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Abstract Spectral induced polarization spectra were carried out on three graphitic schists and two
graphitic sandstones. The microstructural arrangement of graphite of two graphitic schists was studied
with thin sections using transmitted and reflected light optical and electron microscopic methods. Chemical
maps of selected areas confirm the presence of carbon. The complex conductivity spectra were measured in
the frequency range 10 mHz to 45 kHz and in the temperature range +20 °C down to−15 °C. The measured
spectra are fitted with a double Cole‐Cole complex conductivity model with one component associated with
the polarization of graphite and the second component associated with the Maxwell‐Wagner polarization.
The Cole‐Cole exponent and the chargeability are observed to be almost independent of temperature
including in freezing conditions. The conductivity and relaxation time are dependent on the temperature in
a predictable way. As long as the temperature decreases, the electrical conductivity decreases and the
relaxation time increases. A finite element model is able to reproduce the observed results. In this model, we
consider an intragrain polarization mechanism for the graphite and a change of the conductivity of the
background material modeled with an exponential freezing curve. One of the core sample (a black schist),
very rich in graphite, appears to be characterized by a very high conductivity (approximately 30 S/m). Two
induced polarization profiles are discussed in the area of Thorens. The model is applied to the chargeability
data to map the volumetric content of graphite.

1. Introduction

Induced polarization is a geophysical (galvanometric) method able to image the low‐frequency polarization
properties of rocks (e.g., Dahlin & Leroux, 2012; Schumberger, 1920). By “low frequency,” we typically refer
to frequencies below ~10 kHz. In this frequency range, the type of polarization mechanisms we are dealing
with are nondielectric in nature. Induced polarization is indeed related to the accumulation or depletion of
electrical charges at some characteristic length scales (typically grain/pore sizes) of the porous material and
electro‐diffusion mechanisms under the application of a primary electrical field (e.g., Marshall & Madden,
1959; Olhoeft, 1985). Induced polarization has a long history in mining geophysics as an efficient geophysi-
cal method to localize ores (e.g., Mahan et al., 1986; Schlumberger, 1920). That said, graphite‐type rocks have
not been thoroughly investigated in this context.

Schists are typically medium‐grade metamorphic rocks with distinctly planar tectonite fabrics, that is,
foliations (Passchier & Trouw, 2005). Schist foliations are defined by the presence of through going
sheets of phyllosilicate minerals where individual grains are large enough to be seen by the naked
eye. This mineral arrangement typically also imparts a tendency to break easily parallel to foliation
planes (fissility). This arrangement is also responsible for an anisotropy of mechanical strength that is
just one physical property affected by the foliation. It is reasonable to expect other physical properties
of schists to be similarly anisotropic. The planar phyllosilicates that most commonly define the fabrics
of these rocks are micas, but graphite‐rich schists are also common with some black schists very rich in
graphite formed by the medium‐grade metamorphism of sediments initially rich in organic matter
(Landis, 1971).

Graphite is a mineral consisting of layers of graphene made of carbon atoms bonded together in a hexagonal
two‐dimensional structure. Temperature has to exceed 400 °C to form crystalline graphite and the level of
crystallinity depends on the degree of metamorphosis (Simandl et al., 2015). Graphite is considered one of
the top 30 critical minerals in 2017 by the European Union (European Commission, 2017) for its use in
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lubricants, electrodes, solar panels, and batteries. Since graphite is a semi-
metal, its electrical properties (like those of semiconductors and metals)
have a strong influence on the conductivity and polarization properties
of porous media in which they are located (Revil, Florsch, et al., 2015,
Revil, Abdel Aal, et al., 2015; Revil, Coperey, Mao, et al., 2018). While it
is broadly recognized that graphite is an excellent electrical conductor
(e.g., Pierson, 1993), few works have addressed its polarization properties.
The only work, to our knowledge, about the complex conductivity of gra-
phitic schists is the recent paper by Börner et al. (2018). They measured
the complex conductivity of a black schist and an augen gneiss both col-
lected in the Main Central Thrust shear zone in the Himalayas of central
Nepal. Their results underline the extraordinary high chargeability and
anisotropy of the black schist with important consequences for interpret-
ing magnetotelluric data in these environments. That said, this work
remains very qualitative with respect to the body of fundamental knowl-
edge accumulated over the last years in understanding the mechanisms
of polarization of rocks with semiconductors, semimetals, and metals

(Mao & Revil, 2016; Misra et al., 2016a, 2016b; Revil, Coperey, Mao, et al., 2018).

Our primary goal is in this paper is to develop a model of the complex conductivity of these rocks analyz-
ing the effect of graphite on the complex conductivity of the whole rock (conduction and polarization). In
order to test this model, we performed complex conductivity measurements on five core samples from the
Alps (France and Switzerland). The spectra were obtained in the temperature +20 °C to −15 °C in order
to better constrain the underlying physics of the conduction and polarization processes. We also per-
formed an electrical conductivity experiment on pure graphite and polarization experiments at different
volumetric contents of graphite in sand. In addition, we performed numerical experiments showing
how the observed spectra can explain numerically the polarization process. In this case, we consider
the electro‐migration and charge accumulation in the graphite particles, themselves dispersed in a back-
ground material made of mineral (nonconducting) grains and pore water. Finally, we present induced
polarization field data in which we image the conductivity and chargeability over two 600‐m‐long profiles
carried out in Thorens (French Alps) in an area where permafrost and graphitic schists are known to
be present.

2. Complex Conductivity of Rocks
2.1. A General Complex Conductivity Expression

In induced polarization, a rock is characterized in the frequency domain by its conductivity amplitude and
its phase lag between the current and the electrical field. In this section, we consider an isotropic material
made of metallic and nonmetallic grains and liquid pore water (Figure 1). The amplitude and phase can
be recast into a complex‐valued conductivity. The in‐phase (real) component characterizes the ability of
rocks to conduct an electrical current while its quadrature (out‐of‐phase, imaginary) conductivity describes
the ability of rocks to reversibly store electrical charges (Olhoeft, 1981). Typically, the complex conductivity
of a rock entering into Ampère's law is written as

σ* ¼ σ∞ 1−
M
iωτð Þc

� �
; (1)

where σ* denotes the complex conductivity,ω is the angular frequency (rad/s), σ∞ denotes the instantaneous
(high‐frequency) conductivity of the rock (in S/m), σ0 denotes the DC (steady state, direct current) conduc-
tivity (S/m),M = (σ∞ − σ0)/σ∞ (dimensionless) denotes its chargeability, τ (in s) is the Cole‐Cole relaxation
time, and c (dimensionless) denotes the Cole‐Cole exponent measuring the broadness of the distribution of
the relaxation times (Cole & Cole, 1941).

