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1Thales Research & Technology, Palaiseau, France

2UMR CNRS 7253 Heudiasyc, Sorbonne universités,
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Abstract
It is often the case in the applications of Multi-
Criteria Decision Making that the values of alterna-
tives are unknown on some attributes. An interest-
ing situation arises when the attributes having miss-
ing values are actually not relevant and shall thus
be removed from the model. Given a model that
has been elicited on the complete set of attributes,
we are looking thus for a way – called restriction
operator – to automatically remove the missing at-
tributes from this model. Axiomatic characteriza-
tions are proposed for three classes of models. For
general quantitative models, the restriction operator
is characterized by linearity, recursivity and decom-
position on variables. The second class is the set of
monotone quantitative models satisfying normal-
ization conditions. The linearity axiom is changed
to fit with these conditions. Adding recursivity and
symmetry, the restriction operator takes the form of
a normalized average. For the last class of models
– namely the Choquet integral, we obtain a simpler
expression. Finally, a very intuitive interpretation
is provided for this last model.

1 Introduction
Many decision problems involve multiple and conflicting cri-
teria. The aim of Multi-Criteria Decision Aiding (MCDA) is
to formalize such decision situations by constructing a model
representing the preferences of a decision maker and then ex-
ploiting this model on a set of alternatives in order to make
some recommendation (e.g. find the most preferred option).

In applications, alternatives are often imperfect in the sense
that their values on some decision attributes might be im-
precise or missing. When these values are represented by
probability distributions, one can derive a probability dis-
tribution over the possible recommendations [Durbach and
Stewart, 2012]. Another possibility is to combine MCDA and
Decision Under Uncertainty techniques [Dominiak, 2006;
Gaspars-Wieloch, 2015]. We focus in this work in the sec-
ond type of imperfectness where the values of alternatives
are missing for some attributes. In the context of MCDA,
there are basically two possible interpretations: In the first
one, a missing value is a relevant criterion that is important

Overall Performance

Completeness CA

Position Error CA Position Error RA

Completeness RA

Figure 1: Description of the MCDA model. The overall performance
aggregates the two performance criteria for each of the two classes.
There is one value of position error and one value of completeness
gathering all the trajectories in a given class. For instance, “Position
Error RA” is the position RMS error among all trajectories of RAs.

to make the decision. Hence the missing value is seen as an
extremely imprecise evaluation. Such uncertainty is propa-
gated in the MCDA model and one can analyze whether it
is possible to discriminate among the alternatives despite this
uncertainty [Lahdelma et al., 1998]. In the second interpreta-
tion, the missing value is considered as an irrelevant criterion,
i.e. the criterion becomes irrelevant for this alternative when
its value is missing. The following example illustrates this
situation.

1.1 Motivating Example
Example 1 Consider the problem of designing an airspace
supervision system for Air Traffic Management (ATM). One
needs to select the “best” system among several candidate
solutions, based on the assessment of their quality [ESASSP,
2012]. In order to make this choice, the decision maker simu-
lates each candidate solution on several scenarios represen-
tative of real ATM traffic. The aim of the supervision sys-
tem is to estimate the trajectories of aircrafts thanks to track-
ing algorithms. Two elementary attributes are considered to
measure the quality of the supervision system: “position er-
ror” (Root Mean Square [RMS] error between the estimated
trajectories and the real ones), and “completeness” (per-
centage of the trajectories for which aircrafts are detected
and tracked). Attributes position error and completeness are
computed separately for the existing classes of aircrafts: CA
(Commercial Airplanes) and RA (Recreational airplanes). An
MCDA model is then obtained, as shown in Figure 1.

Each scenario depicts a different situation that might oc-
cur, and involves a predefined set of trajectories. There are,
in particular, scenarios in which there is no aircraft in a given
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category – e.g. no RA. In this case, this means that there is
no evaluation of the two attributes “Position Error RA” and
“Completeness RA”.

In the previous example, two values of the attributes are
missing. In order to assess the candidate solutions on the sce-
nario without RA, one needs a new MCDA model having as
attributes only the ones that are evaluated. The corresponding
tree appears in Figure 1 in light gray (the nodes in dark gray
are removed). It is not realistic to ask the decision maker to
calibrate this new model, because of time constraints (the de-
cision maker already spent some significant time to calibrate
the full model; one does not wish to spent more time calibrat-
ing sub-models), of feasibility (the set of possible missing
values might be combinatorial, yielding a combinatorial set
of potential sub-models), and of consistency with the original
model (there might be unwished important gaps between the
original model and the learned restricted one).

1.2 Related Works
In the context of data fusion, missing values can be handled in
different ways [Saar-Tsechansky and Provost, 2007; Garca-
Laencina et al., 2010]: (1) they can be merely ignored in the
fusion process; (2) the missing value can be replaced by a
default value, which can be for instance the average value
of this variable over a dataset; (3) the fusion mechanism can
implicitly take into account missing elements.

