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Abstract 13 

Fluid pressure diffusion occurring on the microscopic scale is believed to be a significant 14 

source of intrinsic attenuation of seismic waves propagating through fully saturated porous 15 

rocks. The so-called squirt flow arises from compressibility heterogeneities in the 16 

microstructure of the rocks. To study squirt flow experimentally at seismic frequencies the 17 

forced oscillation method is the most adequate, but these studies are still scarce. Here we 18 

present the results of forced hydrostatic and axial oscillation experiments on dry and 19 

glycerine-saturated Berea sandstone, from which we determine the dynamic stiffness moduli 20 

and attenuation at micro-seismic and seismic frequencies (0.004 – 30 Hz). We observe 21 

frequency-dependent attenuation in response to the drained-undrained transition (~0.1 Hz) 22 

and squirt flow (>10 Hz). The frequency-dependent attenuation and associated modulus 23 

dispersion at 5 MPa effective stress is in fairly good agreement with the results of the 24 

analytical solutions for the drained-undrained transition and squirt flow. The comparison with 25 
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very similar experiments performed also on Berea sandstone indicates that squirt flow can 26 

potentially be a source of seismic wave attenuation across a large range of frequencies 27 

because of its sensitivity to small variations in the rock microstructure, especially in the 28 

aspect ratio of micro-cracks or grain contacts. 29 

 30 

Key Words 31 

- Attenuation 32 

- Rock physics 33 

 34 

1. Introduction 35 

 36 

Porous rocks saturated with fluids can strongly attenuate seismic waves. Different forms of 37 

wave-induced fluid flow (WIFF) are thought to be the primary intrinsic mechanism for 38 

seismic wave attenuation (e.g. Pride et al. 2004). Fluid flow arises predominantly from 39 

contrasts in compressibility either in the solid matrix of the rock, for instance between 40 

compliant grain contacts and stiff pores, or in the saturating fluids, such as a heterogeneous 41 

distribution of water and gas. In response to such compressibility contrasts, seismic waves 42 

induce pressure gradients, resulting in viscous fluid flow and the conversion of the waves 43 

mechanical energy into heat. The frequency dependence of the associated seismic attenuation 44 

depends strongly on the spatial distribution or geometry of the heterogeneities in the rock 45 

matrix and/or in the saturating fluids (Masson and Pride 2007, 2011; Müller et al. 2008). A 46 

direct consequence of the frequency dependent attenuation is that the corresponding stiffness 47 

modulus of the rock will also be frequency dependent. 48 

 49 
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Much focus has been given to squirt flow, pressure diffusion arising from microscopic 50 

compressibility heterogeneities in the rock, as one of the dominant mechanisms for wave 51 

attenuation in fluid saturated rocks. Numerous theoretical models (e.g. O’Connell and 52 

Budiansky 1977; Mavko and Jizba 1991; Chapman et al. 2002; Gurevich et al. 2010; Adelinet 53 

et al. 2011) have been developed to try to explain laboratory observations at sonic and 54 

ultrasonic frequencies. More recently, with the progress made in using the forced oscillation 55 

method (e.g. McKavanagh and Stacey 1974), squirt flow has been studied also at seismic 56 

frequencies by using high viscosity fluids such as glycerine. 57 

 58 

 On a Fontainebleau sandstone sample saturated with glycerine, Pimienta et al. (2015a) 59 

observe an extensional mode attenuation peak at between 1 and 10 Hz, which was reduced in 60 

amplitude with increasing effective stress. Subramanyian et al. (2015) also measured the 61 

extensional mode attenuation and Young’s modulus in Fontainebleau sandstone with similar 62 

properties, in this case varying the fluid viscosity by mixing water and glycerine. For the fully 63 

glycerine-saturated sample they observe an attenuation peak in a similar frequency range and 64 

with similar amplitude, supporting the observation of Pimienta et al. (2015a). In addition 65 