A generalization of this equation for k‐induced polarization distributions plus an explicit relationship for the
Maxwell Wagner polarization can be written as

Figure 1. Sketch of the mixture between a background (made of nonmetal-
lic grains and pore liquid water plus eventually some ice) and graphite. The
background material can be partially saturated at a water content θ.
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σ* ¼ σ∞ 1− ∑
K

k¼1

Mk

1þ iωτkð Þck
� �

; (2)

Mk ¼ σ∞k −σ0k
σ∞k

; (3)

σ0 ¼ σ∞ 1− ∑
K

k¼1
Mk

� �
; (4)

whereMk, ck, and τk denote the chargeability, the Cole‐Cole exponent, and the relaxation time for process k
for a total number of K polarization processes. For the two polarization processes, we have

σ* ¼ σ∞ 1−
M1

1þ iωτ1ð Þc1 −
M2

1þ iωτ2ð Þc2
� �

; (5)

σ∞ ¼ σ∞1 þ σ∞2 ; (6)

σ0 ¼ σ∞ 1−M1−M2ð Þ; (7)

Figure 2. Sketch of the polarization of the nonmetallic grains and graphite. (a) The nonmetallic grain such as clays pos-
sesses an electrical double layer. Under the influence of an external electrical fieldE0, this electrical double layer polarizes.
(b) Polarization of graphite. The charges carriers inside the grain (delocalized electrons and p‐holes) polarize the grain
giving then rise to the formation of field‐induced diffuse layers (DL). The first column defined the instantaneous con-
ductivity σ∞ (where all charges carriers participate in the conduction process) while the second column defines the DC
conductivity σ0 (part of charges are no more available for conduction that is why σ∞ > σ0).
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where M1 and M2 are the chargeabilities (dimensionless), c1 and c2 are the two Cole‐Cole exponents
(dimensionless), and τ1 and τ2 are the relaxation times (expressed in s). The index 1 and 2 refer to two
dispersion processes, respectively. With these relationships, we have

σ0≠σ01 þ σ02; (8)

andσ∞1 ≠σ02. If the total chargeability is defined byM= (σ∞− σ0)/σ∞, we haveM1+M2 =M from equation (7)

Figure 3. Pictures of cut faces of the five core samples. (a) Valt1 core sample (graphitic schist). (b) Valt2 core sample (gra-
phitic schist). (c) ValT3 core sample (carbonized black schist). (d) S1 (graphitic tight sandstone 1). (e) S2 (graphitic tight
sandstone 2). All the core samples are from Val Thorens (France) except core sample S2, which is from Mont‐Fort (Swiss
Alps, Switzerland). In (a)–(c) the traces of the schist foliations are highlighted by white dashed lines, and mica (m.) and
graphite (gr.) pods are annotated.

Table 1
Petrophysical Parameters of the Core Samples

Sample Type Origin CEC (meq/100 g) Porosity ϕ (‐) σ′ (S/m) at 1 Hz (20 °C) φm (‐)

ValT1a Graphitic schist (zone 1) French Alps (Val Thorens) 2.1 0.042 0.00037 0.117
ValT1b Graphitic schist (zone 1) French Alps (Val Thorens) 2.1 0.042 0.015 0.117
ValT2a Graphitic schist (zone 1) French Alps (Val Thorens) 2.4 0.016 0.000687 0.089
ValT2b Graphitic schist (zone 1) French Alps (Val Thorens) 2.4 0.016 0.00171 0.089
ValT3 Schist carbonized French Alps (Val Thorens) 5.6 0.147 39.64 Unknown
S1 Graphitic tight sandstone French Alps (Val Thorens) 1.2 0.02 0.000151 0.054
S2 Graphitic tight sandstone Switzerland Alps (Mont‐Fort) 0.9 0.026 0.000505 0.031

Note. S1 and S2 correspond to two tight sandstones. Samples ValT1, ValT2, and ValT3 correspond to three graphitic schists. The volume fraction of graphite is
determined from equation (18), which is validated by the data set shown in Figure 6c. The in‐phase conductivity is reported at a pore water conductivity of
0.019 S/m (25 °C).
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and since 0 ≤M ≤ 1, we have 0 ≤M1+M2 ≤ 1. In our model, one of the two mechanisms of polarization (for
instance 1) would correspond to the polarization of graphite while the second mechanism (therefore
mechanism 2) would correspond to the polarization of the electrical double layer of the insulating grains

Figure 4. Sample ValT1. (a) Backscattered electron (BSE) image and (b–f) element maps acquired by electron dispersive
spectroscopy (EDS) on a Zeiss Sigma SEM, operating at 8.5‐mm WD, 15‐keV accelerating voltage. Mapped element is
labeled at bottom left of each image, and mineral phases consistent with the mapped mineralogy are also labeled.
Photomicrographs in (g and i) plane‐polarized light (PPL) and (h and j) reflected light highlight the two microstructures
that dominate in these samples. (g and h) Mode 1: variable thickness and sometimes microfolded layers comprising large
euhedral graphite (gr) grains surrounded by quartz (qtz) and chlorite (cht) pressure fringes. (i and j) Mode 2: disseminated
graphite plus phyllosilicates (phy) with a weak foliation.
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forming the skeleton of the background material (Figure 2). A third polar-
ization mechanism would correspond to the Maxwell‐Wagner polariza-
tion (see Appendix A). The goal of the next subsections is to describe a
model of polarization for these two components. In our experiments, we
will focus however on this first contribution associated with graphite since
a small amount of graphite (say 1% vol.) is enough to mask the back-
ground polarization.

2.2. The Contribution Associated With the Background

The instantaneous conductivity is the conductivity of the material just
after the application of an electrical field (see Figure 2; high‐frequency
asymptotic conductivity in frequency domain induced polarization).
The DC or stationary conductivity denotes a smaller conductivity
including the effect of charge carrier blockage responsible for polariza-
tion (Figure 2). Using a volume‐averaging approach, Revil (2013)
obtained the following expressions for the high‐ and low‐frequency con-
ductivities of the background material (i.e., for the instantaneous con-
ductivity and DC conductivity of the background material; see
Figure 2),

σ∞
2 ¼ 1

F
σw þ 1

Fϕ

� �
ρgBCEC; (9)

σ02 ¼
1
F
σw þ 1

Fϕ

� �
ρg B−λð ÞCEC: (10)

In these equations, σw (in S/m) denotes the pore water conductivity
(which depends on both salinity and temperature), F (dimensionless)
the intrinsic formation factor related to the connected porosity ϕ
(dimensionless) by the first Archie's law F = ϕ‐m where m (dimension-
less) is called the first Archie exponent or porosity exponent (Archie,
1942), ρg is the grain density (in kg/m3, usually ρg = 2,650 kg/m3),
and the cation exchange capacity (CEC) denotes the cation exchange
capacity (in C/kg and often expressed in meq/100 g with
1 meq/100 g = 963.20 °C/kg). The CEC is mainly sensitive to the clay
type (e.g., kaolinite, illite, smectite) and the weight fraction of these clay
minerals in the rock. In equations (9) and (10), the quantity B
(expressed in m2·s−1·V−1) denotes the apparent mobility of the counter-
ions for surface conduction and the quantity λ (expressed in m2·s−1·V
−1) denotes the apparent mobility of the counterions for the polariza-
tion associated with the quadrature conductivity (see Revil et al.,
2017, and references therein). A dimensionless number R is also intro-
duced with

R ¼ λ
B
; (11)

(see Revil et al., 2017 for further explanations). This number is intro-
duced because it corresponds to the maximum value of the chargeabil-
ity in absence of metallic particles. From previous studies (e.g.,
Ghorbani et al., 2018), we have Β (Na+, 25 °C) = 3.1 ± 0.3 × 10–
9 m–2·s–1·V–1 and λ (Na+, 25 °C) = 3.0 ± 0.7 × 10–10 m–2·s–1·V–1.
These two quantities have been determined using large data sets of
rock samples (including hundreds of core samples) and are therefore

Figure 5. Representative Raman spectrum of graphite. D1, G, and D2 bands
are fitted and illustrated. R2 ratio and the estimatedmaximummetamorphic
temperature (371 °C) are also provided.

