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An extension of the unstructured Partial Element Equivalent Circuit (PEEC) method to magnetic media is proposed. Linear
inhomogeneous conductive, dielectric, and magnetic media are considered. By formulating PEEC in terms of div–free currents, an
efficient circuit algorithm based on the independent loop search or basis reduction scheme can be used to solve the electromagnetic
problem. In such a way, a limited number of unknowns can be used and non–simply connected domains can be treated as well.
The formulation is validated on a real L–C–T component against measurements and numerical results from commercial software
based on Integral Equation Method and Finite Element Method.

Index Terms—PEEC, integral equations, EMC, magnetic media, L–C–T component.

I. INTRODUCTION

The Partial Element Equivalent Circuit (PEEC) method is
a well–known Integral Equation Method (IEM) suitable for
solving electromagnetic (EM) problems coupled to external
electric circuits. The PEEC method has been first introduced
by A. Ruehli in 1972 for orthogonal grids and conductive
media. In literature two different approaches can be found: the
Standard–PEEC [1] and the Unstructured–PEEC (or Dual–
PEEC) [2]. In the standard approach, regular hexahedral
and quadrilateral elements are usually adopted for the mesh
discretization [1]. The current density and the charge density
distributions are expanded by means of pulse basis functions
and the Electric Field Integral Equation (EFIE), combined with
Ohm’s law and the continuity equation, is then discretized by
using a Galerkin approach. In [3] and [4] the Standard–PEEC
has then been extended to nonorthogonal mesh and dielectric
and magnetic media.

The Unstructured–PEEC method was first introduced in
[2] for surface conductive models. This approach provides
an exact and accurate formalization of the PEEC tessellation,
allowing the study of structured and unstructured mesh without
any particular additional effort. With the Unstructured–PEEC
method the properties of the EM unknowns are naturally and
strongly imposed. Recently, the method has been extended to
volume media and dielectric materials [5]. The extension of
Unstructured–PEEC to magnetic media was first proposed in
[6] for low frequency cases and in [7] for the whole frequency
range by introducing the magnetization and the amperian
currents as unknowns. However, this approach is limited to the
study of homogeneous media and simply connected regions;
moreover, it requires a great amount of unknowns when
magnetic media are considered.

This work proposes an extension to magnetic media of
the formulation previously presented in [5]. The unknowns
are div–free total electric and magnetic currents expanded by
means of Whitney face elements. The proposed formulation
allows for homogeneous and inhomogeneous media as well.
The div–free condition of the current vectors can be strongly
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imposed by using an independent loop search algorithm [8] or
a basis reduction scheme [9], which also reduces the number of
unknowns. Moreover, both simply and non–simply connected
regions can be considered. The formulation is here developed
considering the time delay effects. The formulation is validated
on the case of the L–C–T (integrated inductor (L), capacitor
(C), and transformer (T)) component presented in [10] against
measurements, FEM and IEM software.

II. FORMULATION

Conductive, dielectric, and magnetic domains are first de-
fined as Ωc, Ωd, and Ωm, respectively. As it is customary, the
terms dielectric and magnetic indicate media with permittivity
and permeability different from those of the vacuum, respec-
tively. The union between conductive and dielectric domains
Ωe = Ωc ∪ Ωd is defined as the electric domain. The disjoint
union between the electric and the magnetic domains defines
the interior region Ω = Ωe t Ωm, (computational domain).
The boundaries of these domains are: Γc = ∂Ωc, Γd = ∂Ωd,
Γm = ∂Ωm, Γe = ∂Ωe, and Γ = ∂Ω.

Following [11], when conductive, dielectric, and magnetic
media are considered, full Maxwell’s equations can be written
in the following form, avoiding the use of the electric dis-
placement D and the magnetic flux density B, i.e.

∇ ·E = ε−1
0 %e, −∇×E = Jm + iωµ0H,

∇ ·H = µ−1
0 %m, ∇×H = Je + iωε0E,

(1)

where E is the electric field, H is the magnetic field, Je is
the electric current density (Je = Jc + Jp, where Jc is the
conduction current density and Jp = iωP is the polarization
current density), Jm = iωµ0M is the magnetization current
density [11]. %e is the electric charge density (%e = %c +
%p, where %c is the free–charge density and %p is the bound
polarization charge density), %m is the bound magnetization
charge density, ω is the angular frequency, ε0 and µ0 are the
permittivity and permeability of vacuum, respectively. P and
M are the polarization and magnetization vectors, respectively.
Maxwell’s equations (1) are complemented by the following
constitutive relationships [11]:
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E =
Jc