In statistics, there are basically three types of missing data:
the probability of having a missing value for a variable can
be completely random (Missing Completely At Random –
MCAR), can be independent of the variable value but depen-
dent on the value of the other variables (Missing At Random
– MAR), or can be dependent on the values of all variables
(Missing not at Random – NMAR) [Little and Rubin, 2002].

Handling missing data is an important challenge in ma-
chine learning [Goodfellow et al., 2016]. The simplest ap-
proach consists in completing the missing data by a single
value (e.g. the average value over the dataset) [Goodfellow
et al., 2016; Lundberg and Lee, 2017]. Other methods fill the
gaps with (estimated) probability density functions [Smieja et
al., 2018], variational autoencoders [McCoy et al., 2018] or
modified generative adversarial network [Yeh et al., 2017].

In Social Choice, when the preferences of the voters are
incomplete, a safe approach is to determine whether a can-
didate is the winner for every possible completion of the
preferences – called the necessary winner [Konczak and
Lang, 2005]. This idea of robust recommendation is also
used in multi-criteria decision making [Boutilier et al., 2004;
Wilson, 2014]. If this entailment is empty, one can then com-
pute the proportion of completions which yields each possible
outcome [Lahdelma et al., 1998].

The existing works aim at filling the missing values in one
way or another. To our knowledge, there is no work in which
the missing data is considered as non relevant and shall be
removed from the model.

1.3 Contributions
We assume we are given a preference model that has been
elicited on the complete set of attributes. Our aim is to au-

tomatically construct a sub-model restricted to a subset of at-
tributes, by removing the missing attributes from the original
model. Such process is called “restriction operator”.

This situation arises in the design of complex system such
as in Ex. 1, in which attributes are computed by simulation on
operational scenarios. Another application is online monitor-
ing of an industrial system through several Key Performance
Indicators (KPIs) measuring the instantaneous performance
of the system or its performance over a small interval of time.
KPIs are often based on events that occur or not during the
time window. A criterion becomes irrelevant if the KPI is a
performance attached to events that did not occur.

Section 2 gives the basic definitions. We restrict ourselves
to utility models. Three classes of preference models are
considered: general quantitative models, monotone quanti-
tative models satisfying normalization conditions, and lastly
a versatile class of monotone quantitative models – namely
the Choquet integral. This model has many applications in
AI, for instance in combinatorial optimization [Galand et al.,
2013], incremental elicitation [Benabbou et al., 2017], pref-
erence learning [Tehrani et al., 2012], machine leaning with
SVM [Li et al., 2015].

The concept of restriction operator is introduced in Section
3. Its expression shall take the form of some kind of combi-
nation of the values of the full model for some special alter-
natives. It is not easy to provide a satisfactory expression of
the restriction operator. Hence we start by defining properties
that are wished and then we derive the expression of this oper-
ator by an axiomatic approach. Axiomatic characterizations
are proposed for the three classes of models – see Section
4, 5 and 6 respectively. Different expressions are obtained
for these three classes. This first one is linear in the original
model and is an average of the model over the missing values.
The other two take the form of a normalized average due to
the normalization conditions. Moreover the expression of the
restriction operator for the last two models differ with regard
to the values over which the average is computed.

2 Notation
We consider an MCDA problem with a set N = {1, . . . , n}
of attributes. We assume a finite set of values Yi on each at-
tribute i ∈ N . For B ⊆ N , we set YB :=

∏
i∈B Yi. We

assume that the preference model is represented by a quanti-
tative utility over YB . This covers many widely-used models.
For model U defined on B, x, y ∈ YB and A ⊆ B, we use
the notationU(xA, y−A) to denote the value ofU on the com-
pound alternative taking value x on A and value y on B \A.

The rest of this section is devoted to describing the three
classes of models going from the more general one to the less
general one.

2.1 General Class of Models
The first class is the family of quantitative preference models.
For B ⊆ N , let UG(B) (where G stands for General) be the
set of functions U : YB → IR.

We define, for i ∈ N and yi ∈ Yi, the delta function by
δyi(xi) = 1 if xi = yi, and δyi(xi) = 0 otherwise.

The Generalized Additive Independence (GAI) model is
a very general class of models in class UG(B) that is only
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supposed to fulfill additivity across subsets of B [Fishburn,
1967; Bacchus and Grove, 1995]. It takes the form

U(x) =
∑
S∈S

uS(xS), (1)

where S is a collection of subsets of B and uS : YS → IR.
Note that the additive utility model is a particular case where
S contains only singletons [Fishburn, 1970].

Due to the presence of sums in (1), the utility functions
shall correspond to scales of difference [Krantz et al., 1971],
that is they are given up to an affine transformation. We say
that two functions f and g on B are two “equivalent scales”
(of difference) – denoted by f ∝B g – if there exists coeffi-
cients c1, c0 such that f(xB) = c1 g(xB) + c0.

The following example (taken from [Boutilier et al., 2004])
illustrates the GAI model.

