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1  | INTRODUCTION

It is paradoxical to think that throughout much of human history 
people were threatened by extinction from under‐population 
(Biraben, 2003), considering that today the question is whether we 
are approaching or have already reached a critical point of over‐pop‐
ulation. In the first 165,000 years of human existence, the popula‐
tion remained low, persisting at a few hundred thousand individuals 
globally. By contrast, the human population has changed markedly 
over the last 12,000 years, experiencing an estimated 1,860‐fold in‐
crease in the population size (Roser & Ortiz‐Ospina, 2017).

The years of relatively constant growth were not static; how‐
ever, populations experienced boom‐bust cycles (Biraben, 2003; 
Tallavaara & Seppä, 2012) as resource availability changed and 
new tools came into existence. In the last 12 millennia, tech‐
nological and scientific developments have increased exponen‐
tially; however, this rapid development has been combined with 
a significant change in social norms, lifestyles and hunting tech‐
niques. It is thus difficult to make comparisons of demographic 
trends over time and establish driving factors of population 
change that hold true through multiple demographic transitions 
or time periods.
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Abstract
1.	 The dependence of humans on nature has come into focus as the human popula‐

tion continues to grow, resources diminish and production technology stagnates 
– threatening human well‐being on a global scale. Numerous previous models de‐
scribe human population dynamics, in relation to a multitude of different factors. 
However, there are no consistent driving factors of human demography through 
history, which makes predicting future changes more challenging.

2.	 Here, we review the literature on human population growth from empirical data 
and previous models, which allows us to highlight key trends in demography and 
land cover changes.

3.	 We then establish an ecologically driven theory of demographic change that uses 
resource accessibility as a proxy for socio‐economic factors. The theory combines 
multiple concepts to represent 12 millennia of past population dynamics through 
simple human–nature relationships.

4.	 Furthermore, the model allows us to compare different scenarios related to tech‐
nological progress and land cover change, for which we find that the peak human 
population is highly dependent on whether technological developments continue 
at an exponential growth rate, or if and when there is a saturation point. Likewise, 
agriculture is shown to be helpful for growing the population, but nature is ulti‐
mately needed to maintain the human population.
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Notwithstanding, there remain fundamental components that 
are required to sustain the human population that are independent 
of any one era – for example, food, shelter, water, inter‐personal in‐
teractions and waste removal. Is it realistic to make projections on 
where we are going or what could trigger a change in the current 
global society with what we know about past demographic transi‐
tions and various fundamental components? Early civilizations were 
highly dependent on resource availability; does this hold for contem‐
porary societies? Is it possible for a global system to collapse, as was 
the case on a smaller scale with the Easter Islanders and the Mayans? 
Will there be advances in technology and innovation over the coming 
years that allow us to continue growing indefinitely?

There was a growing trend in the 1970s and 1980s of work de‐
scribing population sustainability, highlighting the importance of 
monitoring population growth in tandem with discussing ecosys‐
tem sustainability. Earlier work discussed population size as a func‐
tion of the production or consumption of material goods and foods 
(Schacht, 1981), but this topic became taboo following the 1994 
UN Cairo conference (Kopnina & Washington, 2016). The idea that 
human population growth is responsible for degrading the natural 
system or part of complex feedbacks within the global environment 
has been considered unethical and ‘anti‐human’.

We take this opportunity to explore the dynamics between de‐
mography and resource accessibility throughout history. We intro‐
duce a new theory for modelling population dynamics in relation to 
the accessibility of natural land and agricultural area, which includes 
technological and innovative advancements. As ecologists, we focus 
on the importance of land cover change and ecosystem services in 
explaining demographic change and demonstrate how the accessi‐
bility of resources provides a reasonable proxy for socio‐economic 
factors. This theory is then developed into a model of bidirectional 
feedbacks between humans and the environment to simulate past 
population and land cover changes, in addition to possible future 
scenarios. Technological advancements are a favoured solution to 
maintaining human well‐being and food production as the popula‐
tion grows; however, the trajectory of technological development 
is uncertain, which is accounted for here by varying the rate and 
saturation point of technology. In addition, we investigate alterna‐
tive ways of maintaining human well‐being, other than technological 
advancement, such as reduced degradation rates. Given the com‐
plexity of demographic change and land management, we are not 
proposing to have a model that can accurately predict human popu‐
lation and land cover trends; however, we aim to provide a possible 
mechanism for population change and illuminate practices that are 
either detrimental or beneficial to the sustainability of the global 
human‐environment system.

2  | HUMAN–NATURE INTERACTIONS: 
EXISTING THEORIES AND MODELS

Along with being controversial and taboo, modelling changes in 
human population and land cover has been widely debated in terms 

of driving factors (e.g. agricultural or medical advances; urban or 
rural lifestyles), assumptions (e.g. Malthusian or Boserupian) and 
feedbacks (e.g. feedbacks between fertility and mortality; feedbacks 
in the human‐environment system) (Motesharrei, Rivas, & Kalnay, 
2014; Motesharrei et al., 2016; Schacht, 1981; Warren, 2015). It is 
evident that the contemporary population is growing at a rate much 
faster than pre‐modern civilizations or even societies prior to the 
1700s; however, the same clarity cannot be conferred to the cause 
of growth. The gaps in knowledge or shifting theories are highlighted 
by the array of previous modelling attempts.

There is a broad diversity of theories and models describing 
changes in population. The discussion focuses on three main topics: 
carrying capacities, technological advances, and social norms and 
education. Modelling allows comparisons between different systems 
and eras, drawing commonalities and conclusions to develop theo‐
ries on demographic trends and land cover change. Previous models 
have attempted to capture changes in demography, generally focus‐
ing on a specific transition or period of humanity. Questions arise 
about the validity of model assumptions and the ability to reflect 
past and present trends in human population and land cover change.

