 
traffic patterns over the seasons, correlated with meteorological re-
ports (METAR) would also be precious, as weather (gale, fog, etc.) 
has a strong impact on how traffic in the TMA is regulated and 
on how aircraft fly before landing. The use of other available data 
like vertical speed, indicated airspeed, roll, track, or heading angles 
would also be of interest; as well as a coupling with ACARS mes-
sages aircraft send shortly before landing with information about 
required maintenance operations.
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