Example 2 The problem is to choose a menu composed of a
main dish (attribute 1 with two values {Fish,Meat}) and some
wine (attribute 2 with two values {White,Red}). Consider
the following GAI model U(x1, x2) = u1(x1) + u1,2(x1, x2)
with u1(Fish) = 2, u1(Meat) = 0, u1,2(Fish,White) =
1, u1,2(Fish,Red) = 0, u1,2(Meat,White) = 0,
u1,2(Meat,Red) = 1. According to this model, Fish is pre-
ferred to Meat, White wine is preferred to Red wine for Fish,
and Red wine is preferred to White wine for Meat.

2.2 Monotone Models
In Ex. 2, the preferences over the elements of attribute “wine”
are conditional on the value taken on attribute “main dish”.
Yet we do not encounter such conditional preferences in most
of MCDA problems. In this case, there exists a weak order
%i on each Yi, where xi %i yi means that xi ∈ Yi is at
least as good as yi ∈ Yi regardless of the values on the other
attributes. In Ex. 1, we have such unconditional preferences
over the attributes: the smaller the position error the better;
the larger the completeness the better. The least preferred and
most preferred elements in Yi according to %i are denoted by
⊥i and>i respectively. We also set Y i = {⊥i,>i}, and�i is
the asymmetric part of %i. Utility U is said to be “monotone”
if U(x) ≥ U(y) whenever xi %i yi for all i ∈ N .

The process of removing some criteria A from U makes
sense only if the remaining criteriaB\A have some influence
on U . An attribute i ∈ B is said to be “influential” if there
exists xi, yi ∈ Yi and z−i ∈ YB\{i} such that U(xi, z−i) 6=
U(yi, z−i). As U is monotone in its coordinates, we obtain:

∀i ∈ N ∃z−i ∈ YB\{i}, U(>i, z−i) > U(⊥i, z−i). (2)

We can restrict the previous relation to z−i ∈ Y B\{i}:

∀i ∈ N ∃z−i ∈ Y B\{i}, U(>i, z−i) > U(⊥i, z−i). (3)

In general, (2) does not imply (3). We will only assume (3) in
this paper.

We can assume w.l.o.g. that U takes values in [0, 1]. An
alternative taking value ⊥i (resp. >i) on all attributes is nat-
urally assigned to the worst (resp. best) possible evaluation 0
(resp. 1). These are two normalization conditions on U .
Definition 1 UM(B) is the set of monotone U ∈ UG(B) ful-
filling (3), U(⊥B) = 0 and U(>B) = 1.

Example 3 Consider two attributes, Y1 = {a, b, c} (with
>1 = c �1 b �1 a = ⊥1) and Y2 = {a, b, c, d} (with
>2 = d �2 c �2 b �2 a = ⊥2) and the normalized mono-
tone utility function U : Y1 × Y2 → IR defined by

U a b c d
a 0 0 0 1

2

b 0 1
2

1
2

1
2

c 0 1
2 1 1

2.3 Idempotent Models
We consider the special case, where all attributes are evalu-
ated on the same scale, i.e. Y1 = · · · = Yn =: Y . The values
of Y can be interpreted as reference satisfaction levels that
have the same interpretation across the criteria. For instance,
if value a ∈ Y is interpreted as a bad evaluation, then alter-
native (a, a, . . . , a) is bad on all criteria and thus deserves the
bad evaluation a as overall evaluation. More formally, ag-
gregation function U ∈ UG(B) is said to be “idempotent” if

U(a, . . . , a) = a ∀a ∈ Y. (4)
As U takes values in [0, 1], we shall have Y ⊆ [0, 1].

Not so many aggregation models satisfy this property. The
most well-known and versatile class of idempotent aggre-
gation functions is the Choquet integral [Choquet, 1953].
It is a numerical function that applies to numerical values.
We restrict ourselves here to the Choquet integral. We as-
sume that Y takes numerical values inside interval [0, 1]:
Y = {a0, a1, . . . , ap} with 0 = a0 < a1 < · · · < ap = 1,
with �i=>. The extreme points of Y are Y = {0, 1}.

The Choquet integral is a versatile model able to represent
interaction among criteria [Grabisch et al., 2000; Grabisch
and Labreuche, 2010]. It is characterized by a “capacity”
[Choquet, 1953] which is a set function µ : 2B → [0, 1]
such that µ(∅) = 0, µ(B) = 1 (Normalization conditions)
and µ(A) ≤ µ(A′) for all A ⊆ A′ ⊆ B (Monotonicity con-
ditions). Criterion i ∈ B is said to be “non-degenerate” in µ
if there exists A ⊆ B \ {i} such that µ(A ∪ {i}) > µ(A).

The Choquet integral of x ∈ [0, 1]B w.r.t. a capacity µ has
the following expression [Choquet, 1953] :

Cµ(x) =
b∑
j=1

xτ(j)[µ(S
B
τ (j))− µ(SBτ (j + 1))], (5)

where τ : {1, . . . , b} → B is a permutation s.t. xτ(1) ≤ · · · ≤
xτ(b), b = |B|, SBτ (j) = {τ(j), . . . , τ (b)}, SBτ (b+ 1) = ∅.
Definition 2 UC(B) is the set of Choquet integrals on B
w.r.t. capacities that are non-degenerate in all criteria.