Initial models of population growth were very simple and often 
based on everyday observations. John Graunt is credited as the first 
demographer to describe population growth in the 17th century as a 
doubling rate (Graunt, 1662). This later became the basis for Malthus 
(1888).

2.1 | Agriculture and resources

The Malthusian model of population growth has received much criti‐
cism over the years. Malthus (1888) assumes that the population 
grows geometrically, with adequate resources, while food produc‐
tion grows arithmetically implying that the population will inevitably 
decline when the number of individuals surpasses the available food 
supply, as a result of disease, famine or war. Malthus believed the 
population could either choose to reduce population growth through 
family planning, governed by income and status, or that the amount 
of resources would ultimately force a reduction in population.

Over the years, many models have applied concepts of resource 
consumption to describe population dynamics. From the most basic 
models that assume the population grows linearly with land area 
(Schacht, 1981) to models linking carrying capacities, population size 
and warfare (Turchin, 2009).

Many models focus on the availability of resources, particularly 
agriculture. It is widely hypothesized that agricultural production 
is responsible for the exponential growth in the human population 
(Armelagos, Goodman, & Jacobs, 1991; Bocquet‐Appel, 2002; May, 
1978). The Neolithic revolution, the introduction of agriculture 
roughly 10,000 BCE and the first established demographic transition, 
is well‐studied. It is evident that agricultural development allowed the 
population to grow at an unprecedented rate, more than doubling the 
previous peak growth rate that followed the introduction of special‐
ized tools in the Paleolithic Era (Biraben, 2003). Much higher popu‐
lation densities can be attained using agriculture, when compared to 
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an equal area of hunting and foraging land. This trend is evidenced 
on a global scale (Bocquet‐Appel, 2002, 2011; Gignoux, Henn, & 
Mountain, 2011) and over the course of many millennia. Indeed, ag‐
riculture was primarily responsible for higher‐birth rates and lower‐
mortality rates up until the 1900s (Hirschman, 2005; Overton, 1993), 
showing that population dynamics and land cover change were intrin‐
sically linked during this era (Woodbridge et al., 2014).

However, too strong a dependence on one system, such as 
agriculture, can lead to detrimental effects when there is a sud‐
den shock to the system (Bocquet‐Appel, 2011; Downey, Haas, & 
Shennan, 2016). One study suggests that up to 60% of the popu‐
lation were lost at one point from one such bust (Shennan et al., 
2013). Similar to Neolithic agricultural practices, medieval agri‐
culture was a double‐edged sword. High production allowed the 
population to grow, but in times of crop and pastoral failure the 
population suffered (Overton, 1993). Agriculture often failed as 
the necessary precautions were not heeded to avoid destruction 
of the fragile ecological equilibrium that maintains crop and live‐
stock production. Likewise, archaeological work reveals prolonged 
soil nitrogen deterioration, which ultimately leads to ecological 
stress and agricultural failings in earlier settlements.

Reuveny (2012) provides a summary of models used to explain 
the collapse of historical civilizations, starting with Brander and 
Taylor (1998). Brander and Taylor's model, which was later elabo‐
rated on by many others (D'Alessandro, 2007; Reuveny & Maxwell, 
2001; Ricardo Faria, 2000), follows one main assumption: greater 
resource availability leads to larger populations. This model was spe‐
cifically developed to describe the Easter Island population, but fails 
to replicate the last two demographic transitions in the modern era. 
Population growth is modelled as follows,

where b is the birth rate and d is the death rate. The population (L) is 
further enhanced by the availability of resources (S) multiplied by the 
utility of the resource (β), the efficiency of acquiring the resource (α) 
and a procreation coefficient (ϕ).

Anderies (2003) elaborates on Brander and Taylor's model to re‐
flect population changes from both Malthusian and modern growth 
relationships. The model describes the relationship between con‐
sumption patterns and demography: (1) higher consumption of ag‐
ricultural goods results in higher‐birth rates, (2) higher consumption 
of manufactured goods decreases the birth rate, and (3) greater con‐
sumption of both agricultural and manufactured goods decreases 
the death rate. The modifications provide a better fit with modern 
populations. The change in population is given by

where the birth rate (b0) experiences feedbacks (b1) from agricul‐
tural goods (qa) and feedbacks (b2) from manufactured goods (qm). 
Likewise, both goods feedbacks onto death through the coefficients 
d1 and d2.

Other models incorporate important social factors along with 
carrying capacities and consumption patterns. Motesharrei et al. 
(2014) divide the population into commoners and elites, with differ‐
ent levels of consumption and therefore different death rates. This 
division of the population incorporates important social factors that 
explain differences in the stage of the demographic transition for 
high‐ and low‐income countries.

Before the onset of major technological advances in the 18th 
century, population growth dynamics could be explained by 
Malthus’ theory. However, the human population has managed to 
escape the Malthusian trap numerous times (Hirschman, 2005). 
For example, according to Malthus the population should have 
collapsed in the 1900s, as growth rates exploded and agricultural 
expansion stagnated, presuming that agriculture would not be able 
to support the population. This was not the case; in reality, the 
United States experienced the greatest growth during this period. 
The yields per hectare of essential crops increased exponentially 
between 1930 and 1998 (Warren, 1998), as a result of the Green 
Revolution. The population boom in the 1900s fostered the idea 
that technology—for example, fertilizer, machinery and genetic 
modification (technology of the Green Revolution)—is responsible 
for human population growth.