Subramanyian et al. (2015) used Gurevich et al.’s (2010) analytical solution of squirt flow to 66 

interpret their observations, however the analytical solution consistently underestimated the 67 

attenuation magnitude measured in the laboratory. The broad attenuation peaks observed were 68 

attributed to a distribution of crack aspect ratios. 69 

 70 

In a glycerine saturated Berea sandstone sample Mikhaltsevtich et al. (2015; 2016) measured 71 

the dynamic Young’s modulus and Poisson ratio, from which they inferred the bulk and shear 72 

moduli as well as the corresponding attenuation modes. By performing measurements at 73 

temperatures from 31 to 23 °C, they observe a shift of the extensional-mode attenuation peak 74 
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from ~ 2 to ~ 0.4 Hz, associated with the reduction of the glycerine viscosity. Mikhaltsevtich 75 

et al. (2015) interpreted the attenuation as being caused by squirt flow. Spencer and Shine 76 

(2016) also performed forced oscillation experiments on a fully saturated Berea sandstone 77 

sample, however only observing a partial attenuation curve. Similar to Mikhaltsevtich et al. 78 

(2016) the impact of fluid viscosity was studied, however instead of modifying the 79 

temperature, fluids of varying degrees of viscosity where used. Pimienta et al. (2017) 80 

investigated frequency-dependent attenuation and modulus dispersion in four different types 81 

of sandstone, including Berea sandstone, under full water and glycerine saturation. In the 82 

Wilkenson and Bentheim sandstones both showed frequency dependent attenuation likely in 83 

response to squirt-flow, showing a strong sensitivity to changes in effective pressure. 84 

However in the Berea sandstone samples the presence of squirt flow could not be verified in 85 

the considered frequency range. 86 

 87 

Even though there has been a recent surge in the availability of laboratory data from fully 88 

saturated sandstones at seismic frequencies (<100 Hz), the overall understanding of the 89 

physical processes responsible for the frequency-dependent attenuation and modulus 90 

dispersion remains incomplete. Comparing experiments is especially challenging given the 91 

variation in microstructure between samples and the use of a range of different saturating 92 

fluids. Furthermore the analysis is considerably complicated by the impact or not of boundary 93 

conditions on the observed frequency-dependent attenuation, which is associated with the 94 

design of the experimental apparatus (e.g., Pimienta et al., 2016).  95 

 96 

To contribute to the available data, we present in the following sections the results of forced 97 

hydrostatic and axial oscillation experiments on a Berea sandstone sample. The experiments 98 

where performed on the dry and fully glycerine-saturated sample for a range of effective 99 
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stresses. We will provide a description of the sample and the experimental conditions. The 100 

discussion of our results for the dispersion of the stiffness moduli and corresponding 101 

attenuation modes will focus on the uncertainty in our measurements, the physical processes 102 

responsible for our observations, how the theoretical predictions compare to our observations, 103 

and how our observations compare to those of Mikhaltsevtich et al. (2016), whose 104 

experiments are the most similar to ours. 105 

 106 

2. Samples and experimental methodology 107 

 108 

2.1 Sample description 109 

 110 

Three samples with a ~4 cm diameter and ~8 cm length were cored from a block of Berea 111 

sandstone with poorly defined bedding planes, running parallel to the samples vertical axis. 112 

The Berea sandstone was acquired from Cleveland Quarries in the United States with a brine 113 

permeability estimated at 75 to 250 mD. The glycerine permeability of sample BS-V5 was 114 

subsequently measured at an effective stress of 2.5 MPa by imposing a pressure gradient 115 

across the sample and measuring the associated flow. The porosity was determined with a 116 

pyknometer, using a subsection of sample BS-V6. The dry density is the mean density 117 

determined from the dry masses and dimensions of the three samples. These properties are 118 

listed in Table 1. Scanning electron microscopy (SEM) and energy dispersion spectrometry 119 