The Choquet integral satisfies (4). One can readily see that
for the Choquet integral, relations (2) and (3) are equivalent
and hold iff all criteria are non-degenerate. Hence, due to the
monotonicity conditions on capacities, UC(B) ⊆ UM(B).

Model (5) contains many interesting sub-models as partic-
ular cases. One of them is the Choquet integral w.r.t. a 2-
additive capacity. It takes the following expression:

C2
µ(x) =

∑
i∈B

vi xi −
∑
{i,j}⊆B

Ii,j
|xi − xj |

2
. (6)
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The first part is a weighted sum, where vi represents the mean
importance of criterion i. Interaction between criteria comes
from the second part. Coefficient Ii,j is the intensity of in-
teraction between criteria i and j, which belongs to [−1, 1].
If Ii,j > 0 (resp. Ii,j < 0), the interaction term penalizes
(resp. increases) the overall assessment C2

µ, proportionally to
the difference of score between criteria i and j.

Example 4 (Ex. 1 cont.) The elicited model is:

U(x) =
1

6

(
2xCA

C + 2xRA
C + xCA

PE + xRA
PE −

|xCA
PE − xRA

PE |
2

− |x
CA
C − xRA

C |
2

− |x
CA
PE − xCA

C |
2

− |x
RA
PA − xRA

C |
2

)
,

where xji , i ∈ {PE,C} (for Position Error and Complete-
ness resp.) and j ∈ {CA,RA} denote the values of the at-
tributes. Completeness is more important than Position Er-
ror as one needs first to track the aircrafts as much as pos-
sible, before caring about their position accuracy. Moreover
there are positive interactions giving bonus when Complete-
ness and Position Error are simultaneously satisfied, or when
the system is good at both CA and RA.

3 Problem Statement
Consider model U ∈ UT(N) where T ∈ {G,M,C}, and
alternative x which values are unknown on the attributesA ⊂
N . These values are called “missing”. Several approaches
can be used to assess the alternative given only x−A. One can
model uncertainty on the missing information by the uniform
probability distribution over the possible completions of x−A,
using the maximum entropy principle. The evaluation of x−A
is then obtained by the following expected utility:

1∏
i∈A |Yi|

∑
yA∈YA

U(yA, x−A). (7)

We explore here another venue. Given a model elicited
on the full set of attributes, we define a restriction operator
returning a preference model defined on a subset of attributes.
As the process of removing some attributes can be applied
several times, the support of the initial model can be a strict
subset B of N , and the restricted function shall belong to the
same class of models as the initial function. The restriction
operator has thus a closed form (with A ⊂ B ⊆ N )

[·]T,B−A : UT(B)→ UT(B \A). (8)

The motivation of using a restriction operator rather than
directly a formula such as (7) is twofold. Firstly, it explicitly
exhibits a model on the set of attributes with known values.
This model can be shown and explained to the user, which is
helpful in practice. Secondly, we are interested in the case
where all attributes are intrinsically relevant in model U , but
an attribute becomes “irrelevant” when its value is unknown
(missing). Hence it makes sense to remove the missing at-
tributes and restrict the elicited model.

The rest of this paper is devoted to defining [U ]T,B−A (xB\A)
for xB\A ∈ YB\A. We adopt an axiomatic approach: instead
of starting from an expression (such as (7)), we propose ax-
ioms on [·]T,B−A that are important for an end-user, and then we

show that there is a unique restriction operator fulfilling these
properties. This approach is applied for the three classes of
models previously described.

4 Non-Monotone Preference Models
We consider a general model U ∈ UG(B). We first introduce
the axioms on [·]G,B−A and then give the axiomatic result.

4.1 Axioms and Axiomatic Result
Linearity
Let us restrict ourselves to the case where A is a single-
ton A = {i}. The models we consider satisfy some kind
of additivity, like for the GAI model (1). If U is a linear
combination of two simpler models U ′ and U ′′, then [U ]G,B−i
shall be a linear combination of [U ′]G,B−i and [U ′′]G,B−i . Stan-
dard linearity of [·]G,B−i means that [β′ U ′ + β′′ U ′′]G,B−i =

β′ [U ′]G,B−i + β′′ [U ′′]G,B−i where β′, β′′ ∈ IR are constant.
Here in order to put β′, β′′ outside operator [·]G,B−i , it is suffi-
cient that they are constant in i. Hence β′, β′′ can depend on
attributes in B \ {i}.
Axiom Linearity (L): Let B ⊆ N , i ∈ B with B 6= {i},
β′, β′′ ∈ UG(B \ {i}), and U ′, U ′′ ∈ UG(B). Then

[β′ U ′ + β′′ U ′′]G,B−i = β′ [U ′]G,B−i + β′′ [U ′′]G,B−i .