Figure 6. Equipment for the complex conductivity measurements. (a)
Thermostat bath KISS K6 used for the temperature measurements.
Dimensions 210 × 400 × 546 mm: bath volume 4.5 L. (b) Impedance meter
ZEL‐SIP04‐V02 used for complex conductivity meter (see Zimmermann
et al., 2008, for further details). (c) Chargeability versus graphite content for
seven mixes of graphite and silica sand. The chargeabilityM was calculated
from equation (3) by replacing the measured in‐phase conductivity at the
high and low frequency (10 kHz and 10 mHz). In this case, the sand used for
the background had a very small chargeability (~10−3).
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reliable. It follows that the dimensionless number R is typically around 0.09 ± 0.01 (independent of the
temperature and saturation; Revil, Coperey, Deng, et al., 2018).

From equations (3), (9), and (10), we obtain the following expression of the chargeability of
the background,

M2 ¼
ρgλCEC

ϕσw þ ρgBCEC
: (12)

This equation shows explicitly the dependence between the background chargeability M2, the pore water
conductivity, and the CEC. We also have the propertyM2 ≤ R~0.09 ± 0.01. Therefore, the background char-
geability is generally quite small (less than 10% or 100 mV/V).

The Cole‐Cole time constant τ2 is associated with a characteristic pore size Λ (in m; see Revil & Florsch,
2010; Revil et al., 2012) according to

Figure 7. Complex conductivity spectra of samples S1 and S2. (a) In‐phase conductivity of sample S1. (b) Quadrature con-
ductivity of sample S1. (c) In‐phase conductivity of sample S2 (the phase reaches ~100 mrad). (d) Quadrature conductivity
of sample S2 (the phase reaches ~80 mrad at the peak frequency). The plain lines represent the fit of the data with a
double Cole‐Cole as described in Appendix A. The Cole‐Cole parameters are reported in Tables 2–7. We did not try to fit
the high frequencies because of electromagnetic effects and we did not try to interpret the Maxwell‐Wagner
polarization for the same reason. Only the data with an uncertainty smaller than 1%were considered in the Cole‐Cole fit of
the data.
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τ2 ¼ Λ2

2DS
þð Þ

; (13)

whereDS
þð Þ denotes the diffusion coefficient of the counterions in the Stern layer (in m2/s). The value of this

diffusion coefficient DS
þð Þ should relate to the mobility of the counterions in the Stern layer, βSþð Þ , by the

Nernst‐Einstein relationship,

DS
þð Þ ¼

kbTβSþð Þ

q þð Þ
��� ��� ; (14)

where T denotes the absolute temperature (in K), kb denotes the Boltzmann constant
(1.3806 × 10−23 m2 kg s−2 K−1), and |q(+)| is the charge of the counterions in the Stern layer coating
the surface of the grains (|q(+)| = e where e denotes the elementary charge for Na+). Since each relaxa-
tion time depends on a pore size, the Cole‐Cole exponent c2 measures the broadness of the pore size
distribution.

Figure 8. Complex conductivity spectra of sample ValT2. (a) In‐phase conductivity (transverse component). (b)
Quadrature conductivity (transverse component). The phase reaches ~200 mrad at its maximum. (c) In‐phase conduc-
tivity (in‐plane component). (d) Quadrature conductivity (in‐plane component). The phase reaches ~300 mrad at the peak
frequency. The plain lines represent the fit of the data with a double Cole‐Cole as described in Appendix A. The Cole‐Cole
parameters are reported in Tables 2–7. The linear scale was used to better compare the data with the Cole‐Cole fit. Only the
data with an uncertainty smaller than 1% were considered in the Cole‐Cole fit of the data.
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2.3. The Contribution Associated With Graphite

For a mixture of nonmetallic grains, pore water, and metallic grains, Revil, Florsch, et al., (2015), Revil,
Abdel Aal, et al., (2015) have demonstrated that the chargeability of the mixture is given by

M ¼ 9
2
φm þM2; (15)

where φm denote the volume fraction of metallic particles in the medium. In addition, the instantaneous and
the steady state conductivities of the mixture are related to the instantaneous and steady state conductivities
of the background material according to (Revil, Florsch, et al., 2015)

σ∞ ¼ σ∞2 1þ 3φm þ …ð Þ; (16)

σ0 ¼ σ02 1−
3
2
φm þ …

� �
: (17)

Using equations (5), (6), and (8), this implies that

Figure 9. Complex conductivity spectra of sample ValT1. (a) In‐phase conductivity (transverse component). (b)
Quadrature conductivity (transverse component). The phase reaches ~400 mrad at its peak frequency. (c) In‐phase con-
ductivity (in‐plane component). (d) Quadrature conductivity (in‐plane component). The phase reaches ~600 mrad at the
peak frequency. The plain lines represent the fit of the data with a double Cole‐Cole as described in Appendix A. The Cole‐
Cole parameters are reported in Tables 2–7. Only the data with an uncertainty smaller than 1% were considered in the
Cole‐Cole fit of the data.
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M1 ¼ 9
2
φm; (18)

σ∞1 ¼ 3φmσ
∞
2 : (19)

Finally, from equations (18) and (19), we have

σ01 ¼ σ∞1 1−
9
2
φm

� �
¼ 3φm 1−

9
2
φm

� �
σ∞2 : (20)

The last parameter to obtain is the relaxation time τ1 (in s). It is given by
(Revil, Coperey, Mao, et al., 2018)

τ1≈
a2e2Cm

kbTσ∞2
; (21)

where a denotes the diameter of the metallic particle (in m), Cm denotes
the concentration of the charge carriers in the solid metallic particle (in
m−3), and e the elementary charge (1.6 × 10−19 °C).

2.4. Influence of Temperature and Permafrost

We discuss now the temperature dependence of the complex conductivity
above the freezing temperature (typically but not necessarily around
0 °C). Following Vinegar andWaxman (1984), the pore water conductivity
and mobilities B and λ have all the following linear temperature
dependence:

Figure 10. Spectral induced polarization of sample ValT3 (black schist). (a) In‐phase conductivity spectra in the direction
and normal to the foliation plane. (b) Phase spectra in the direction and normal to the foliation plane. Note the high
conductivity and small polarization along the foliation plane. This is consistent with graphite above a percolation
threshold in this direction. Note the low conductivity and high polarization normal to the foliation plane consistent with
disconnected graphite in this direction.

Figure 11. Electrical conductivity at 1 Hz of sample ValT3 (black schist)
along the foliation plane. This sample exhibits an exceptionally high elec-
trical conductivity (comprised between 30 and 40 S/m), quite temperature
independent, and likely associated with graphite being above a percolation
threshold through the core sample. The error bars are here determined from
the uncertainty associated with the three cycles used at each frequency.
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Θ Tð Þ ¼ Θ T0ð Þ 1þ αT T−T0ð Þ½ �; (22)

where T0 and T are the reference temperature (T0 = 25 °C) and the temperature (in °C), respectively;
Θ(T) corresponds to σw(T), B(T), or λ(T); and Θ(T0) corresponds to the same property at T0, and the sen-
sitivity αT is in the range 0.019–0.022/°C (e.g., Revil et al., 2017). According to equation (22), the conduc-
tivity goes to zero at a temperature of −25 °C, remarkably close to the so‐called eutectic temperature TE
close to −21 °C for NaCl. Actually the eutectic temperature is exactly predicted for αT = 1/(TE
+T0) = 0.0217/°C. Reaching the eutectic temperature leads to the simultaneous crystallization of ice
and salt. In equation (22), the temperature dependence of the pore water conductivity is controlled by
the temperature dependence of the ionic mobilities of the cations and anions. Taking equations (9) and
(10) (together with equation (22)) into equations (1)–(4), the temperature dependence of the complex con-
ductivity (i.e., in‐phase and quadrature conductivities) is therefore imposed by the thermal dependence of
charge carrier mobilities.