2.2 | Technology and medical advances

An alternative to the resource‐dependent population growth theory 
was brought forth by Boserup (1965), suggesting that technological 
advancements are a major driving factor in demographic changes. 
It is undeniable that the onset of new technology and tools has 
often coincided with rises in population growth. Dating back to 
the Paleolithic Era, advances in hunting tools increased population 
growth at the end of the era. Smil (1999) argued that the popula‐
tion explosion of the 1900s would not have been possible without 
the agricultural advances that increased production six‐fold over the 
same period (Moses, 2009).

Moreover, along with technology comes advances in medi‐
cine and hygiene. There have been marked increases in population 
growth, since the early 19th century, as societies develop. The in‐
creases in growth have been attributed to a decline in death rates 
following improvements in hygiene and sanitation, enhanced nu‐
trition, early medical care and clean water (Preston, 1980; Samir & 
Lutz, 2017).

Lee and Tuljapurkar (2008) model pre‐industrial population dy‐
namics using theories from both Malthus and Boserup. The popu‐
lation change is subdivided into different age groups and growth is 
calculated in terms of food consumption, winter temperatures, dis‐
ease prevalence, cultural norms, technology and social factors. The 
model assumes that increased agricultural productivity increases 
population growth and well‐being. The food availability depends on 
the labour force, in addition to cultivation techniques and environ‐
mental quality.

In two recent papers, Lafuite and Loreau (2017) and Lafuite, 
Mazancourt, and Loreau (2017) modelled the change in the human 
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population (H) as a function of technological advancement (T) and 
biodiversity (B). The model emphasizes the dependence of people on 
biodiversity and ecosystem services, which ultimately impact the ag‐
ricultural production that humans require. Furthermore, technology 
has both positive and negative influences on the human population, 
such that greater technological advancements in the agricultural and 
material goods sectors often lead to declining biodiversity, which has 
a negative impact on human well‐being. However, technology also 
acts as a proxy for improved social well‐being (i.e. improved health 
care, better education) which improves survival. The influence of 
socio‐economic and ecological feedbacks on human population size 
is given in the following equation:

The human population is assumed to depend on the consumption 
of agricultural (γ1) and industrial goods (γ2), requiring a minimum per 
capita consumption of agricultural goods (y1min

). µmax is the maximum 
human population growth rate and b2 is the demographic transition 
coefficient, reflecting the sensitivity of industrial goods consump‐
tion on growth. The maximum technological efficiency (Tm) is related 
to biodiversity and ecosystem services (Ω).

2.3 | Social norms, wealth and education

Societal views may explain many shifts in behaviour that are related 
to demography and land‐use. Between 1270 and present, there have 
been both positive and negative status–fertility relationships (Mulder, 
1998). Over this period, those within a high occupation/social class 
switched from having more children to having slightly fewer children 
than those with low status. There has been a great deal of work trying 
to explain fertility rates. In general, researchers find that in regions or 
times of income insecurity and uncertain living conditions, individuals 
have more children as a means of supporting elderly or ailing parents, 
a form of ‘basic social insurance’ (Marchetti, Meyer, & Ausubel, 1996; 
Skirbekk, 2008). By contrast, wealthier families try to increase the eco‐
nomic success of their offspring by providing more resources to fewer 
individuals (Kaplan, 1996). These patterns may not exist after sudden 
changes or stochastic events, see for example Eberstadt (1994).

In addition to income, greater education also reduces fertility rates 
(Skirbekk, 2008; Smeeding, 2014). Lower‐mortality rates are almost 
universally related to higher‐education levels (Lutz & Skirbekk, 2013).

Education, wealth and technology are not independent. Factors 
describing social dynamics in a population are highly correlated and 
often difficult to tease apart, which can result in complex models 
with many interdependent feedbacks and processes. In an effort to 
find a mechanism for the demographic transition, Galor and Weil 
(2000) develop an agent‐based model, describing population size in 
terms of income per capita and the availability of technology. The 
number of children per person is a function of education, technol‐
ogy, consumption behaviours and income. The use of many inte‐
grated factors allows the model to simulate a Malthusian regime, a 
post‐Malthusian regime and modern growth.

Nitzbon, Heitzig, and Parlitz (2017) describe a socio‐ecological 
model that explores fertility and death as a function of well‐being, 
for which well‐being represents basic nutritional needs for repro‐
duction. Well‐being (W) is a variable linking ecosystem services and 
the human population with carbon (terrestrial, atmospheric and geo‐
logical). The premise is that the birth rate declines towards zero after 
the initial increase as a result of education and social security related 
effects. Human population (P) change is given by,

where p is the maximum fertility and Wp is the well‐being for which 
fertility saturates due to biological limits. This function gives a non‐
linear birth rate, where population initially increases with well‐being 
and subsequently decreases once the saturation point has been 
reached. The mortality term 

(

q

W

)

 decreases linearly with well‐being.

3  | AN ECOLOGICALLY DRIVEN THEORY 
OF POPULATION GROWTH

3.1 | Birth and death dynamics

After reviewing the theories and models on demographic change, 
we provide a summary of possible driving factors in human birth and 
death rates. Starting with a simple argument: birth rates are not in‐
dependent of death rates, specifically when it comes to under‐five 
mortality. If child mortality is low, the desired number of offspring is 
equivalent to the number of children born, allowing for better family 
planning (Smeeding, 2014).

There is an abundance of data on demography and covariates 
from the last 60 years. From Supporting Information Table S1, it can 
be seen that fertility and child mortality are driven by the same fac‐
tors, which allows us to describe the number of individuals entering 
the population and contributing to further growth as recruitment.