Most of MCDA models fulfill some linearity. This ensures
a kind of understandability by humans. If the restriction oper-
ator were completely non-linear we would obtain a complex
and not easy to interpret restricted function.

Proposition 1 Under L, there exists coefficients
{γBi (yi)}yi∈Yi

such that for all x−i ∈ YB\{i}

[U ]G,B−i (x−i) =
∑
yi∈Yi

γBi (yi) U(yi, x−i). (9)

Proof : By L, as δ is a base of U , [U ]G,B−i (x−i) =∑
yi∈Yi

γBi (yi) U(yi, x−i) where γBi (yi) := [δyi ]
G,B
−i .

Constant
If U is constant, then removing attribute i does not change the
function.
Axiom Constant (C): Let B ⊆ N and i ∈ B with B 6=
{i}. If U(x) = C for all x ∈ YB , with C ∈ IR, then
[U ]G,B−i (x−i) = C.

Proposition 2 Under L and C, there exists coefficients
{γBi (yi)}yi∈Yi such that (9) holds, with∑

yi∈Yi

γBi (yi) = 1. (10)

For space limitation, the proofs of this result and others are
omitted.

When only one variable needs to be removed, the expres-
sion of the restriction operator (see Prop. 2) is similar to a
general probabilistic approach computing the expected utility
over the unknown values with a non-uniform distribution.
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Single Value Contribution
Assume that U ∈ UG(B) takes the form (for i ∈ B and
yi ∈ Yi)

∀x ∈ YB U(x) = δyi(xi) (11)
Then the result of removing attribute i from U shall not de-
pend on value yi, as stated by the following axiom.
Axiom Single Value Contribution (SVC): Let B ⊆ N , i ∈
B with B 6= {i}. If U satisfies (11), then [U ]G,B−i does not
depend on yi.
Proposition 3 Under L, C and SVC, then

[U ]G,B−i (x−i) =
1

|Yi|
∑
yi∈Yi

U(yi, x−i).

The three axioms uniquely specify the restriction w.r.t. one
variable, and [U ]G,B−i is an average of U over the missing val-
ues. We now consider the restriction w.r.t. more variables.

Recursivity
When we need to remove more than one attribute, we can
proceed in several ways: remove all of them at the same time,
or remove one at a time (with all possible ordering of the
variables). There is no reason why these different ways shall
provide different outcomes. This idea is expressed in the fol-
lowing axiom defined for T ∈ {G,M,C}.
Axiom Recursivity (R[T]): For all A ⊂ B, i ∈ B \ A with
A ∪ {i} 6= B, and all U ∈ UT(B), we have

[U ]G,B−A∪{i}(xB\(A∪{i})) =
[
[U ]G,B−A

]G,B\A
−i

(xB\(A∪{i})).

Note that this axiom will be used for other assumptions on
U , and is thus indexed by T ∈ {G,M,C}.
Theorem 1 [·]G,·−· satisfies L, C, SVC and R[G], if and only
if for all B ⊆ N , A ⊂ B and all x−A ∈ YB\A,

[U ]G,B−A (x−A) =
1∏

i∈A |Yi|
∑

yA∈YA

U(yA, x−A). (12)

This result shows that there is a unique restriction operator
fulfilling the four axioms. Interestingly, we recover exactly
expression (7) in which the uncertainty on the missing in-
formation is modeled by the uniform probability distribution
over the possible completions of x−A.
Sketch of the proof: One can easily check that (12) satisfies
to all axioms.

Conversely consider [·]G,·−· satisfying all axioms. One can
easily show relation (12) by induction on |A|, thanks to
Proposition 3 and R[G].

Example 5 (Ex. 2 cont.) We obtain [U ]G,N−1 (White) =
1
2

[
U(Fish,White) + U(Meat,White)

]
= 3

2 ,
[U ]G,N−1 (Red) = 1

2

[
U(Fish,Red) + U(Meat,Red)

]
= 3

2 ,
[U ]G,N−2 (Fish) = 1

2

[
U(Fish,White) + U(Fish,Red)

]
= 5

2 ,
[U ]G,N−2 (Meat) = 1

2

[
U(Meat,White) + U(Meat,Red)

]
=

1
2 . So there is no intrinsic preference of a particular type
of wine, which is consistent with u1,2. Moreover, “fish” is
intrinsically preferred to “meat”, as expected given u1.

4.2 Justification of the Axioms
In order to see the importance of the axioms, we provide ex-
amples of restriction operators violating one axiom and ful-
filling the other ones. Note that the existence of such exam-
ples also show the independence of the axioms.
Example 6 Let us define

[U ]G,B−A (x−A) = min
yA∈YA

U(yA, x−A). (13)

This operator satisfies C, SVC and R[G], but violates L. This
expression is very simple. It would be a very relevant expres-
sion if the aggregation operators were purely ordinal like a
weighted min or max operator. However, we are interested in
models U having some linearity property. Yet any linearity in
U is lost in (13), which can make its expression more complex
to understand for the user.
Example 7 Consider

[U ]G,B−A (x−A) =
∑

yA∈YA

U(yA, x−A). (14)

This operator satisfies L, SVC and R[G], but violates C. This
relation is not normalized so that [U ]G,B−A in (14) is not of the
same order of magnitude as for U .
Example 8 Consider

[U ]G,B−A (x−A) =
∑

yA∈YA

(∏
i∈A

γBi (yi)

)
U(yA, x−A),

where γBi (yi) =
2

|Yi|+2 if yi ∈ Y i, and γBi (yi) =
1

|Yi|+2 else.
This operator satisfies L, C and R[G], but violates SVC. This
expression does not treat in a similar way all elements in Yi.