Equations (2)–(4) need to show explicitly the dependence of the different properties with the water content.
Assuming that the first and second Archie exponents are equal to each other, that is, n=m (see Revil, 2013),
and assuming the segregation of the salt in the liquid water phase, these equations can be written as

σ∞2 ¼ θm−1 ϕσw þ ρgBCEC
� �

; (23)

σ02 ¼ θm−1 ϕσw þ ρg B−λð ÞCEC
h i

: (24)

Below freezing conditions, the water content of the liquid water is changing with the temperature according
to a freezing curve. Duvillard et al. (2018) and Coperey et al. (2019) used an exponential freezing curve for
the volumetric water content θ(T) written as

Table 2
Sample ValT1a, Cole‐Cole Parameters Resulted From Fitting the Laboratory Measurements With Double Cole‐Cole Model

Temperature (°C) σ∞ (S/m) M1 (‐) MMW (‐) c1 (‐) cMW (‐) τ1 (s) τMW (s) RMS (%)

20 2.18E−03 0.569 0.278 0.67 0.21 9.81E−07 4.41E−07 2.72E−01
15 2.01E−03 0.581 0.275 0.70 0.21 1.13E−06 4.46E−07 2.86E−01
10 1.95E−03 0.588 0.285 0.74 0.22 1.12E−06 3.08E−07 3.03E−01
5 1.90E−03 0.663 0.228 0.67 0.20 7.54E−07 2.96E−07 2.73E−01
2 1.75E−03 0.617 0.277 0.70 0.20 1.05E−06 8.77E−08 3.07E−01
0 1.74E−03 0.651 0.250 0.74 0.22 9.75E−07 2.92E−07 2.52E−01
−2 7.24E−04 0.751 0.226 0.47 0.02 3.12E−06 1.08E−07 1.07E+00
−5 4.52E−04 0.528 0.360 0.52 0.31 1.16E−05 2.55E−07 1.56E+00
−8 2.99E−04 0.495 0.399 0.52 0.43 2.28E−05 2.09E−06 1.74E+00
−10 1.90E−04 0.477 0.410 0.53 0.67 8.99E−05 5.55E−06 1.92E+00
−15 1.43E−04 0.304 0.612 0.58 0.69 3.62E−04 6.19E−06 1.73E+00

Table 3
Sample ValT1b, Cole‐Cole Parameters Resulted From Fitting the Laboratory Measurements With Double Cole‐Cole Model

Temperature (°C) σ∞ (S/m) M1 (‐) MMW (‐) c1 (‐) cMW (‐) τ1 (s) τMW (s) RMS (%)

20 1.00E−01 0.551 0.380 0.60 0.62 1.31E−02 8.34E−06 3.62E−01
15 9.99E−02 0.515 0.428 0.60 0.53 1.33E−02 6.17E−06 3.73E−01
10 9.98E−02 0.463 0.488 0.59 0.52 1.38E−02 4.35E−06 3.71E−01
5 9.93E−02 0.511 0.443 0.60 0.56 1.17E−02 9.45E−06 3.86E−01
2 9.51E−02 0.496 0.463 0.59 0.56 1.18E−02 6.53E−06 3.42E−01
0 9.99E−02 0.501 0.460 0.60 0.63 1.18E−02 9.27E−06 5.62E−01
−2 9.99E−02 0.515 0.449 0.59 0.64 1.12E−02 1.15E−05 3.38E−01
−5 9.17E−02 0.501 0.465 0.59 0.63 1.19E−02 9.97E−06 2.95E−01
−8 8.98E−02 0.459 0.514 0.59 0.76 1.20E−02 1.24E−05 3.22E−01
−10 7.61E−02 0.452 0.519 0.59 0.62 1.59E−02 1.34E−05 2.82E−01
−15 4.77E−02 0.455 0.515 0.61 0.49 2.55E−02 3.37E−05 2.73E−01
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θ Tð Þ ¼ ϕ−θrð Þexp −
T−TF

TC

� �
þ θr ;T≤TF

ϕ; T>TF

8<
: ; (25)

which has the advantage to only require three parameters, TF (the liquidus or freezing point), TC (a charac-
teristic temperature), and θr (the residual water content).

3. Laboratory Experiments
3.1. Core Sample Characterization

We consider in this study four samples from the French Alps (Val Thorens, ~2,850 m above sea level) and
one sample from the Swiss Alps (Mont Fort, 3,328 m above sea level). Three of these samples are graphitic
(black) schists (ValT1, ValT2, and ValT3) and two are graphitic tight sandstones (S1 and S2). The complex
conductivity of the two graphitic schists (ValT1 and ValT2) was measured both normal to foliation plane
(experiments labeled ValT1.a and ValT2.a) and along it (experiments labeled ValT1b and ValT2b). The sam-
ples are shown in Figure 3.

The samples were first dried for 24 hr at about 50 °C and then saturated under vacuum with NaCl solutions
of known conductivity (σw = 0.019 S/m at 25 °C; see Woodruff et al., 2014, for additional details regarding
this procedure). The core samples were left in this solution for two weeks to complete saturation. The com-
plex conductivity spectra were obtained over the temperature range of +20 °C to −15 °C. The samples were
put in a bag and immersed in a thermally controlled bath (Kiss K6 from Huber). For each experiment, sam-
ple and bath temperatures were recorded every minute with thermocouples in contact with the core sample
and one sensor placed directly in the bath. We use K‐thermocouples and a data logger CR1000 from
Campbell scientific for the thermal monitoring.

Table 5
Sample ValT2b, Cole‐Cole Parameters Resulted From Fitting the Laboratory Measurements With Double Cole‐Cole Model

Temperature (°C) σ∞ (S/m) M1 (‐) MMW(‐) c1 (‐) cMW (‐) τ1 (s) τMW (s) RMS (%)

20 3.92E−03 0.485 0.164 0.84 0.54 3.87E−02 6.55E−04 7.05E−01
15 2.70E−03 0.438 0.155 0.87 0.53 4.32E−02 5.03E−04 8.51E−01
10 2.01E−03 0.425 0.184 0.84 0.48 5.52E−02 1.93E−04 7.52E−01
5 1.48E−03 0.400 0.220 0.81 0.44 7.61E−02 8.95E−05 6.40E−01
2 1.24E−03 0.407 0.202 0.80 0.47 9.49E−02 8.19E−05 5.24E−01
0 1.14E−03 0.388 0.239 0.78 0.45 1.10E−01 3.28E−05 4.52E−01
−2 9.83E−04 0.420 0.212 0.77 0.59 1.31E−01 7.06E−05 3.05E−01
−5 8.13E−04 0.362 0.329 0.77 0.44 1.87E−01 5.24E−05 1.81E−01
−8 5.00E−04 0.445 0.202 0.75 0.61 2.41E−01 4.05E−04 1.60E−01
−10 3.97E−04 0.495 0.142 0.73 0.80 2.71E−01 1.04E−03 3.93E−01
−15 2.24E−04 0.492 0.155 0.72 0.82 4.66E−01 1.88E−03 5.67E−01

Table 4
Sample ValT2a, Cole‐Cole Parameters Resulted From Fitting the Laboratory Measurements With Double Cole‐Cole Model

Temperature (°C) σ∞ (S/m) M1 (‐) MMW (‐) c1 (‐) cMW (‐) τ1 (s) τMW (s) RMS (%)