There is a strong interconnectedness between birth, death, food, 
wealth, education and technology that cannot be ignored. Therefore, 
any model attempting to mimic changes in population growth has 
to take many socio‐economic and ecological factors into account. 
Thus, based on previous works and empirical data, we suggest that 
resource accessibility – defined as the availability of natural and 
agricultural land (Supporting Information Table S1: access to water, 
%GDP agriculture, % rural population), combined with technological 
and innovative advances (Supporting Information Table S1: access to 
electricity and sanitation, female literacy) – can be used as a proxy 
for socio‐economic and ecological factors.

In a recent paper by Nitzbon et al. (2017), the authors used a 
nonlinear function to describe fertility with respect to well‐being. 
We apply a similar nonlinear function to describe the dependence 
of population change on the accessibility of resources. Initially, pop‐
ulation growth is a sign of prosperity and a greater need for labour. 
However, as the population reaches a higher quality of life, a shift oc‐
curs in family planning and the desire for offspring, such that higher 

(3)Ḣ=𝜇maxH
(

1−ey1min
−𝛾1B

ΩT∕Tm

)

e−b2𝛾2T∕Tm .

(4)Ṗ=P
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birth rates signal a downturn in prosperity (Güneş, 2016; Jejeebhoy, 
1995). These changes in prosperity also impact consumption rates 
and the impact of humans on the environment. Hirschman (2005) 
and many before (Ehrlich& Ehrlich, 1970, 1990; Meyer & Turner, 
1992; Vörösmarty, Green, Salisbury, & Lammers, 2000) suggest that 
a large and growing population puts pressure on resources and eco‐
logical systems, until the population reaches a carrying capacity and 
ultimately implodes. This Malthusian trap has been avoided in the 
past through new waves of production, medicine and technology, 
but whether these strategies will hold in the future is a question that 
remains. The factors that govern population growth are widely de‐
bated and poorly understood, suggesting that reliance on any such 
factor in the future could lead to unwanted outcomes.

We develop a phenomenological model of the relationship be‐
tween recruitment and death rates versus resource accessibility. 
Many previous models make assumptions that do not hold up to the 
current empirical data. In particular, when it comes to the birth rate, 
the factors that increased birth in pre‐modern times (food, wealth, 
social status) have decreased the birth rate over the past 50 to 
60 years. The theory and model developed here take into account 
the past 12,000 years of human population and land cover changes, 
combining multiple assumptions from previous works and replacing 
those that are not supported by past or present empirical data. This 
model is able to capture observed changes in human population and 
land cover change through bidirectional feedbacks. We use these 
feedbacks to make population projections under various scenarios, 
which is discussed in further detail below.

3.2 | Recruitment curve

As the birth rate and under‐five mortality rate are highly correlated 
and have similar driving factors, we group the two terms, describing 
recruitment as an increase in the population that reaches reproduc‐
tive age and has the ability to further increase the population.

Data from Supporting Information Table S1 provide support for 
our phenomenological representation of human population recruit‐
ment and suggest a possible mechanistic approach to explaining the 
recruitment rate with respect to resource accessibility. The propor‐
tion of the population that has access to electricity, sanitation and 
water is negatively correlated with the recruitment rate. Education, 
especially among women, has a strong negative correlation with the 
recruitment rate. Accessibility to such commodities acts as a proxy 
for wealth, technology, freedom and power. Contrarily, the percent 
of GDP from agricultural goods and the proportion of the popula‐
tion living in rural areas coincide with higher‐recruitment rates. From 
Supporting Information Table S1, it can be seen that resources, that 
is, agricultural area and natural land area, have a positive influence on 
the recruitment rate, while education, technology and development 
have the opposite effect (Figure 1a,b). When multiplied together, the 
outcome is a non‐monotonic function (Figure 1c).

Therefore, R is used to describe resource accessibility, defined 
as the combined availability of agricultural land (A) and natural land 
(N), in addition to technology and innovation. Part of technology and 
innovation takes into account the quality, efficiency of extraction 
and equality of distribution (TA,N), such that R = TN(t)N + TA(t)A. The 
availability and access to resources are estimated from technolog‐
ical advancement data and pollen records (details are given in the 
Supporting Information). Fossil pollen records contain information 
about vegetation and land‐use change that can serve as a proxy for 
land‐use intensity (Lechterbeck et al., 2014). Archaeological records 
reveal an increasing trend in the evolution of technology, which 
has greatly improved the extraction and distribution of resources. 
Therefore, we can assume that earlier societies were less efficient 
(Marlowe, 2005).

In this model, technology is described independently of popu‐
lation size. There is most likely a feedback between population and 
innovation (Derex, Beugin, Godelle, & Raymond, 2013; Henrich et al., 
2016; Kline & Boyd, 2010); however, there is little empirical evidence 

F I G U R E  1  Crude representation of a possible mechanistic approach to modelling human recruitment. From the data in Table S1, it is 
hypothesized that recruitment increases linearly with agricultural resources and rural land area (a). By contrast, accessibility to electricity, 
education, water and sanitation have a negative influence on recruitment rates (b). When multiplied together, as is the case in our 
model, accessible resources = technology × land area. This gives a non-monotonic curve for recruitment (c) that may assist in explaining 
demographic transitions
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to support the idea that larger populations foster greater technolog‐
ical development (Collard, Vaesen, Cosgrove, & Roebroeks, 2016; 
Vaesen, Collard, Cosgrove, & Roebroeks, 2016), rather it may be the 
degree of interaction between subpopulations (Powell, Shennan, & 
Thomas, 2009). We describe technology and innovation as an ex‐
ponential function (with a similar curve to human population), which 
suggests a relationship between human population size and technol‐
ogy; however population size is not the only driving factor. Given the 
conflicting hypotheses, we estimate curves from empirical data to 
describe technology and innovation, and project various future tra‐
jectories (see Scenarios section below), to avoid making unfounded 
assumptions about the feedbacks between humans and technolog‐
ical innovation.