Example 9 Let us define [U ]G,B−A (x−A) =
1
|Yi|
∑
yi∈Yi

U(yi, x−i) if ∃i ∈ N s.t. A = {i}, and

[U ]G,B−A (x−A) = 0 else. This operator satisfies L, C and
SVC, but violates R[G]. This expression is not intuitive as
what is done for subsets of at least two elements has nothing
to do with what is done for singletons.

5 Monotone Preference Models
We now consider monotone models U ∈ UM(B).

Quasi-Linearity
Axiom L cannot be strictly speaking satisfied for functions
in UM(B), as [β′ U ′ + β′′ U ′′]M,B−i shall be a monotone and
normalized aggregation function, which is clearly not the case
of β′ [U ′]M,B−i + β′′ [U ′′]M,B−i when β′ + β′′ 6= 1 or β′, β′′ <
0. More precisely, [β′ U ′ + β′′ U ′′]M,B−i and β′ [U ′]M,B−i +

β′′[U ′′]M,B−i shall correspond to two equivalent interval scales.
Hence one shall have the next axiom defined for T ∈ {M,C}.
Axiom Quasi-Linearity (QL[T]): For B ⊆ N , i ∈ B with
B 6= {i}, U ′, U ′′ ∈ UT(B), and β′, β′′ ∈ UG(B \ {i}) with
β′(t), β′′(t) ≥ 0 ∀t ∈ YB\{i},(

[β′ U ′ + β′′ U ′′]T,B−i

)
∝B\{i}

(
β′ [U ′]T,B−i + β′′ [U ′′]T,B−i

)
.
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Proposition 4 Under QL[T], for B ⊆ N and i ∈ B
with B 6= {i}, there exists coefficients {γBi (yi)}yi∈Yi s.t.

[U ]T,B−i (x−i) =
GB

i (x−i)−GB
i (⊥−i)

GB
i (>−i)−GB

i (⊥−i)
for all x−i ∈ YB\{i},

where GBi (x−i) =
∑
yi∈Yi

γBi (yi) U(yi, x−i).

Sketch of the proof: The proof uses the fact that if f ∝B
g (with f ∈ UT(B), g ∈ UG(B)), then for all xB ∈ YB ,
f(xB) =

g(xB)−g(⊥B)
g(>B)−g(⊥B) .

Axioms C and SVC do not apply to UM(B). However, as-
sume that U takes the form: U(x) = Ui(xi) × U−i(x−i),
with Ui ∈ UM(Yi) and U−i ∈ UM(Y−i). By Propo-
sition 4, GBi (x−i) =

[∑
yi∈Yi

γBi (yi) Ui(yi)
]
U−i(x−i).

If the term in bracket is non null, then [U ]M,B−i (x−i) =
U−i(x−i)−U−i(⊥−i)
U−i(>−i)−U−i(⊥−i)

= U−i(x−i) as U−i is normalised.

Symmetry
By Prop. 4, the restriction operator on i is a normalized aver-
age over terms U(yi, x−i)−U(yi,⊥−i). The next axiom is a
symmetry property saying that [U ]T,B−i shall not be modified
if we permute these differences over the elements of Yi. We
can also multiply these differences by a constant, without any
consequence on the restriction.
Axiom Symmetry (S): Let B ⊆ N , i ∈ B with B 6= {i},
a permutation π on the values of Yi, U,U ′ ∈ UM(B) and
C > 0 s.t. for all yi ∈ Yi and x−i ∈ YB\{i}

U(yi, x−i)− U(yi,⊥−i)
= C (U ′(π(yi), x−i)− U ′(π(yi),⊥−i)). (15)

Then [U ]T,B−i (x−i) = [U ′]T,B−i (x−i).
Without the presence of constant C, there does not exists

in general U,U ′ ∈ UM(B) satisfying (15), and thus axiom S
would be void.

Adding R[M], we obtain an axiomatization of [·]M,·−· .

Theorem 2 [·]M,·−· satisfies QL[M], S and R[M], if and only
if for all B ⊆ N , A ⊂ B and all x−A ∈ YB\A,

[U ]M,B−A (x−A) =

∑
yA∈YA

(U(yA, x−A)− U(yA,⊥−A))∑
yA∈YA

(U(yA,>−A)− U(yA,⊥−A))
.

For every U ∈ UM(B), this expression is well-defined and
belongs to UM(B \A).