20 2.47E−03 0.367 0.417 0.30 0.69 9.53E−04 2.92E−05 9.87E−02
15 2.31E−03 0.354 0.460 0.32 0.69 1.21E−03 2.56E−05 9.11E−02
10 2.00E−03 0.371 0.451 0.31 0.70 1.10E−03 3.12E−05 9.82E−02
5 1.86E−03 0.323 0.520 0.31 0.67 1.61E−03 2.43E−05 9.66E−02
2 1.67E−03 0.375 0.474 0.30 0.72 8.96E−04 2.80E−05 8.82E−02
0 1.55E−03 0.374 0.478 0.30 0.72 9.91E−04 2.93E−05 9.54E−02
−2 1.56E−03 0.321 0.550 0.31 0.69 1.39E−03 2.25E−05 9.64E−02
−5 1.14E−03 0.390 0.504 0.29 0.78 4.98E−04 2.84E−05 9.28E−02
−8 9.31E−04 0.412 0.497 0.28 0.78 3.06E−04 2.86E−05 9.96E−02
−10 8.18E−04 0.395 0.529 0.27 0.78 2.74E−04 2.74E−05 1.05E−01
−15 6.70E−04 0.332 0.613 0.27 0.79 2.76E−04 2.29E−05 1.10E−01
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Furthermore, the porosity and CEC of the core samples were obtained for all the core samples (see
Table 1). The CEC was measured with the cobalthexamine method (Aran et al., 2008; Ciesielski et al.,
1997). Low values of CEC were obtained indicating the absence of clay materials in the core samples.

To better understand the source of the observed electrical behavior of these samples, we have character-
ized the microstructural arrangement of graphite within samples ValT1 and ValT2. Standard polished
thin sections of the samples were examined using transmitted and reflected light optical, and electron
microscopic methods (see also Kirilova et al., 2017). The latter employed a Zeiss Sigma FE‐SEM operat-
ing at 8.5‐mm working distance and 15‐keV accelerating voltage at Otago University's Microscale and
Nanoscale Imaging Unit. Images were obtained in secondary electron and backscattered electron modes.
Chemical maps of selected areas were also obtained using an Oxford Instruments EDS detector and
Aztec software.

The element maps (Figures 4a–4d) demonstrate that the phase that resembles graphite in hand specimen
and optical microscope is indeed composed of carbon. They also highlight the dominance of quartz and
chlorite in pressure fringes. However, because they are not quantitative we cannot precisely define the
mineralogy of the phyllosilicates from them. The distribution of graphite in the samples is bimodal.
Mode 1 graphite grains (Figures 4g and 4h) are approximately 250 μm in diameter and euhedral. They
are aggregated in isoclinally folded pods, surrounded by quartz and chlorite pressure fringes. Mode 2 gra-
phite (Figures 4i and 4j) grains are much smaller, less than tens of micrometers, and individual grains
are elongated and spread along foliation. The total area of Mode 2 graphite appears to be less than that
of Mode 1 graphite. There may be a genetic relationship between these two graphite modes but the
microstructural information we have is not sufficient to determine which phase is the “parent.”
Nevertheless, the impact of the two graphite modes on the electrical properties of the rock is expected

Table 6
Sample Sandstone 1 (S1), Cole‐Cole Parameters Resulted From Fitting the Laboratory Measurements With Double Cole‐Cole

Temperature (°C) σ∞ (S/m) M1 (‐) MMW (‐) c1 (‐) cMW(‐) τ1 (s) τMW (s) RMS (%)

20 3.45E−04 0.255 0.359 0.27 0.82 1.03E−03 1.30E−05 9.89E−02
15 2.95E−04 0.221 0.398 0.29 0.75 2.74E−03 1.26E−05 9.61E−02
10 2.55E−04 0.198 0.426 0.30 0.71 5.05E−03 1.38E−05 1.26E−01
5 2.28E−04 0.201 0.452 0.29 0.74 3.77E−03 1.28E−05 1.14E−01
2 1.98E−04 0.219 0.426 0.28 0.77 3.41E−03 1.76E−05 1.13E−01
0 1.81E−04 0.252 0.392 0.27 0.82 1.69E−03 2.18E−05 1.58E−01
−2 1.60E−04 0.234 0.390 0.29 0.80 3.00E−03 2.55E−05 1.95E−01
−5 8.85E−05 0.171 0.569 0.33 0.81 5.13E−03 2.58E−05 2.52E−01
−8 5.89E−05 0.232 0.555 0.28 0.88 1.02E−03 3.85E−05 2.59E−01
−10 5.62E−05 0.360 0.483 0.23 0.93 2.19E−05 3.99E−05 2.69E−01
−15 3.65E−05 0.320 0.576 0.23 0.91 1.63E−05 4.24E−05 4.65E−01

Table 7
Sample Sandstone 2 (S2), Cole‐Cole Parameters Resulted From Fitting the Laboratory Measurements With Double Cole‐Cole

Temperature (°C) σ∞ (S/m) M1 (‐) MMW (‐) c1 (‐) cMW (‐) τ1 (s) τMW (s) RMS (%)

20 1.29E−03 0.146 0.489 0.45 0.86 7.80E−03 1.61E−06 3.61E−01
15 9.10E−04 0.170 0.402 0.45 0.88 9.29E−03 2.62E−06 2.85E−01
10 8.40E−04 0.155 0.452 0.46 0.83 1.11E−02 2.00E−06 2.62E−01
5 6.76E−04 0.157 0.435 0.46 0.79 1.32E−02 1.61E−06 2.29E−01
2 6.03E−04 0.154 0.439 0.48 0.76 1.69E−02 1.70E−06 2.44E−01
0 5.56E−04 0.155 0.442 0.48 0.74 1.79E−02 1.79E−06 2.23E−01
−2 4.92E−04 0.164 0.418 0.48 0.75 1.95E−02 2.33E−06 2.42E−01
−5 2.64E−04 0.124 0.563 0.48 0.80 3.11E−02 3.18E−06 3.11E−01
−8 2.36E−04 0.095 0.680 0.46 0.88 4.30E−02 4.37E−06 4.26E−01
−10 1.78E−04 0.098 0.675 0.46 0.81 4.68E−02 3.83E−06 3.64E−01
−15 2.36E−04 0.095 0.680 0.46 0.88 4.30E−02 4.37E−06 4.26E−01
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to be quite different with Mode 2 expected to polarize at higher frequencies (see equation (21)), possibly
above the range investigated in the present study. This could be investigated in future studies by very
broadband spectroscopy. Mode 1 grains, although volumetrically dominant, are isolated from one
another, and have a low surface area per volume ratio. Conversely, Mode 2 graphite grains are more
likely to form linked, through going networks and have substantial surface area compared to their
volume.

Raman spectra were also measured by an Alpha 300R+ confocal Raman microscope (WITec, Ulm,
Germany) with a 532‐nm laser (Coherent, Santa Clara, CA), located at the Department of Chemistry,
University of Otago, New Zealand. The spectra were calibrated using the Raman band from a silicon
wafer prior to each set of measurements. The laser (5.0 mW) was focused on the samples with a 50X
Zeiss objective. The scattered light was dispersed with a 1,200‐g/mm grating. The integration time of each
Raman spectrum was 2 s with 20 co‐additions. The spectra were preprocessed in Grams AI 9.1 (Thermo
Fisher Scientific Inc.), and then peak fitting of three Lorentzian functions to each spectrum was per-
formed on MATLAB (Figure 5). For each spectrum, the area ratio (known as crystallinity index) was cal-
culated by using the equation R2 = AD1/(AD1 + AG + AD2), where Ai is the area of the ith peak, G band is

Figure 12. Cole‐Cole parameters versus temperature. (a) Cole‐Cole exponent c1 versus temperature for various samples of
the data set. Note that the Cole‐Cole exponent is essentially independent of the temperature in agreement with the pre-
diction of the model. (b) ChargeabilityM versus temperature for various samples of the data set. The chargeability appears
essentially independent of the temperature in agreement with the prediction of the model. (c) Average of the Cole‐Cole
exponent c1 versus temperature. This demonstrates that in average, the Cole‐Cole exponent c1 is temperature of tem-
perature. (d) Average of the chargeability versus temperature. This demonstrates that in average, the chargeability is
temperature of temperature.
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the main high‐frequency band of graphite, and D1 and D2 bands are the defect bands observed in the
first‐order Raman spectrum of graphite (Wopenka & Pasteris, 1993). Furthermore, maximum
metamorphic temperatures were estimated in the range 330–640 °C by the linear correlation
T(°C) = −445 R2 + 641 ± 50 °C (Beyssac et al., 2002). All Raman spectra show typical graphite bands
at ~1,580 (G), 1,350 (D1), and 1,620 (D2) cm. Representative Raman data from five spectra lead to
maximum metamorphic temperatures in the range 312 to 371 °C. Spectrum 2 is shown in Figure 5.
The R2 values range from 0.606 to 0.740, indicating low graphite crystallinity. The experienced
maximum metamorphic temperature for this spectrum is estimated to be 371 °C.