σc
in Ωc, E =

Jp

iωε0(εr − 1)
in Ωd,

H =
Jm

iωµ0(µr − 1)
in Ωm,

(2)

where σc is the electric conductivity, εr is the relative electric
permittivity, µr is the relative magnetic permeability, and x
is the position point (the field point). According to [12], the
electric and magnetic fields satisfying (1) can be written as

E = −iωAe −∇ϕe − ε−1
0 ∇×Am + E0,

H = −iωAm −∇ϕm + µ−1
0 ∇×Ae + H0,

(3)

where Ae and Am are the electric and magnetic Hertz vector
potentials scaled by jω, respectively, whereas ϕe and ϕm are
the electric and magnetic Hertz scalar potentials, respectively.
E0 and H0 are the external electric and magnetic fields
produced by some source domain Ω0, exterior to Ω.

After imposing Lorenz gauge as ∇·Ae = −iωε0µ0ϕe, ∇·
Am = −iωε0µ0ϕm, and combining (1) and (3), the following
differential equations are obtained:

∇2Ae − (iωc−1
0 )2Ae = −µ0Je,

∇2Am − (iωc−1
0 )2Am = −ε0Jm,

(4)

where c0 is the speed of light in vacuum. The solutions of
equations (4) are given by the following integral expressions

Ae(x ) = µ0

∫
Ω

Je(y)g(x , y) dvy,

Am(x ) = ε0

∫
Ω

Jm(y)g(x , y) dvy,

(5)

where g(x , y) = e−iω‖x−y‖/c0/‖x − y‖ is the retarded Green
function, x is the field point, and y is the integration point.

From (5), applying the Lorenz gauge condition and Green’s
identities, the integral expressions of the scalar electric and
magnetic Hertz potentials are obtained:

ϕe(x ) = (iωε0)−1

∫
Ω

Je(y) · ∇′g(x , y) dvy,

ϕm(x ) = (iωµ0)−1

∫
Ω

Jm(y) · ∇′g(x , y) dvy,

(6)

where the prime symbol denotes gradient with respect to
y . Inserting equations (2), (5), and (6) in (3), the following
integral equations are obtained:

E0(x ) =
Je(x )

σe(x )
+ iωµ0

∫
Ω

Je(y)g(x , y) dvy

+ (iωε0)−1∇
∫

Ω

Je(y) · ∇′g(x , y) dvy

+ ε−1
0 ∇×

(
ε0

∫
Ω

Jm(y)g(x , y) dvy

)
in Ωe,

(7)

H0(x ) =
Jm(x )

σm(x )
+ iωε0

∫
Ω

Jm(y)g(x , y) dvy

+ (iωµ0)−1∇
∫

Ω

Jm(y) · ∇′g(x , y) dvy

− µ−1
0 ∇×

(
µ0

∫
Ω

Je(y)g(x , y) dvy

)
in Ωm,

(8)

where σe = σc in Ωc, σe = iωε0(εr − 1) in Ωd, and
σm = iωµ0(µr − 1) in Ωm. In the same fashion of the
formulation previously developed in [5], div–free total electric
and magnetic currents are introduced as problem unknowns:

Jtot
e = Je + iωε0E, Jtot

m = Jm + iωµ0H. (9)

By combining (2) and (9) the following relationships hold:

Je =
σe
σ∗e

Jtot
e in Ωe, Jm =

σm
σ∗m

Jtot
m in Ωm, (10)

where σ∗e = σc+iωε0εr is the equivalent electric conductivity
and σ∗m = iωµ0µr is the equivalent magnetic conductivity.

Final electric and magnetic integral equations are obtained
by inserting (10) in (7) and (8). The discretization of these
equations is discussed below.

III. DISCRETIZATION

First, the computational domain Ω is discretized into tetra-
hedral or hexahedral elements. The total electric and magnetic
current densities are expanded by means of face elements, as:

Jtot
e (x ) =

Nfe∑
ke=1

wke(x )jtoteke
, Jtot

m (x ) =

Nfm∑
km=1

wkm(x )jtotmkm
,

(11)
where Nfe and Nfm are the number of faces of Ωe and Ωm,
respectively, wke and wkm are the Whitney 2–form functions
[13] related to fke and fkm (the ke–th and km–th faces of the
mesh of Ωe and Ωm, respectively), jtoteke

is the the flux of Jtot
e

through fke, and jtotmkm
is the flux of Jtot

m through fkm. jtoteke
and

jtotmkm
are coefficients of the arrays jtote and jtotm , respectively.