We use our phenomenological theory and this hypothesized 
accessible resource mechanism to create a recruitment curve with 
estimated data points from various times in history (Figure 2, de‐
tails on sources for recruitment rates and calculations for accessible 
resources are given in the Supporting Information). Historical birth 
rates and child mortality rates are fit to an inverse Gaussian curve. 
The resulting recruitment equation is given by

where α, β and c are coefficients describing the peak recruit‐
ment rate, when recruitment begins to increase and when recruit‐
ment begins to decline, respectively, for the Gaussian function. The 

parameter values are chosen to reflect empirical data for recruit‐
ment rates over the past 12,000 years (parameter description is 
given in Supporting Information Table S2).

Resource accessibility can be greater than the actual availability of 
resources (R > N + A), if technological advancements improve the abil‐
ity to obtain resources to an extent greater than approximately dou‐
ble the present (≈8.5 billion hectares of natural and agricultural land). 
Resources can also be difficult to obtain, or of poor quality, for example 
in the absence of ecosystem services or nutrients, to an extent that 
they provide no benefits to the human population despite being abun‐
dant; in such cases, the resource accessibility would be low (R « N + A).

3.3 | Mortality curve

Using the crude death rate does not allow for comparisons between 
different groups of individuals. The link between crude death rate and 
socio‐economic indicators is less convincing (average correlation co‐
efficient magnitude for crude death rate r ≈ 0.61, for adult death rate 
r ≈ 0.79 and under‐five mortality rate r ≈ 0.75); however, by separat‐
ing child mortality (included in the recruitment rate) and adult mor‐
tality, we are able to highlight potential driving factors for mortality 
(Supporting Information Table S1). In particular, an improved standard 
of living (i.e. improved education, better access to health care and 
nutritional food, improved hygiene, etc.) rapidly shifts the death rate 
from high to low. We ignore migration for now, as this is a non‐spatial 
model. The death rate varies with resource accessibility as follows,

where δ is the resource‐based death rate, calibrated to fit em‐
pirical data (Bocquet‐Appel, 2009; Food & Agriculture Organization 
of the United Nations, 2017; Preston, 1996), when combined with 
the minimum death rate, δmin. The minimum death rate is based on 
statistics for adult mortality rates where resource accessibility is 
high and thereby resource‐based death is negligible (The World 
Bank Group, 2017). The threshold for human well‐being after which 
adult mortality decreases significantly uses the accessibility of re‐
sources as a proxy for improved standards of living. The well‐being 
threshold is represented as rn, using historical data on mortality and 
access to food and material goods to calibrate the threshold.

4  | HUMAN–ENVIRONMENT MODEL

4.1 | Human population dynamics

The resulting human population dynamics over time is the difference 
between recruitment and death:

The relationship between growth and resource accessibility is 
shown in Figure 3.
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F I G U R E  2   The phenomenological human recruitment curve is 
based on past birth rates and under‐five mortality rates through 
humanity's history over a range of estimated resource accessibility, 
where accessible resources represent the available natural (N) 
and agricultural land (A) area multiplied by the efficiency of 
accessing these resources through technology and innovation 
(TN,A). It is estimated that Paleolithic individuals spent more than 
one and a half times the energy in food acquisition compared 
to contemporary society Eaton and Eaton (2003). High‐income 
countries have nearly double the access to food energy compared 
to low income countries (Roser & Ritchie, 2017)
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4.2 | Land dynamics

For the purpose of our model, natural land (N) is simplified to reflect 
net degradation by humans for the purpose of agricultural develop‐
ment (ca) and natural resource use (dn), given by

Agricultural land (A) is similarly degraded by humans at a rate of da. 
The change in agricultural land is given by

4.2.1 | Scenarios

Technology and innovation are modelled independently of popula‐
tion size and land cover, with curves for both the natural land and ag‐
ricultural land sectors (see Supporting Information for details on TN,A 
curves). The TN,A curve grow exponentially as suggested by Kurzweil 
(2004) and similar to the increase in GDP seen in Motesharrei et al. 
(2016); however, we also include the possibility of saturating yields 
from technology and therefore apply logistic curves to TN,A. We alter 
the steepness of the curve to reflect differences in time of onset and 
how rapidly the change diffuses through the population.

As the interactions between humans and the land are highly 
variable and difficult to predict, we simulate changes over the next 
3,000 years under five different scenarios: changing natural degra‐
dation rates (dn), changing agricultural degradation rates (da), TN,A 
saturating at current levels, TN,A saturating after a 60% increase, 
no saturation of TN,A (saturates at 500 times the current level in 
18,000 years from present). A table of parameter values is given in 
the Supporting Information Table S2. The major components of the 
model are land cover change and change in innovation and technol‐
ogy development, therefore the scenarios involve changing the rate 
of agricultural and natural land degradation, saturating the degree 
of improvement through technology and innovation, in addition to 

changing the onset (γ, see Supporting Information) and diffusion pat‐
terns (ymax) of technology and innovation (TN,A).

5  | MODEL PROJECTIONS

5.1 | Changes in resource availability

The rate of agricultural degradation has one of the greatest impacts 
on peak population levels (Figure 4a). Slowing the rate of agricultural 
degradation results in a lower peak population, as the changes in 
population transition quickly through the stage of rapid population 
growth depicted in Figure 5 (red line, transition 3). Slower degrada‐
tion results in more stable agricultural management and when com‐
bined with advances in technology and innovation results in greater 
harvesting efficiency and reduced need for offspring. Therefore, the 
human population achieves a state of greater well‐being with access 
to abundant resources, technology and innovation, and by proxy 
knowledge, wealth and health care.