3.2. Complex Conductivity Spectra

Complex conductivity measurements were carried out from positive to negative temperatures. At each tem-
perature and before the electrical measurements, the sample was left for 3 to 10 hr to reach electrical and

Figure 13. Instantaneous conductivity versus temperature for sample ValT2. (a) Transverse component. The instanta-
neous conductivity at 25 °C is equal to 0.0027 ± 0.0001 S/m and αT = 0.016 ± 0.001/°C. (b) In‐plane component. Note
that the red curve is linear in a linear‐linear space representation of the data. The instantaneous conductivity at 25 °C is
equal to 0.0041 ± 0.0001 S/m and αT = 0.024 ± 0.004/°C.
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thermal equilibria. Complex electrical conductivity measurements were carried out with a high‐precision
impedance analyzer ZEL‐SIP04‐V02 (Zimmermann et al., 2008, Figure 6, the temperature‐controlled bath
is also shown in this figure). Resistance and phase shift were measured in the frequency range of 0.01 Hz
to 45 kHz with an imposed voltage of 1 V. A complete experiment for one core sample (in one direction)
over the temperature and frequency ranges discussed above takes about one week. An additional set of
measurements were performed for sand/graphite mixes at the following volume fractions of graphite 0.20,
0.17, 0.061, 0.06, 0.051, 0.028, and 0.010. The chargeability versus graphite content is shown in Figure 6c
confirming equation (18). For this figure, the chargeability is calculated using the difference in the in‐
phase conductivity between 10 kHz and 10 mHz).

3.3. Results

Figures 7–9 display the frequency dependence of the in‐phase and quadrature conductivity at different tem-
peratures. The error bars (not shown on the figures) are known and determined, for eachmeasurement, over

Figure 14. Instantaneous conductivity versus temperature. (a) Sample S1. The instantaneous conductivity at 25 °C is
equal to 0.00038 ± 0.00007 S/m and αT = 0.021 ± 0.001/°C. (b) Sample S2. Note that the red curve is linear in a linear‐
linear space representation of the data. The instantaneous conductivity at 25 °C is equal to 0.00135 ± 0.00001 S/m and
αT = 0.024 ± 0.002/°C.
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three cycles, at each frequency. They typically are smaller than 1% except for high frequencies above 100 Hz
or 1 kHz. These values are not taken for the fit as shown in the graph. The measured phases are high
(typically between 80 and 600 mrad at the peak frequency). For the two sandstones S1 and S2, the
complex conductivity spectra are shown in Figure 7. In fact, clean sandstones (i.e., without minerals or
semiconductors or clay) have generally weak polarization because of their low cation exchange capacity
(Revil, Coperey, Deng, et al., 2018). At the opposite, the two sandstones investigated in this study exhibit
very high quadrature conductivity (and therefore polarization) and chargeability (as discussed below).
This high polarization is explained by the presence of a small percentage of graphite. Using equation (15),
the volume fraction of graphite is about 5.7% vol. fraction for sandstone S1 and 3.25% vol. fraction for
sandstone S2.

Figure 15. (a) Instantaneous conductivity versus temperature for Sample ValT1a. Note the strong change in the conduc-
tivity versus temperature trend below the freezing point. Note that the red curve is linear in a linear‐linear space repre-
sentation of the data. The instantaneous conductivity at 25 °C is equal to 0.00226 ± 0.00004 S/m and αT = 0.009 ± 0.001/
°C. (b) Anisotropy ratio between the in‐plane (foliation) instantaneous conductivity and the out‐of‐plane (normal to
foliation) conductivity component. Note that the anisotropy ratio increases substantially below the freezing point. The line
is just a guide to the eyes.
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Figures 8 and 9 display the measurements normal to the foliation plane and the measurements parallel to
the foliation plane for the two schist samples ValT2 and ValT1, respectively. These figures show the high
dependence of the complex conductivity on temperature, especially in case of measurements normal to
the foliation plane. Sample ValT1 exhibits a strong anisotropy. High values of the in‐phase and quadrature
conductivity are measured in the direction of the foliation plane. The high anisotropy is a result of the
strongly marked foliation of this sample (see Figures 3 and 4). From the measured quadrature conductivity,
we notice that the polarization phenomenon in this sample is high. Sample ValT2 shows a smaller degree of
anisotropy than ValT1. However, this is consistent with the fact that the foliation appears less pronounced
for this sample compared to ValT1 (Figure 4).

Sample ValT3 is very rich in graphite with a marked foliation. Its electrical conductivity was found to be
extremely high (in the range 30 and 40 S/m). The phase could not be measured because its magnitude
was below the sensitivity of the impedance meter. This is not surprising since the phase is approximately
given by the ratio of the quadrature conductivity by the in‐phase conductivity, and therefore, for a very high
value of the in‐phase conductivity (and possibly a small value of the quadrature conductivity), the phase is

Figure 16. Normalized chargeability versus temperature. (a) Sample ValT1a. (b) Sample S2.
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expected to be very small. Figure 10 shows the in‐phase conductivity and
the phase for Sample ValT3 (parallel and normal to foliation) as a function
of frequency. Note the high conductivity and small polarization along the
foliation plane. Normal to the foliation plane, the situation is the opposite.
We observe indeed a much smaller conductivity by comparison with the
conductivity of the foliation plane and a much stronger polarization
(Figure 10). Both observations are consistent with disconnected graphite
in the direction normal to the foliation plane. Figure 11 shows the in‐
phase conductivity measured parallel to foliation at 1 Hz as a function
of temperature. The high conductivity and absence of polarization in the
foliation plane are likely due to the high percentage of graphite above a
percolation threshold in this direction. For this sample, the only explana-
tion is that some of the graphite is connected through the entire core sam-
ple along the foliation plane. We postulate that for sample ValT3, the
Mode 2 graphite grains form a network of continuous electronic conduc-
tors able to explain the anomalous high conductive behavior of this core
sample along the foliation plane.

3.4. Analysis of the Cole‐Cole Parameters

We use the approach described in Appendix A to fit the data. Tables 2–7
show Cole‐Cole parameters resulted from fitting the measured complex
conductivity with double Cole‐Cole model (Appendix A). There are
three polarization mechanisms in total. The first is associated with the
nonmetallic grains, the second with graphite, and the third with the
Maxwell‐Wagner polarization. That said, in our case, the presence of
graphite dominates the background polarization so only a double

Cole‐Cole model is used to fit the data. Therefore, the first response comes from the polarization of gra-
phite, while the second response (or the second peak on the quadrature conductivity or the phase) comes
from the Maxwell‐Wagner polarization and possibly the spurious electromagnetic and capacitive effects
(Abdulsamad et al., 2016).