(SEM-EDS) analysis (Figure 1) shows that our sample is composed largely of quartz (Si), 120 

with smaller amounts feldspar and clays (Al)  [can we be more precise and give the 121 

composition according Fig1?]. Kareem et al. (2017) performed an extensive characterisation 122 

of Berea sandstone cores, also purchased from Cleveland Quarries, showing that clays make 123 

up between 3 and 9 % of the bulk composition, with the predominant clay being kaolinite.  124 
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 125 

Table 1. Sample properties 126 

 BS-V4 to BS-V6 

Glycerine Permeability (mD) 58.7  1.14* 

Porosity (%) 22.15 

Dry Density (kg/m3) 2087  6.55 

* Measured at 2.5 MPa effective stress. 127 

 128 

 129 

Figure 1. a) Scanning electron microscopy (SEM) image of the polished surface of BS-V6. 130 

Energy dispersion spectrometry (EDS‐SEM) images of the same sample portion showing the 131 

distribution of b) potassium (K), c) iron (Fe), d) silicon (Si), e) aluminium (Al) and f) 132 

magnesium (Mg).  133 

 134 

2.2 Experimental setup - dynamic moduli and attenuation modes 135 

 136 

Forced oscillation measurements were performed in a tri-axial cell at ENS Paris. Borgomano 137 

et al. (2017) provide a detailed description of the experimental setup and data processing. 138 

Pimienta et al. (2015a,b) provide further details on the calibration of the apparatus with 139 
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standard materials.  We will briefly list the governing relations used to determine the various 140 

moduli and associated attenuation modes. 141 

 142 

Two types of stress oscillation on the sample, producing strains on the order of ~10-6, can be 143 

performed in this cell: hydrostatic and axial. The hydrostatic oscillation (410-3 to ~1 Hz) is 144 

induced by the confining pressure pump (Adelinet et al. 2010; David et al. 2013) and allows 145 

for directly measuring the sample’s dynamic bulk modulus from the confining pressure 146 

oscillation Pc = -ii/3, where ii (i = 1,2,3) are the principal stresses, and the associated 147 

volumetric strain vol as follows:  [In formula 1, we don t need the negative sign, if we 148 

consider E_vol positive in compaction] 149 

K
hydro

=
-DP

c

e
vol

.           (1) 150 

The volumetric strain is determined from the average strain measured by 8 strain gauges, 151 

comprising four pairs of radial and axial strain gauges, as vol = 3avg. 152 

 153 

The axial oscillation (110-1 to ~20 Hz) is induced by a piezo-electric actuator placed 154 

between the sample and the axial piston of the cell and allows for measuring the sample’s 155 

Poisson ratio  and Young’s modulus E: 156 

 n = -
e

rad

e
ax

and E =
s

ax

e
ax

,         (2) 157 

where the axial stress ax, is determined from the deformation of the aluminium end plate of 158 

known Young’s modulus, and rad and ax are the average radial and axial strains on the 159 

sample. Given the Poisson ratio and Young’s modulus, the axial bulk Kax and shear Gax 160 

moduli can be inferred as follows: 161 
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K
ax

=
E

3 1- 2n( )
 and G

ax
=

E

2 1+n( )
.        (3) 162 

 163 

For each mode of deformation, the attenuation can be determined from the phase shift 164 

between the applied stress and resulting strain ( = stress - strain). The bulk attenuation for 165 

the hydrostatic oscillation can be determined from the phase shift between the hydrostatic 166 

stress Pc and the volumetric strain vol, such that: 167 

Df
hydro

=f
-DP

c

-f
e

vol

.   [Here again, the negative sign in Pc is not usefull] 168 

      (4) 169 

The extensional mode attenuation is in turn determined from the phase shift between the axial 170 

stress ax and strain ax, such that: 171 

Df
extensional

=f
s

ax

-f
e

rad

.         (5) 172 

Assuming that the sample is isotropic, the bulk and shear attenuation can be inferred from the 173 

phase shift between the axial stress ax and the axial and radial strains ax and rad (Borgomano 174 

et al. 2017):  175 

Df
bulk

=f
s

ax

-f
e

ax
+2e

rad

and Df
shear

=f
s

ax

-f
e

ax
-e

rad

,      (6) 176 

where the phases of ax + 2rad and ax - rad are derived from combining equations 2 and 3. 177 