This results shows that there is a unique restriction operator
fulfilling the three axioms. The restriction operator is now a
normalized sum over all values of the missing attributes.
Sketch of the proof: Under S, the coefficients γBi (yi) are the
same for all yi ∈ Yi. To this end, one just needs to show that
for all U ∈ UM(B), there exists U ′ ∈ UM(B) satisfying (15).

The end of the proof is similar to that of Theorem 1.

Example 10 (Ex. 3 cont.) The restriction of U to the second
attributes is [U ]

M,{1,2}
−1 (t) = F (t)

F (c) , where F (t) = (U(a, t) −
U(a, a)) + (U(b, t) − U(b, a)) + (U(c, t) − U(c, a)). Then
[U ]

M,{1,2}
−1 (a) = 0, [U ]

M,{1,2}
−1 (b) = 1

2 , [U ]
M,{1,2}
−1 (c) = 3

4 ,

[U ]
M,{1,2}
−1 (d) = 1. On average, the utility of c (resp. b) lies

half way in-between b and d (resp. a and d).

6 Monotone Idempotent Preference Model:
Case of the Choquet Integral

We now consider elements of UC(B), that is Choquet inte-
grals. These are monotone idempotent aggregation functions.

6.1 Axioms and Characterization Result
Quasi-Linearity
We assume property QL[C]. For U ∈ UC(B), [U ]C,B−i shall
belong to UC(B \ {i}). This implies a stronger result than
Proposition 4. More precisely, the sum is only performed on
the extreme points 0 and 1, as shown by the following result.
Proposition 5 Under QL[C], there exists coefficients
{γNi (yi)}yi∈Y such that

[U ]C,B−i (x−i) =

∑
yi∈Y γ

B
i (yi) (U(yi, x−i)− U(yi, 0−i))∑

yi∈Y γ
B
i (yi) (U(yi, 1−i)− U(yi, 0−i))

.

Sketch of the proof: One can show that the expression of
Proposition 4 applied on a Choquet integral fulfills idempo-
tency iff γBi (yi) = 0 for yi ∈ Y \ Y .

Symmetry
Symmetry axiom S says that all values of attribute Yi are
treated symmetrically. By Proposition 5, only the two ex-
treme values 0 and 1 count. The next axiom restricts S to
these extreme values, but is applied only to a subset of cardi-
nality at least 3.
Axiom Symmetry (S’): ForB ⊆ N and i ∈ B with |B| ≥ 3,
consider U,U ′ ∈ UC(B) s.t. ∀x−i ∈ YB\{i}
U(1i, x−i)− U(1i, 0−i) = U ′(0i, x−i)− U ′(0i, 0−i)
U(0i, x−i)− U(0i, 0−i) = U ′(1i, x−i)− U ′(1i, 0−i).

Then [U ]C,B−i (x−i) = [U ′]C,B−i (x−i).

Proposition 6 Under QL[C] and S’, for all x−i ∈ YB\{i}

[U ]C,B−i (x−i) =

∑
yi∈Y (U(yi, x−i)− U(yi, 0−i))∑
yi∈Y (U(yi, 1−i)− U(yi, 0−i))

.

Proof : Consider two capacities v and v′ depending
only on three attributes i, j, k and xj < xk. Then
Cv(1i, x−i)− Cv(1i, 0−i) = xj (v({i, j, k})− v({i, k})) +
xk (v({i, k})− v({i})) and Cv(0i, x−i) − Cv(0B) =
xj (v({j, k})− v({k})) + xk v({k}). Then if v({i, j, k})−
v({i, k}) = v′({j, k})−v′({k}) =: dj1, v({j, k})−v({k}) =
v′({i, j, k}) − v′({i, k}) =: dj0, v({i, k}) − v({i}) =
v′({k}) =: dk1 and v({k}) = v′({i, k}) − v′({i}) := dk0 ,
then the conditions of S apply for Cv and Cv′ . Then one shall
have by Proposition 5

xj

(
γBi (1) d

j
1 + γBi (0) d

j
0

)
+ xk

(
γBi (1) d

k
1 + γBi (0) d

k
0

)
γBi (1)

(
dj1 + dk1

)
+ γBi (0)

(
dj0 + dk0

)
=
xj
(
γBi (1) d

j
0+γ

B
i (0) d

j
1

)
+xk

(
γBi (1) d

k
0+γ

B
i (0) d

k
1

)
γBi (1)

(
dj0 + dk0

)
+ γBi (0)

(
dj1 + dk1

)
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where [Cv]
C,B
−i (x−i) (resp. [Cv′ ]

C,B
−i (x−i)) is equal to the left

hand side (resp. right hand side) of this relation. As this shall
hold for every dj1, d

j
0, d

k
1 , d

k
0 (small enough), and xj < xk, we

conclude that γNi (1) = γNi (0).