Whitney elements can be defined on tetrahedra [13] or 8-nodes
hexahedra (with planar quadrilateral faces) [14]. Following [5],
the arrays of degrees of freedom (DoFs) φe = [φv

e ;φs
e] related

to the averaged electric scalar potential, are defined as:

φveke
=

∫
vke

ϕe(x )

Vke
dvx, φseke

=

∫
fke

ϕe(x )

Ske
dsx, (12)

where Vke is the volume of the ke–th tetrahedral or hexahedral
element vke, and Ske is the area of the boundary face fke;
indeed, φs

e is only defined for the faces that discretize Γe.
Equivalent definitions can be applied to the averaged magnetic
scalar potential, φm = [φv

m;φs
m].

Testing (7) and (8) with the face Whitney elements and
using (10) and (11) results in:

[Re + iωLe]j
tot
e + Geφe + Kemjtotm = e0,

[Rm + iωLm]jtotm + Gmφm −Kmej
tot
e = h0,

(13)

where Re, Le, and Ge are the electric resistance, inductance,
and incidence matrices, respectively, whereas Rm, Lm, and
Gm are the corresponding magnetic ones. e0 and h0 are the
DoFs related to E0 and H0: e0he

=
∫

Ωe
whe(x ) · E0(x ) dvx

and h0hm
=
∫

Ωm
whm(x ) ·H0(x ) dvx.

Likewise [5], the discrete form of (6) is given by iωφe =
Pej

tot
e and iωφm = Pmjtotm , where Pe is the electric potential

matrix and Pm the magnetic one. Matrix Pe can be partitioned
as Pe =

[
Pv

e ;Ps
e

]
, where Pv

e and Ps
e are the volume and

surface potential matrices, respectively. Thus, iωφv
e = Pv

ej
tot
e



[ ]
way. The integral expressions of the matrix coefficients are:

Rehe,ke
=

∫
Ωe

whe(x ) ·wke(x )

σ∗e(y)
dvydvx,

Lehe,ke
= µ0

∫
Ωe

∫
Ωe

σe(y)

σ∗e(y)
whe(x ) ·wke(y)g(x , y) dvydvx,

P v
ehe,ke

=
1

ε0Vvhe

∫
vhe

∫
Ωe

σe(y)

σ∗e(y)
wke(y) · ∇′g(x , y) dvydvx,

P s
ehe,ke

=
1

ε0Sfhe

∫
fhe

∫
Ωe

σe(y)

σ∗e(y)
wke(y) · ∇′g(x , y) dvydsx.

(14)
Completely equivalent expressions can be obtained for the
magnetic matrices Rm, Lm, Pv

m, and Ps
m. Kem and Kme

are the matrices representing the EM coupling between electric
and magnetic media. The coefficients of these matrices can be
obtained by applying the curl operator to (5):

Kemhe,km
=

1

4π

∫
Ωe

∫
Ωm

whe(x ) · σm(y)

σ∗m(y)(wkm(y)× (x − y)

‖x − y‖3
+ iω

wkm(y)× (x − y)

c0‖x − y‖2
)
dvydvx,

(15)
and similarly for Kme. The inductance and potential co-
efficients in (14) can be evaluated numerically when the
two supports of the integrals do not overlap, (far–mutual
coefficients). When the two supports overlap (self and near–
mutual coefficients) the evaluation of a double integral with
singular integrand function is required. Therefore, Singularity
Extraction Techniques (SET) must be applied in order to
evaluate analytically the inner integral and numerically the
outer integral [15]. For electrically small objects the time delay
effects are negligible, thus g(x , y) ≈ 1

‖x−y‖ . This approxima-
tion simplifies the evaluation of (14) and a computationally
less expensive SET can be adopted. Moreover, the second term
inside the inner integral of (15) can be neglected.

Matrix Ge and Gm are incidence matrices representing
the algebraic equivalent of the gradient operator. Ge is
Nfe× (Nve +Nfbe), where Nfe and Nfbe are the number of
the faces and boundary faces of the mesh of Ωe, respectively.
Each row of Ge related to an internal face, f inte , has +1 and
−1 in the columns corresponding to the two tetrahedral (or
hexahedral) elements sharing the face f inte . Instead, each row
of Ge related to an external face, fexte , has +1 in the column
corresponding to the boundary face fexte , and −1 in the
column corresponding to the tetrahedral/hexahedral element
having the face fexte . Similar considerations apply to Gm.

Finally, (13) can be written as[
Ze Kem

−Kme Zm

] [
jtote

jtotm

]
=

[
e0

h0

]
, (16)

where Ze = Re + iωLe + (iω)−1GePe and Zm = Rm +
iωLm + (iω)−1GmPm.

In order to strongly impose the div–free condition on Jtot
e

and Jtot
m , i.e. the Kirchhoff’s Current Law on the unknowns

of (16), a set of independent currents is found. This problem
can be addressed by interpreting (13) as the coupling of two
circuit matrix equations (an electric one and a magnetic one).