The attenuation corresponding to each deformation mode can be calculated as (O’Connell and 178 

Budiansky 1978): 179 

Q-1 = tan Df( ).          (7) 180 

 181 

2.3 Experimental conditions 182 

 183 
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Axial and hydrostatic oscillations, were performed on the dry and glycerine-saturated sample 184 

(BS-V5). Axial oscillations were performed at effective stresses between 2.5 and 25 MPa, 185 

with an additional static axial load of 2 MPa. We will refer to the effective stress as the 186 

difference between the confining and fluid pressure, eff = Pc – Pf. The static axial load is 187 

applied to ensure coupling between the sample and the piezoelectric actuator. The hydrostatic 188 

oscillations were performed for the same range of effective stresses, however without 189 

imposing an additional static axial load. Before saturating the sample with glycerine, a 190 

vacuum pump was used to remove air from its pore space. Glycerine was then pumped into 191 

the sample using two Quizix pumps that subsequently regulated the fluid pressure at 4 MPa. 192 

 193 

3. Results and Discussion 194 

3.1 Measurement Uncertainty 195 

 196 

To assess the uncertainty in our measured frequency-dependent moduli and attenuation we 197 

look at the repeatability of the measurements and the variation of the data with respect to an 198 

idealized model. The moduli and attenuation are inferred from the strain measured on the 199 

sample. For hydrostatic forced oscillations we have eight measurements of strain, while for 200 

axial forced oscillations we have a pair of averages consisting of two axial and radial 201 

measurements of strain on opposing sides of the sample. We determine the repeatability of 202 

our moduli and attenuation for hydrostatic oscillations by taking the standard deviation over 203 

the eight measurements of strain. In the case of the axial oscillations we only have two 204 

measurements of each moduli and its corresponding attenuation, we therefore estimate the 205 

repeatability of our measurements from their range. To assess the variation of our data with 206 

respect to an idealized model we follow Adam et al.’s (2006) procedure of fitting a linear 207 
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function of log10(frequency) to the mean of our measured data and determining the root-208 

mean-squared-error (RMSE). 209 

 210 

Figure 2 shows the moduli and corresponding attenuation inferred from axial and hydrostatic 211 

oscillations performed on the dry sample at 5 MPa effective stress. The moduli increase 212 

moderately towards higher frequencies and the measurement range generally exceeds the 213 

variation of the measurement mean around the fit. For the corresponding attenuation the 214 

measurement range is much more variable and, for the Young’s and shear components, it 215 

increases towards higher frequencies. Attenuation is only shown up to 10 Hz, because at 216 

higher frequencies it strongly deviates from the fitting trend (Figure 2b, d and f). The 217 

measurement range appears to largely over estimate our uncertainty, however it also shows 218 

that the uncertainty is not independent of frequency. In the following sections we will 219 

therefore present the range when error bars are displayed. 220 

 221 

 222 

 223 
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 224 

Figure 2. Frequency-dependent moduli and corresponding attenuation inferred from axial and 225 

hydrostatic forced oscillations on the dry sample at 5 MPa effective stress. The data points 226 

represent the mean measurement and the error-bars indicate the range of the measurements 227 

for axial oscillations (a – f) and the standard deviation in the measurements for hydrostatic 228 

oscillations (g – h). A linear function of log10(frequency) is fit to the data and the root-mean-229 

squared-error (RMSE) is indicated in the legend. 230 

 231 

3.2 Frequency dependence – glycerine saturation 232 

 233 

a) b)

c) d)

e) f)

g) h)
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When the sample is glycerine saturated all modes show significant frequency dependent 234 

attenuation (Figures 3a, 4a and 5a). For the extensional (Figure 3a) and bulk attenuation 235 