Increasing the degradation of agricultural land results in a much 
higher peak population, as the degradation of land and technological 
or social innovations (TN,A) are pulling population change in opposite 
directions, ultimately keeping the growth rate at high levels over a 
longer period. The advances in TN,A, predominantly in the agricul‐
tural sector, are masking the decline in resources, which allows the 
population to keep growing. However, once agriculture reaches a 
critically low level and technology stagnates or can no longer coun‐
terbalance the diminished supply of agricultural (A) and natural (N) 
resources, the human population collapses. Advances in agricul‐
tural technology are likely the cause for the peak growth rate in the 
1960s; however, the Green Revolution is an ongoing process and 
as the population continues to grow or as demands increase there 
will be a need for future technological advancements (Evenson & 
Gollin, 2003).

Natural land degradation behaves similarly to agricultural deg‐
radation, although the impact is smaller in magnitude (Figure 4b). 
Slower degradation of natural resources leads to slower population 
growth and a reduced peak population. The population spends less 
time in the rapid growth stage, as the advances in technology and 
innovation (TN,A) are dominant enough to force the system past 
the stage of rapid growth (Figure 5, red line, transition 1), given 
that there are adequate natural resources to supply the popula‐
tion demands. Rapid degradation of N leads to more rapid popula‐
tion growth and a sharp population decline, as resources diminish. 
However, the population recovers with advances in technology 
and innovation (TN,A), even in spite of dwindling natural resources. 
The population continues to oscillate over time until TN,A saturates 
(after 18,000 years) and no longer enhances productivity, at which 
point the population collapses as a result of insufficient resources.

5.2 | Changes in technology and innovation

Shifting the onset of advances in technology and innovation (TN,A) to 
later in time results in a lower peak population and the population peak 

(8)Ṅ=−caNH−dnNH.

(9)Ȧ= caNH−daAH.

F I G U R E  3   Change in population demographics over a range 
of accessible resources (R). R = TN (t)N + TA (t)A, where TN,A is the 
advances provided by technology and innovation and N and A are 
natural and agricultural land area respectively
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is reached later, as the population remains in a state of rapid growth 
until resources become limited (Figure 4c). Shifting the onset of TN,A to 
an earlier period results in minimal population growth. This somewhat 
unexpected result occurs as the human population spends very little 
time in the peak population growth stage, transitioning directly from 
high‐birth, high‐death rates to low‐birth, low‐death rates, without the 
middle stages of the demographic transition (Figure 5, green line).

How quickly technology or innovation (TN,A) is dispersed and 
applied has an overwhelming influence on population growth. 
Increasing the steepness of the TN,A(t) curve results in negligible 
population growth, as there is no explosion in the population – the 
middle stage of the demographic transition is forestalled. Gradually 
introducing and applying advances in TN,A generates a lower and de‐
layed peak population. Gradual change allows many individuals to 
adopt the change and encourages additional followers to join over 
a longer period; individuals get caught at peak growth rates for lon‐
ger and the population continues to grow until resources diminish. A 
particularly slow dispersal and application of technology and innova‐
tion means that rapid growth is never reached. The population grows 
slowly until limited by resource availability (N and A). Once available 
technological or innovative solutions no longer support the higher 
population levels and reduced resource capacity, the population de‐
clines (Figure 5, blue lines).

In many parts of the world, it has been shown that food pro‐
duction efficiency is stabilizing (Food & Agriculture Organization of 
the United Nations, 2017), suggesting there is a limit in the ability 
to enhance production through technology. The results may seem 
counterintuitive, as unlimited advances in technology and innova‐
tion result in the lowest peak in population (12 billion individuals), 
considering that earlier advances in technology and innovation 
allowed the population to grow (i.e. Green Revolution). Rather in 
this case, future development leads to lower‐birth/death rates and 
a smaller decline in population. This represents a population with 
higher well‐being (i.e. greater resources, low‐birth and low‐death 
rates). We find that if TN,A saturates at current levels, the popula‐
tion has a higher peak population (25 billion individuals). Population 
growth begins to shift to the right of the growth curve (Figure 5, 
blue lines), as technology increases, but once it saturates the popu‐
lation falls back to the left of the curve (low‐birth, high‐death rates), 
as resources diminish—never reaching the high‐growth rate state. A 
60% increase in the current efficiency level results in the highest 
population (37 billion individuals). Here the population gets caught 
at peak growth, with adequate food to sustain the population, but 
not enough technology to improve well‐being. This represents a low 
well‐being society, as food and innovation are limited, resulting in 
high‐birth and high‐death rates.

F I G U R E  4   Altering land degradation rates (da and dn) and TN,A curves. (a) Change in the rate of agricultural land (A) degradation (da), where 
rapid degradation (dotted lines) leads to an increased peak population, while reduced degradation (dashed lines) results in a lower peak 
population. (b) Change in the rate of natural land (N) degradation (dn) follows similar trends, where rapid degradation (dotted lines) results 
in an earlier onset of a high peak population and slow degradation (dashed lines) leads to minimal population growth. (c) Shift in the onset 
(γ) of technological advances and innovation (TN,A); early onset of TN,A (dotted lines) results in minimal population growth versus late onset 
of TN,A (dashed lines), which results in a delayed population explosion with a greater peak. (d) Change in the rate of diffusion of TN,A (ymax); 
rapid diffusion (dotted lines) leads to negligible changes in all variables and slow diffusion of TN,A (dashed lines) results in a delayed and lower 
population peak. Solid lines represent the business as usual scenario
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These results show how population growth is highly sensitive to 
a balance between technology and innovation (TN,A) and resource 
availability (N and A). By contrast, the land dynamics are relatively 
unchanged (Figure 6), showing how advancements in technology 
and innovation enables the human population to detach from their 
connection to resources, until a critical decline in available resources 
results in a population collapse.