Both the chargeability M1 and the Cole‐Cole exponent c1 are independent of temperature (Figures 12a
and 12b). This is in agreement with the model. The values of M1 and c1vary around an averaged value
with small standard variation (Figures 12c and 12d). Actual changes in the chargeability M1 and Cole‐
Cole exponent c1 with temperature are very small and do not show clear trends with temperature.
This is noticed for all samples tested in this study. Figures 13–15a show the temperature dependence
of instantaneous conductivity, and Figure 15b shows how the anisotropy of sample ValT1 changes with
temperature. We see clearly the two distinct trends above and below the freezing point TF. These two
trends are fitted by equations (22) and (25), respectively. The mean value of the sensitivity coefficient
αT is ~0.020/°C (as expected). The residual water content and the two fitted temperatures TC and TF
are reported in Figures 13 and 14. Figure 15b shows that sample ValT1 is characterized by a substantial
anisotropy above the freezing temperature (with an isotropy ratio around 40 to 60). This anisotropy ratio
is rather temperature independent (as expected) above the freezing temperature. That said, the aniso-
tropy ratio increases substantially below the freezing point to reach values >300. This observation could
be explained as follow. The instantaneous conductivity normal to foliation goes down, presumably due to
the high resistivity of ice as whatever pore fluid is present freezes. In contrast, parallel to foliation the
primary conduction must be through graphite and is not significantly affected by freezing. Figure 16
shows the behavior of the normalized chargeability versus the temperature. As expected from the model,
the same type of behavior is expected for the normalized chargeability by comparison with the
instantaneous conductivity.

The relaxation time is plotted as a function of the instantaneous conductivity in Figure 17. In agreement with
the model, the trends exhibit an inverse relationship between the two parameters. Indeed, if we combine
equations (16) and (21), we obtain

Figure 17. Low‐frequency relaxation time versus instantaneous conductiv-
ity. The plain lines show the inverse relationship between the two para-
meters. The plain lines correspond to the fit using equation (26). For Sample
ValT2a, the distribution of the grain sizes is too broad to determine correctly
the position of the relaxation peak.
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τ1≈
a2e2Cm 1þ 3φmð Þ

kbTσ∞
: (26)

The inverse relationship between the relaxation time and the conductivity
of the background makes the relaxation time increase with decreasing the
temperature (not shown here). There is however one of the four samples
(ValT2a) that does not show this trend. In fact, for broad grain size distri-
bution, it becomes difficult to identify the peak of the phase and therefore
the Cole‐Cole relaxation time. In addition, for small grain sizes, the phase
peak is occurring at high frequencies and may be covered up by different
other mechanisms (Abdulsamad et al., 2016). This seems to be the case for
this rock sample.

3.5. Numerical Modeling

We use here the approach initially developed in Abdulsamad et al.
(2017) to see if we can explain the observed response of the Cole‐
Cole parameters as a function of temperature. This approach was used
by Revil, Coperey, Mao, et al. (2018) to successfully model the effect of
the temperature of a porous material with a metallic inclusion above
the freezing temperature. In the present case, we treat graphite as a
semiconductor (e.g., Slonczewski & Weiss, 1958). For large grain
(>500 μm), the influence of charge diffusion outside the metallic parti-
cle is small and is therefore neglected in the numerical model (see
Revil, Coperey, Mao, et al., 2018, for details). In freezing conditions
(the icing point is typically reached between 0 °C and –4 °C in our
experiments; see Figures 13–15), the complex conductivity response is
expected to change because of the change in the liquid water content

in the material. We performed simulations of the polarization phenomena in presence of a grain of gra-
phite of conductivity 10 S/m. The metallic grain is immersed in a background porous material with a
pore water conductivity of 1 S/m (at 25 °C). The simulation was performed at different temperatures
in the range +30 °C to −18 °C and at three different porosities (0.01, 0.1, and 0.5). We use

Figure 18. Distribution of the secondary potential associated with a metallic particle embedded into a conductive (non-
polarizable) background material. This computed secondary potential is similar to that sketched in Figure 2b. The
polarization is coming from the metallic particle itself (i.e., the background is here nonpolarizable). The parameters used
are those of Table 8. The simulations are performed for a range of temperatures.

Table 8
Parameters Used for Finite Element Simulation

Parameter Value

D(‐) 1.7 × 10−9 m2/s
D(+) 1.1 × 10−9 m2/s

Dm
þð Þ ¼ Dm

−ð Þ
2.9 × 10−5 m2/s

Cm
þð Þ ¼ Cm

−ð Þ
2.8 × 1022 m−3

T0 298 K
ε0 8.81 × 10−12 F/m
εS 10.9 ε0
εw 80 ε0
ϕ 0.5, 0.1, 0.01
θr 0.002
TF 0 °C
TC −1.5 °C
a 500 μm

Note. The quantityCm
±ð Þ denotes the charge concentration in the semicon-

ductor grain at equilibrium state,Dm
±ð Þ denotes the diffusion coefficients of

the charge carriers in the metallic particle, D( ± ) denotes the diffusion
coefficients of cations and anions in the solution, and ε0, εS, and εw denote
the permittivity of free space, the permittivity of the metallic grain, and
the permittivity of electrolyte, respectively (their temperature depen-
dence is small and neglected). The quantity ϕ denotes the porosity of
the background, while TF and TC denote the two temperatures in the
exponential freezing law (see equation (25)). The instantaneous conduc-
tivity of the metallic grain is 10 S/m (at 25 °C) while the pore liquid con-
ductivity is 1 S/m at 25 °C. The quantity a denotes the diameter of the
metallic particle.
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equations (22) and (25) to model the effect of the temperature upon
the background conductivity. The parameters used for the numerical
(finite element) simulations are reported in Table 8. The numerical
results are similar to that found for sample ValT1.

A typical simulation of the secondary electrical potential distribution
associated with the presence of the metallic particle in its host is shown in
Figure 18. The results of the numerical simulations are presented in the
Figures 19 and 20. In Figure 19, the instantaneous conductivity is shown
as a function of temperature showing the same trend as in the laboratory
experiments (decrease of the instantaneous conductivity with decreasing
temperature). In Figure 20, the relaxation time appears inversely propor-
tional to the instantaneous conductivity. The results of the numerical
simulation are therefore consistent with the experimental results: (1) the
instantaneous conductivity decreases with the decrease of the tempera-
ture at low temperatures and (2) the product of the Cole‐Cole relaxation
time with the instantaneous conductivity is nearly constant. The charge-
ability M and the exponent c (not shown here) are independent
on temperature.

4. Field Work

In order to show how the previous results can be applied to real data,
we analyze in this section two electrical conductivity and induced polarization profiles obtained over
an area of recognized permafrost and graphitic schists (Duvillard et al., 2018) in the ski resort of Val
Thorens in the French Alps (Figures 21a and 21b). This area is known to be rich in coal and graphite
(Aillères, 1996; Fabren, 1958). The multiple gradient array (Dahlin & Zhou, 2006) was used to acquire
the resistivity and chargeability data sets with a protocol comprising 212 quadrupoles per profile. Each
profile has 32 electrodes with a 20‐m electrode spacing between consecutive electrodes. Stainless steel
electrodes were used for both current injection and voltage measurements. In order to avoid the elec-
trode polarization problem and to minimize electromagnetic coupling effects, we separated the electrodes

used for current injection from those used for measuring the potential
using the two cables technique proposed by Dahlin et al. (2002) (see
also Dahlin & Leroux, 2012). The measurements were carried out using
an ABEM SAS4000 (four‐channel resistivity meter) and in‐house built
protocol. The injected current is of the pseudocontinuous type (+I, 0,
−I, 0) with 1 s of current injection and 1 s for voltage measuring (I
denotes the injected current in A).