(Figure 4a) two peaks are observed: one at ~0.1 Hz and another beginning at ~3 Hz and 236 

above. For the shear attenuation (Figure 5a) however only the attenuation peak at higher 237 

frequencies is observed. The attenuation peak at ~0.1 Hz is reduced in amplitude as the 238 

effective stress is increased. The second partial peak at higher frequencies is likewise reduced 239 

in amplitude, however at 15 MPa effective stress the measured attenuation is comparable in 240 

amplitude to the attenuation measured for the dry sample.  241 

 242 

As with the attenuation the various stiffness moduli are frequency-dependent once the sample 243 

is saturated with glycerine (Figures 3b, 4b and 5b). The overall increase in the sample’s 244 

stiffness from dry to glycerine saturated is particularly observed in the Young’s modulus 245 

(Figure 3b). The shear modulus at low frequencies is on the order of the shear modulus of the 246 

dry sample (Figure 5b). Towards higher frequencies the shear modulus shows some 247 

dispersion. The Young’s and bulk moduli are dispersive at both ~0.1 Hz and again beginning 248 

at ~3 Hz. Overall the moduli become less dispersive with increasing effective stress. At high 249 

frequencies the bulk modulus possibly converges to a common limit. The Poisson ratio 250 

(Figure 3c) is significantly increased with respect to the Poisson ratio measured in the dry 251 

sample and is frequency dependent (Figure 3c). For the saturated sample, with increasing 252 

effective stress the Poisson ratio is reduced and at high frequencies it is nearly frequency 253 

independent. 254 

 255 

Because the stress applied to the sample for the hydrostatic oscillation is determined from a 256 

pressure transducer close to the sample in the confining oil, while for the axial oscillation the 257 

stress it is determined from the deformation of the aluminium end plate on which the sample 258 
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is placed, the bulk modulus and attenuation can be measured independently by these two 259 

methods. If the sample BS-V5 is in fact isotropic then the bulk modulus and attenuation 260 

measured by these two methods should be the same. In Figure 4 we show the bulk modulus 261 

and attenuation determined from both the hydrostatic and axial oscillations. We observe that 262 

the bulk modulus and attenuation are generally independent of the measurement type. 263 

However as the effective stress is increased the hydrostatic measurements do show a slightly 264 

higher bulk modulus than the axial measurements.  265 

 266 

In the dry measurements our measurement uncertainty increased with frequency and we 267 

observed significant frequency dependent attenuation above 10 Hz, indicating misalignments 268 

in the experimental set up or an inability of the piezo-electric actuator to generate a sinusoidal 269 

signal. To verify the quality of our measurements on the glycerine-saturated sample we 270 

therefore make use of the Kramers-Kronig relations to check for the causality between our 271 

measured attenuation and moduli. We perform a linear interpolation to the attenuation and 272 

apply the Kramers-Kronig relations given by Mikhaltsevitch et al. (2016). We do this for the 273 

bulk (Figure 4) and shear (Figure 5) components and observe a satisfactory fit between the 274 

moduli and the respective attenuation.  275 

 276 

The attenuation peak observed at ~0.1 Hz is caused by the drained-undrained transition, 277 

which is a boundary condition problem of fluid saturated samples. The forced oscillation of 278 

the sample induces fluid pressure diffusion from the sample into the connecting pore fluid 279 

lines. The diffusion of pore fluid pressure can be described in terms of a pseudo-skempton 280 

coefficient, defined as (Pimienta et al. 2015b): 281 

B* =
Dp

f

DP
c

,           (10) 282 
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where pf is the fluid pressure amplitude measured in the pore fluid line and Pc is the 283 