6  | DISCUSSION

This study sets out to describe human population dynamics in re‐
lation to land cover and technological advancements, applying a 
simple model to explore past demographic and land trends, as well 
as possible future scenarios. The development of theories on eco‐
logical boundaries and the Earth's carrying capacity raises concerns 
about the sustainability of the human‐environment system. The 
current combination of high‐resource demands, an unprecedent‐
edly large population and waning advances in technology and inno‐
vation in resource acquisition, necessitates population stabilization 
or at the very least minimize resource use. Despite the seemingly 
trivial nature of this situation – a finite system results in a finite 
population – there is no consensus on what factors are crucial in 
securing a sustainable future for both ecological systems and hu‐
mans. Some have suggested implementing a one child policy; others 

suggest reducing ecological footprints, while optimists cling to the 
notion that technological advances will sustain population growth 
indefinitely.

In this work, we highlight the important role of agriculture and 
technology in allowing the population to expand. Likewise, we show 
that either natural land (i.e. ecosystem services) or continuous ad‐
vances in technology are required to prevent collapse.

What is clearly shown here is that the onset and the speed of 
dispersal and the application of technology or innovation determine 
when or if the population will explode. If innovation/technology 
and land area combine to give humans access to many resources 
very quickly, the population does not experience rapid or explo‐
sive growth, as the peak growth rate is not attained. Instead, the 
individuals rapidly shift from a quantity to quality of offspring per‐
spective, achieving a higher state of well‐being. To our knowledge, 
there are no examples of this transition on a global scale in human 
history, although many Scandinavian countries such as Finland and 
Norway have experienced relatively stable growth since the 1500s—
transitioning from a high‐birth, high‐death state, typical of the mid‐
dle‐ages, to a low‐birth, low‐death, high well‐being state without a 
prolonged rapid growth period (Clio Infra, 2017).

In contemporary societies, a portion of the world is living in a 
state of post‐boom, where the later generations are continuing to 
grow exponentially, but the birth rate is slowing with greater income. 
The other portion of the population had a later onset of innovation 
and is still at peak recruitment rates, creating a very long period of 
high growth (middle stage of the demographic transition) allowing 
the human population to expand. Growth will remain high until 

F I G U R E  5   Demographic transitions. When population grows 
slowly and reaches the peak growth rate (red line), there are three 
possible transitions: (1) technology and innovation (TN,A) force the 
system to a state of low‐birth, low‐death (i.e. greater well‐being, 
R = 12); (2) natural and agricultural land cover (N & A) decline 
beyond compensatory effects from technology, resulting in a 
high‐birth, high‐death state (i.e. lower well‐being, R = 4); 3) the 
system may spend significant time at peak growth (R = 6), causing 
the population to explode, ultimately resulting in (1) or (2). The 
blue line demonstrates intermediate growth that never reaches 
peak population growth (either from too few resources or lack of 
technology and innovation (TN,A); the growth rate then declines 
with insufficient N & A. The green line results when there are 
abundant resources and rapid dispersal and application of TN,A, 
going from high‐birth, high‐death rates to low‐birth, low‐death 
rates, avoiding the middle stages of the demographic transition

F I G U R E  6   Whether technology and innovation (TN,A) will 
saturate as a result of waning productivity and yield is a great 
unknown. Here we show potential outcomes of varying the amount 
of improvement provided by TN,A. The solid line reflects no limit 
to the degree of improvement from TN,A, where efficiency grows 
at a continuous exponential rate. The dotted line represents a 
60% increase in benefits received from TN,A when compared to 
current levels (eN,A = 1.6). The dashed line shows what happens 
if TN,A saturates at the current level (eN,A = 1). Showing the 
counterintuitive and convoluted influence of technology and 
innovation on human population
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either an increase in technology and innovation, or a change in avail‐
able resources, pulls the population to one side of the curve. There 
are essentially two markedly different demographic transitions un‐
derway in our current society. These contrasting demographic tran‐
sitions should be further explored in a spatial model, which would 
allow for more cultural interactions, such as the link between evolu‐
tion of technological complexity and human populations.

The model described here cannot answer what is causing the 
change in technology or innovation, but by applying a range of sce‐
narios it can be seen that the peak population is highly variable de‐
pending on technological innovation time frames. Sub‐Saharan Africa 
provides an example of misaligned time frames, which cause high‐
growth rates. There are basic resources to support a low level of well‐
being, but there is a lag in technological innovation (i.e. education, 
health care, family planning and nutrition) (Luiz, 2013), which would 
increase the quality of life and subsequently reduce fertility rates. In 
the absence of technological innovation, the recruitment rate remains 
high and the population continues to grow. The high‐resource avail‐
ability and high‐technological innovation in wealthy countries occur 
over parallel time frames and therefore there are many accessible re‐
sources, lower recruitment rates, greater welfare and lower growth 
rates. During the Paleolithic Era, technological innovation was rel‐
atively low, as were available resources (i.e. uncertain food supply). 
Therefore, the advancement of both resource availability and tech‐
nological innovation, or more accurately the lack thereof, occurred 
over the same time frame. With comparatively little technology to 
compensate for limited resources, the Paleolithic populations main‐
tained low‐growth rates. Therefore, technology and innovation can 
skew the population’s perception of resource accessibility, ultimately 
determining growth rates. Through simulations we were able to show 
that advancements in technology and innovation creates a sense of 
detachment between humans and nature or agriculture, until such a 
point that the dependence cannot be ignored and the human popula‐
tion declines as a result of inadequate resources.