The equivalent electric/magnetic circuit is built as follows:
any face of the mesh is interpreted as an electric/magnetic
circuit branch, each volume and boundary face is considered
as an electric/magnetic circuit node. Thus, (16) can be solved
by using a circuital approach based on the independent loop
search [8] or basis reduction scheme [9]:

QT

[
Ze Kem

−Kme Zm

]
Q

[
joe
jom

]
= QT

[
e0

h0

]
, (17)

where Q = diag(Qe,Qm), jtote = Qej
o
e, and jtotm = Qmjom,

in which Qe and Qm (obtained as explained in [8] or [9]) are
the change of basis matrices and joe and jom are the independent
currents. Unlike [7], where the use of discrete potentials and
tree–gauging requires special techniques when non–simply
connected domains are considered, the approach here proposed
is based on a circuital interpretation of (13), which naturally
handles non–simply connected domains.

Thanks to the circuit interpretation, the proposed PEEC
formulation can be easily coupled with external circuits.
Thus, a Kirchhoff’s voltage law written for each external
circuit element must be solved together with (13). Then, the
independent loop search algorithm for the construction of Qe

operates on the augmented circuit graph made by the union of
the equivalent electric circuit and the external circuit elements.

IV. NUMERICAL RESULTS

The Unstructured–PEEC code has been developed with
MATLAB R© and parallel MEX–FORTRAN functions based
on OpenMP libraries. The simulations have been run on a
Windows machine equipped with 6-core/24-thread processors
(Intel Xeon E5645 @2.40GHz).

The L–C–T component proposed in [10] is here considered.
All geometrical and material details of the device are reported
in [16] (Appendix 4). The device is made by 16 copper
layers (70 µm thickness each) that compose the first and
the second part of the primary winding of the transformer.
16 copper layers are printed on dielectric substrates made

a) b)

Fig. 1: a) L–C–T prototype. b) L–C–T Model.

by Kapton (εr = 3.3, 50 µm thick) or Preg (εr = 4.5,
140 µm thick). The magnetic core is made by Ferrite 3F3.
Fig. 1 shows a picture of the L–C–T component and its
corresponding model. Note that neither the dielectric nor the
magnetic media are simply connected regions. The device is
fed by a voltage source connected to only two of the four
terminals of the primary winding, (Fig. 1). At low frequency,
the device behaves as a capacitor. The primary winding is an



open circuit and the current flows from the first part to the
second part of the winding thanks to capacitive effects [10].
In Fig. 2, the magnitude and the argument of the equivalent
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Fig. 2: Zeq magnitude and phase of the L–C–T component.

impedance (Zeq) obtained from the PEEC code are compared
with measurements and with the numerical results obtained
from FEM and IEM commercial software.

Fig. 3 shows the cases of the device without the the
magnetic core (no–core) and the case with the conductive
media only (con-only).

The PEEC model of the (entire) L–C–T component is made
by hexahedral elements and consists of 18,429 DoFs. The time
required for the computation of the matrices is 545 s. The
matrix system is solved by means of LU decomposition and
the solution time for a single frequency value is 733 s with a
Peak Memory Usage (PMU) of 15 GB. For a frequency sweep
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Fig. 3: Zeq magnitude and phase, no–core and con-only cases.

analysis, the PEEC matrices can be computed only once. Then,
for each frequency value, the system (17) is assembled and
solved.

In order to assess the computational cost required by FEM
for the study of the L–C–T component, three simulations
have been run. Due to the small thickness of the layers a
great amount of elements is needed for the discretization. The
FEM problem is first solved by adopting liner basis functions
(4,956,667 DoFs) and using a direct solver (MUMPS). This

required 8,914 s and a PMU of 380 GB. Then, starting
from the obtained solution, an iterative solver (FGMRES) and
quadratic basis functions are adopted to increase the solution
accuracy (29,582,652 DoFs, 9,799 s, PMU of 430 GB).

The model adopted for the commercial IEM software con-
sists of 35,243 DoFs and the mesh is made by tetrahedral and
triangular elements. An equivalent surface model is used for
the copper layers to include in the model the voltage excitation.
The simulations requires 1,892 s and a PMU of 19 GB for each
frequency value.

V. CONCLUSION

An extension to magnetic media of the Unstructured–PEEC
method, first introduced in [5], has been presented. Unlike [7],
the proposed formulation allows for non–simply connected
domains and a smaller number of unknowns is required
when magnetic media are involved. Moreover, thanks to the
use of div–free total currents, inhomogeneous media can be
considered without any additional computational effort. The
proposed method has been successfully tested by simulating
an L–C–T component. Further researches concerning the use
of compression techniques combined with preconditioning
and iterative methods are under developments to alleviate the
memory requirements.
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