confining pressure amplitude. In Figure 4c we see that the pseudo-skempton coefficient is 284 

elevated at low frequencies, indicating that the glycerine had enough time to flow in response 285 

to the confining pressure oscillation and raise the pressure in the pore fluid lines. At low 286 

frequencies (0.01 Hz) the sample can therefore be considered partially drained. The pseudo-287 

skempton coefficient approached zero as the frequency of the confining pressure oscillation 288 

increases, because the fluid no longer has the time to diffuse form the sample and raise the 289 

pressure in the pore fluid lines. At high frequencies (1 Hz) the sample is therefore undrained. 290 

Increasing the effective stress increases the sample stiffness, which means that a larger 291 

portion of the load is carried by the frame of the sample and not transferred to the fluid. The 292 

consequence of increasing the effective stress is that the pseudo-skempton coefficient is also 293 

reduced, which is consistent with the observations of Hart and Wang (1999) for the variation 294 

of the Skempton’s coefficient with effective stress for Berea sandstone. 295 

 296 

The second partial attenuation peak observed at above ~3 Hz on the other hand is likely in 297 

response to squirt flow arising from microscopic compressibility heterogeneities in the rock. 298 

This is indicated in part by the sensitivity of the measured attenuation to an increase in 299 

effective stress resulting in a reduction of the compliant porosity and a corresponding 300 

reduction in attenuation. Indicative of squirt flow is also the dispersion in the shear modulus 301 

and corresponding attenuation, which is not the case for attenuation associated with the 302 

drained-undrained transition (Figure 5).  303 

 304 

 305 

 306 
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 307 

Figure 3. a) Extensional attenuation QE
-1, b) Young’s modulus E and c) Poisson ratio for the 308 

dry and glycerine-saturated sample BS-V5 inferred from forced axial oscillations. The sample 309 

was subjected to a static axial stress of 2 MPa. The legend provides the applied effective 310 

stress eff. Open symbols indicate the  dry sample and filled symbols indicate glycerine-311 

saturated sample. 312 

 313 

a) c)

b)
Dry

Sat.
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 314 
Figure 4. a) Attenuation QK

-1, b) bulk modulus K and c) the Pseudo-Skempton coefficient B* 315 

for the glycerine-saturated sample BS-V5 determined from forced axial (open symbols) and 316 

hydrostatic oscillations. Also shown are the results of Kramers-Kronig (KK) relations 317 

determined from a cubic spline fit to the measured attenuation. For the axial oscillations the 318 

sample was subjected to a static axial stress of 2 MPa. The legend provides the applied 319 

effective stress eff. 320 

 321 

a)

b)

c)
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 322 

Figure 5. a) Attenuation QG
-1 and b) shear modulus G for the dry and glycerine-saturated 323 

sample BS-V5 determined from forced axial oscillations. Also shown are the results of 324 

Kramers-Kronig (KK) relations. The sample was subjected to a static axial stress of 2 MPa. 325 

The legend provides the applied effective stress eff. Open symbols indicate the dry sample 326 

and filled symbols indicate the glycerine-saturated sample. 327 

 328 

 329 

3.3 Drained-undrained transition and squirt flow 330 

 331 

A number of analytical solutions have been developed to explain modulus dispersion and 332 

attenuation related to squirt flow (e.g. Mavko and Jizba 1991; Chapman et al. 2002). Here we 333 

will use Gurevich et al.’s (2010) analytical solution which describes the pressure diffusion 334 

between compliant and stiff pores for an oscillating stress. At low frequencies the solution 335 

converges to Gassmann’s (1951) undrained limit and at high frequencies converges to Mavko 336 

and Jizba (1991) unrelaxed limit. The analytical solution assumes that the rock is isotropic, 337 

making it applicable to sample BS-V5, with penny shaped cracks having a uniform aspect 338 

a)

b)