In the model, we include a scenario in which technology satu‐
rates, based on trends demonstrating stabilizing food production 
yield as a result of declining technological and innovative solutions 
(Food & Agriculture Organization of the United, 2017). However, 
technology has stagnated before; for example, in the early 1900s it 
seemed that population would be limited by available crops, until the 
introduction of hybridized corn and the green revolution (Johnson, 
2002). The green revolution is considered to be a major contributor 
to the exponential population growth seen in the second half of the 
20th century. Thus, it is difficult to predict when or if the population 
will decline, given that there could be a revolutionary change in tech‐
nology and innovation that supports unfathomably high‐population 
levels. That being said, technological advances and innovation must 
continue in order to maintain population levels at current standards, 
something that we have echoed here by showing that saturating the 
benefits from technology and innovation leads to higher peak popu‐
lations with reduced well‐being and a greater likelihood of collapse.

In addition to technology and innovation, agriculture appears to 
have a critical role in determining the peak population. The human 

population reacts impetuously to small changes in the area of agri‐
cultural land, as depicted by a peak population greater than 40 bil‐
lion individuals followed by a population collapse when agriculture 
is rapidly degraded. Agriculture has been responsible for many past 
boom‐busts in societies (Shennan et al., 2013), suggesting that agri‐
culture is a convenient tool for growing the population, but is not ro‐
bust; whereas natural resources are more robust, but once a critical 
loss occurs there are major consequences that may not be reversible.

The recruitment curve depicted here shares similar characteris‐
tics to the environmental Kuznets curve (EKC), which shows envi‐
ronmental degradation as a function of income per capita (Tamazian, 
Chousa, & Vadlamannati, 2009). The EKC has been criticized be‐
cause at face value it appears to suggest that economic growth has 
a positive influence on the environment. Theoretically this may be 
true, but in practice this is not so obvious (Stern, 2004). There are 
few empirical examples showing a non‐monotonic relationship be‐
tween income and environmental degradation; the theory ignores 
spillover, where degradation occurs in foreign environments; and 
the EKC does not account for the fact that before achieving declines 
in environmental degradation, there is a substantial increase in en‐
vironmental degradation in many cases. This suggests that there 
could be a threshold of no return, or the reason for decreased deg‐
radation is due to the absence of natural land to degrade. Rather 
than economic growth, we use resource accessibility, which neutral‐
izes many of the contentious assumptions of the EKC. Furthermore, 
we have attempted to fit our recruitment curve to empirical data 
with reasonable results. These EKC and our curve draw an inter‐
esting comparison, as economic growth could easily be translated 
into resource availability, suggesting that human recruitment ex‐
periences the same response to socio‐economic changes as envi‐
ronmental degradation. Furthermore, this reinforces the idea that 
environmental degradation, population change and socio‐economic 
dynamics are intricately linked.

Population growth projections, particularly projections of peak 
population, are difficult, as making predictions off of past scenar‐
ios is inadvisable, especially when the mechanisms are unknown. 
For example, the UN population projections are constantly chang‐
ing with every new publication, consistently increasing the peak 
population. There is most likely a limit to the global human popu‐
lation, but putting a tangible number on it seems elusive (Cohen, 
1995). Models such as the one presented here can give ideas of 
qualitative trends, but should not be considered soothsayers of 
the future population dynamics.

That being said, the complexity of the dynamics and the in‐
ability to give precise projections should not deter modelling work 
on human population growth. There have been numerous models 
exploring particular aspects of human‐nature interactions, which 
provide good starting points, offer insight and often raise further 
questions. Here we expand on these earlier models in an attempt to 
use resource accessibility as a proxy for many socio‐economic fac‐
tors. We use correlations as a syndrome, not to pin point the cause a 
demographic change, but to provide clues to what might signal large 
shifts in population dynamics.
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To many in the field of ecology, the bidirectional feedbacks be‐
tween humans and nature are of critical importance, yet the work 
on coupled systems has largely been ignored (Motesharrei et al., 
2016). Much of the past human population modelling work focuses 
on population change in one period of time or during a specific 
event, failing to account for multiple stages of the demographic 
transition. We introduce a recruitment function that experiences 
an up–down shift, analogous to what has been observed in past 
and contemporary societies, and additionally we offer an ecolog‐
ically driven mechanism for such a change. Theories that attempt 
to describe drivers of population change are complex, with no 
clear consensus; however, here we apply a simple concept, relating 
human population change to shifts in land area and technology/
innovation. These two drivers combine to give a simple ecologi‐
cally‐driven theory for the complex processes of the demographic 
transition over time. This approach captures past and present dy‐
namics and suggests that many of the factors that are responsible 
for changes in demography can be incorporated in environmental 
proxies. The social factors and economic factors driving changes 
in land change and technology/innovation advancements were 
certainly different over the years, but we suggest that they play 
into the ability of humans to access resources. We have deliber‐
ately kept the model simple, but that does not negate the impor‐
tance of sociopolitical factors (e.g. war, religion and human rights), 
which would certainly add further dimensions to the model and 
incorporate stochasticity into the system.

Simple models such as this one, look at the rate of change 
in variables, for example land or human population, not the rate 
of change of the driving factors. In many cases, it is the sudden 
change these driving factors that causes such dramatic transitions 
in land cover and demography, something that cannot be cap‐
tured by this model. As such, the model cannot predict the onset 
of a new regime (e.g. agriculture) or account for epidemics (e.g. 
plague). Nevertheless, this ecologically‐driven theory of human 
population growth highlights key driving factors and provides in‐
sight into a possible mechanism for demographic change. Future 
work will develop on the premise of sudden dramatic changes and 
stochasticity.
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