Ten partials chargeabilities were recorded during the monitoring time
to get the apparent chargeability M used in the study. The measure-
ments were carried out in the summer 2018 and no issue was found
with the contact resistances. Figure 22 shows the typical decay of the
secondary voltage (here expressed in terms of apparent chargeabilities).
For the chargeability inversion, only the first window was used.

The inversion of the field data was performed using the commercial
software Res2dinv (Loke, 2002; Loke & Barker, 2004). The results are
shown in Figure 23 for Profile P1 and in Figure 24 for Profile P2. The
permafrost is shown as a poorly conductive area (conductivity in the
range 10−4 to 10−5 S/m) and low normalized chargeability (in the range
10−5 to 10−7 S/m). The chargeability distributions for the two profiles
are shown in Figure 25. As shown in Figure 12a, chargeability does
not depend on temperature and is essentially a function of the content
in graphite (see Figure 5c). Figure 26 summarizes the relationship
between the normalized chargeability and the (instantaneous)

Figure 20. Relaxation time versus instantaneous conductivity for the syn-
thetic case corresponding to a porosity of 0.10. The parameters used are
those of Table 8. The plain line indicates that the relaxation time is inversely
proportional to the instantaneous conductivity. This synthetic modeling is
therefore consistent with the laboratory experiments (Figure 17).

Figure 19. Instantaneous conductivity versus temperature for the synthetic
case. The parameters used are those of Table 8 (compare with Figures 14,
15a, and 16).
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conductivity. Above the value of M = R = 0.08 (highest value reached for nonmetallic rocks), the data
can only be explained by the presence of graphite. In absence of graphite, we observe that the
chargeability (i.e., the ratio between the normalized chargeability and the conductivity) is close to R
indicating the strong role of surface (double layer) conductivity on the overall conductivity response as
discussed in Duvillard et al. (2018). The background is characterized by a chargeability of 0.03.
Figure 26 shows also the effect of the lithology and temperature on both the conductivity and
normalized chargeability.

Figure 21. (a) Localization of the Thorens rock glacier (RG) located in the Vanoise massif (French Alps, Institut
Géographique National, 25‐m digital elevation map with glacier extent for the period 2006–2009 made thanks to the
work of Gardent et al. (2014) and Permafrost Favorability Index from the work of Marcer et al. (2017)). (b) Map of the test
site with the Thorens rock glacier test site. The map shows the location of the two electrical resistivity and induced
polarization profiles P1 and P2 (20‐m spacing between the electrodes) and the limits of the rock glacier.
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Using equation (15), we can now use the chargeability data of the tomograms shown in Figure 25 with
the background chargeability of 0.03 (Figure 26) to image the volume content of graphite (Figure 27).
The volume content of graphite reaches a maximum of 2.5%, which is compatible with the amount of
graphite in the core samples. The present approach illustrates how the graphite content can be imaged
in this type of Alpine environments with or without the presence of permafrost.

Figure 23. Large‐scale electrical conductivity and normalized chargeability tomograms crossing the area of interest
(Profile P1). (a) Electrical conductivity tomogram showing position and depth of the permafrost (about 70 m). (b)
Normalized chargeability tomogram for which the high normalized chargeability zones correlate with graphitic schist
formations.

Figure 22. Apparent chargeability decay curves over the frozen and unfrozen zones. The exponential decay type of the
curve is generally (but not necessarily) a good indicator of data quality. The labels a to d indicate the position of some
specific quadripoles used for the measurements.
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Figure 25. Large‐scale electrical chargeability tomogram crossing the area of interest (Profiles 1 and 2). The high values of
the chargeability (>0.1) correspond to graphite‐rich zones. The labels a to d indicate the position of the quadripoles
indicated in Figure 22.

Figure 24. Large‐scale electrical conductivity and normalized chargeability tomograms crossing the area of interest
(Profile P2). (a) Electrical conductivity tomogram showing position and depth of the permafrost (about 50 m). (b)
Normalized chargeability tomogram high normalized chargeability zones correlated with graphitic schist formation.
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5. Conclusions

A conduction and polarization model is proposed to account for the
presence of graphite in rock samples. In this model, we have assumed
that graphite is below a percolation threshold. In this case, the conduc-
tivity of the material is controlled essentially by the conductivity of the
background material with a small effect related to the conductivity of
graphite. A strong polarization is expected with a chargeability that is
linearly dependent on the volumetric amount of graphite. If graphite
is above a percolation threshold, a very strong conductivity (several tens
of Siemens per meter) is observed, which is concomitant with a lack of
polarization of the material. This is because all the charges are free to
move and therefore do not accumulate to favor polarization. Complex
conductivity experiments were performed on five samples in the fre-
quency range 10−2 Hz to 45 kHz and in the temperature range +20°C
down to −15 °C. The data were fitted with a double Cole‐Cole model
and we only discussed the physical meaning of the first Cole‐Cole dis-
tribution, the second one being probably a composite of the Maxwell‐
Wagner polarization and spurious electromagnetic effects. The Cole‐
Cole exponent and chargeability are essentially temperature indepen-
dent as expected from the model. The relaxation time increases with
the decrease of the temperature below the freezing point. At the oppo-
site, the instantaneous conductivity decreases with the decrease of the
temperature below the freezing point. The product of the two quantities
is essentially temperature independent including below the freezing
point. These results are consistent with the developed model and an
additional numerical experiment performed with the finite element

method. Further work is required to include explicitly the effect of anisotropy on the complex conductiv-
ity response of black schists. The present approach is used to image the amount of graphite in
the ground.

Figure 27. Estimated volume fraction of graphite along Profiles P1 and P2. The background chargeability determined
from Figure 26 is Mb = 0.03.

Figure 26. Normalized chargeability versus electrical conductivity at differ-
ent temperatures for inverted field data (red and black filled circles) and
laboratory experiments (open squares and circles). The data above the lower
plain line indicate that the sample contains semiconductor or metallic par-
ticles. The normalized chargeability is calculated from the equation
Mn=M σ∞, where σ∞ andM ( =M1) come from the fitting with the double
Cole‐Cole model discussed in Appendix A. The grey area corresponds to the
graphite‐rich zone. The high and low values of the normalized chargeability
and conductivity are also controlled by the lithology.
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Appendix A: Double Cole‐Cole Parameterization and Inversion
In order to account for the induced polarization of the rock plus the Maxwell‐Wagner polarization, we use a
double Cole‐Cole model to fit the data. Because our sample contains graphite, we will keep the index “1” to
describe the first polarization and we will use the index “MW” for the Maxwell‐Wagner polarization. The
double Cole‐Cole model is written as

σ* ¼ σ∞ 1−
M1

1þ iωτ1ð Þc1 −
MMW

1þ iωτMWð ÞcMW

� �
; (A1)

where σ* denotes the complex conductivity, ω is the angular frequency, σ∞ denotes the instantaneous con-
ductivity (in S/m),M1 andMMWdenote the chargeabilities associated with the two components (nonmetal-
lic grains and graphite), c1 and cMW are the two Cole‐Cole exponents (dimensionless), and τ1 and τMW are
the (relaxation) time constants (in s). The complex conductivity spectra are inverted using this double Cole‐
Cole model and the nonlinear iterative method proposed by Mosegaard and Tarantola (1995) based on a
Monte Carlo Markov chain sampling algorithm. The approach is described in Qi et al. (2018) and will not
be repeated here.
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