Dry

Sat.
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ratio. To investigate the drained-undrained transition we will in turn use the 1-D analytical 339 

solution from Pimienta et al. (2016) for the fluid pressure diffusion along the vertical axis of a 340 

sample subjected to a hydrostatic pressure oscillation. At high frequencies the solution 341 

converges to Gassmann’s (1951) undrained limit.  342 

 343 

The input parameters for both models are given in Tables 2 and 3 and correspond to a sample 344 

subjected to an effective stress of 5 MPa. The drained bulk and shear moduli are measured 345 

from the forced axial oscillations on the dry sample. The compliant porosity, c, was 346 

estimated from the volumetric strain measured on the dry sample, following the procedure 347 

described in Appendix A of Gurevitch et al. (2010). The high pressure bulk modulus required 348 

by the squirt flow model corresponds to the bulk modulus measured at 25 MPa confining 349 

pressure form the forced axial oscillations on the dry sample. The aspect ratio of the 350 

compliant cracks cannot be accurately determined from the mechanical and SEM data and is 351 

therefore used as a fitting parameter, as it only impacts the frequency dependence. However, 352 

an order of magnitude estimation of the aspect ratio can be obtained from Walsh (1965): 353 

a »
4P

closure
1-n 2( )

p E
,          (11) 354 

 355 

where Pclosure is the confining pressure at which the compliant cracks closed in the dry sample, 356 

while E is the Young’s modulus and  is the Poisson’s ratio. Considering a closure pressure of 357 

around 25 MPa, at which we measured a Young’s modulus of ~28 GPa and Poisson’s ratio of 358 

~0.14, we can infer that the characteristic aspect ratio should be on the order of ~110-3, 359 

which is consistent with our choice of aspect ratio (Table 4).  360 

 361 
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Figure 6 shows the combined result of the two analytical models together with the moduli and 362 

attenuation measured on the dry and glycerine-saturated sample at 5 MPa effective stress. 363 

Neither model accounts for the attenuation resulting from frictional dissipation along grain 364 

contacts, therefore the attenuation measured in the dry sample is added to the model result 365 

(Tisato and Quintal 2013; 2014). The Young’s modulus (Figure 6a) and attenuation (Figure 366 

6b) derived form the models reproduce well the laboratory observation, while for the bulk 367 

modulus dispersion (Figure 6c) and attenuation (Figure 6d) are slightly underestimated. The 368 

shear modulus measured in the glycerine-saturated sample is reduced relative to the dry 369 

sample (Figure 6e) and the model therefore does not fit it as well. However the shear-mode 370 

attenuation (Figure 6f) is reasonably well reproduced.  371 

 372 
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 373 

Figure 6.  The measured moduli and attenuation for the dry and glycerine saturated sample 374 

BS-V5 at 5 MPa effective stress determined from both axial and hydrostatic oscillations 375 

together with the results of the analytical solutions (AS) for the drained-undrained transition 376 

and squirt flow.  377 

 378 

Table 2. Rock and fluid properties for the simple isotropic squirt flow model for sample BS-379 

V5 subjected to an effective stress of 5 MPa. 380 

 Parameters Symbol Model Input 

Fluid  
Fluid Bulk Modulus Kf 4.36 GPa 

Viscosity  1.087 Pa s 

Rock  Stiff Porosity s 0.2213 
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Compliant Porosity c 1.5510-4 