Theorem 3 [·]C,·· defined for B ⊆ N , A ⊂ B and U ∈
UC(B) satisfies QL[C], R[C] and S’ if and only if for all
B ⊆ N , A ⊂ B with A 6= B, and all U ∈ UC(B)

[U ]C,B−A (x−A) =
FBA (x−A)− FBA (0−A)

FBA (1−A)− FBA (0−A)
(16)

where FBA (x−A) =
∑
D⊆A U(1D, 0A\D, x−A). Moreover

for every function in UC(B), (16) is well-defined and belongs
to UC(B \A).

This results shows that there is a unique restriction operator
fulfilling the three axioms. The restriction operator is a nor-
malized sum over the extreme points 0 and 1 of the missing
attributes.
Proof : One can easily verify that (16) satisfies QL[C], R[C]
and S’. The “only if” part of the theorem is provided by com-
bining Proposition 6, and proceeding as in Theorem 1.

Consider U ∈ UC(B),A ⊂ B and k ∈ B\A. By (3), there
existsD ⊆ B\(A∪{k}) such that U(1D, 0B\(D∪{k}), 1k) >
U(1D, 0B\(D∪{k}), 0k). By monotonicity of U , this yields

U(1D, 0A\D, 1B\A) > U(1D, 0A\D, 0B\A).

Hence the denominator of (16) is always non-zero, so that
(16) is well-defined for every function in UC(B).

6.2 Interpretation
The next result provides the expression of the restriction op-
erator for a two-additive Choquet integral.
Theorem 4 For a two additive Choquet integralU defined on
B with importance and interaction indices vi and Ii,j respec-
tively, [U ]C,B−A is also a two-additive Choquet integral with the
following importance and interaction terms:

v
B\A
i =

vi∑
k∈B\A vk

and I
B\A
i,j =

Ii,j∑
k∈B\A vk

. (17)

Expressions (17) are very intuitive and simpler to compute
than (16). The relative importance between criteria in B \ A
remain the same. Hence, in order to get an idempotent model,
the weight vi is divided by

∑
k∈B\A vk. The interaction in-

dex between two criteria in B \ A is simply the previous in-
teraction divided by the same factor. The other interactions
are merely discarded, as expected.
Example 11 (Ex. 4 cont.) Attributes xRA

PA and xRA
C are un-

known (see Ex. 1). By Theorem 4, the restriction [U ]−RA of
U (defined in Ex. 4) to the remaining two attributes is

[U ]−RA(x
CA
C , xCA

PE ) =
2xCA

C

3
+
xCA
PE

3
− 1

3

|xCA
C − xCA

PE |
2

.

Comparing to the expression of U , we keep only the terms for
which the variables are known (namely xCA

C and xCA
PE ). As

for U , C is twice as more important than PE, and there is
a strong positive interaction between C and PE. Expression
[U ]−RA thus completely makes sense.

7 Discussion and Perspectives
This paper addresses the problem of how to handle missing
data interpreted as non-relevant, in a preference model. More
specifically, given a model defined on the full set of attributes,
we have defined a restriction operator returning a preference
model defined on a subset of attributes. Axiomatic character-
izations are proposed for three classes of models. For general
quantitative models, the restriction operator is characterized
by linearity, recursivity and particular cases of constant mod-
els and models depending only on one variable. We obtain
the average of the value of the utility over all possible values
of the missing attributes. The second class is the set of mono-
tone quantitative models satisfying normalization conditions.
The linearity axiom is changed to fit with these conditions.
Adding recursivity and symmetry, we obtain a normalized av-
erage of the utility over all values of the missing criteria. The
last class is the Choquet integral w.r.t. non-degenerate capac-
ities. With the same axiom as before, we obtain a simpler
expression averaging only on the extreme values of the miss-
ing criteria. Finally, a very intuitive interpretation is provided
for two-additive Choquet integrals.

Our approach has advantages over the existing ones. A ro-
bust approach is too pessimistic. In Ex. 1, it would penalize
a system when the values of the two attributes are missing.
There is no reason to do so as there is no RA in the scenario.
The drawback of the probabilistic approach is on the assump-
tions made for the completion of the missing data. How-
ever, it is interesting to note that it yields exactly the same
expression as in our approach for the non-monotone model
(see Theorem 1). The main asset of our approach is that it
brings a strong axiomatic justification.

If a naive approach works well for the non-monotone case,
it is not the case for the other models. We have shown that
for monotone models, one shall use a normalized average
rather than a simple average to get a consistent result, and
that for the Choquet integral, we shall only consider the ex-
treme points. These major points are derived by the axiomatic
approach and the closed form of the restriction operator.

The paper can be extended in several directions. Theorems
2 and 3 are not strictly speaking expected utility. It would
be interesting to investigate whether it can be put under the
form of a conditional expectation, with the denominator be-
ing the expected utility of the conditioned event. The idea of
removing missing data can be adapted to other fields such as
machine learning or data fusion. Applying a learned (classifi-
cation/regression) model when attributes are missing while
still requiring a precise prediction requires to make strong
assumption about the missingness process, such as MAR,
NMAR. Our current approach provides an alternative way
to handle missing attributes by simply removing it from the
model, allowing one to make predictions without assumptions
about the missingness process.
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