Grain Bulk Modulus Kg 36 GPa 

Drained Bulk Modulus Kd 9.2 GPa 

Drained Shear Modulus Gd 9.1 GPa 

High Pressure Bulk Modulus Kh 13.3 GPa 

Crack aspect ratio  0.0025 

 381 

 382 

Table 3. Rock and fluid properties for the 1D-model of the drained-undrained transition for 383 

sample BS-V5 subjected to an effective stress of 5 MPa. 384 

 Parameter Symbol Model Input 

Fluid  
Fluid Bulk Modulus Kf 4.36 GPa 

Viscosity  1.087 Pa s 

Rock  

Length L 0.083 m 

Diameter D 0.04 m 

Porosity  0.2215 

Permeability  58.7 mD 

Grain Bulk Modulus Kg 36 GPa 

Drained Bulk Modulus Kd 9.2 GPa 

Dead Volume  Dead Volume Vdead vol. 2610-6 m3 

 385 

3.4 Comparison with previous experimental results 386 

 387 

Our experiments are very similar to those performed by Mikhaltsevitch et al. (2015; 2016), 388 

also on a glycerine-saturated Berea sandstone sample. Their sample D had a permeability of 389 

71 mD, a porosity of 19 %, and while mainly composed of quartz (80 %) and feldspar (12 %) 390 

also had substantial amounts of kaolinite (8 %), making it very similar to our sample BS-V5. 391 

In their study, the forced axial oscillation measurements were performed on both the dry and 392 

glycerine-saturated sample at 10 MPa effective stress. Under glycerine saturation the pore 393 
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pressure was maintained at 3 MPa. The measurements were also preformed at different 394 

temperatures ranging from 23 to 31 °C. For the sake of comparing our data to theirs we will 395 

only consider the measurements performed at 23 °C. Mikhaltsevitch et al. (2015) are 396 

confident that their measurements are performed under undrained conditions, based on 397 

Gassmann’s predictions, matching well their measured bulk modulus at low frequencies. 398 

They interpret the observed frequency-dependent attenuation to be in response to squirt flow. 399 

 400 

In Figure 7 we compare the Young’s modulus and attenuation measured in the dry and 401 

glycerine-saturate sample D of Mikhaltsevitch et al. (2016) (Figure 7a and b) to that measured 402 

in our sample BS-V5 (Figure 7c and d). It is important to note that we are showing our 403 

measurements performed at 5 MPa effective stress, because we did not perform 404 

measurements at 10 MPa effective stress. However, as seen in section 3.2 we observed that 405 

increasing the effective stress reduces the attenuation amplitude but does not result in a large 406 

shift of the attenuation peaks with respect to frequency. While sample D is more 407 

compressible, under dry conditions it is less attenuating than sample BS-V5, which could 408 

indicate a minor dependence of our sample on the strain amplitude (e.g. Gordon and Davis 409 

1968; Winkler et al. 1979). However frequency-dependent attenuation in response to wave-410 

induced fluid flow should be approximately independent of strain (Tisato and Quintal 2014). 411 

Mikhaltsevitch et al. (2016) observe the attenuation peak that they attribute to squirt flow at 412 

~0.4 Hz (Figure 7b), while for our sample the attenuation peak we attribute to squirt flow is at 413 

>10 Hz (Figure 7d). A shift of the attenuation peak by 1 to 2 orders of magnitude can be 414 

explained by a minor variation in the characteristic crack aspect ratio of the sample, given that 415 

the characteristic frequency of squirt flow is proportional to the cube of the aspect ratio 416 

(O’Connell and Budiansky 1977; Gurevich et al. 2010).  417 

 418 
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Included in Figure 7a and b we show the result of Gurevich et al.’s (2010) squirt flow model. 419 

As input parameters we use the bulk and shear modulus and porosity of the dry sample D 420 

(Mikhaltsevitch et al. 2015). The other rock parameters for the model where not available, 421 

therefore the other parameters are the same as for sample BS-V5 (Table 2), with the exception 422 

of the crack aspect ratio which is again used as a fitting parameter. Both the Young’s modulus 423 

(Figure 7a) and the attenuation (Figure 7b) are underestimated by the analytical solution, 424 

which is possibly related to the choice of the high-pressure bulk modulus that controls the 425 

bulk modulus dispersion. Mikhaltsevitch et al. 2015 show the frequency dependent bulk 426 

modulus inferred from the measured Young’s modulus and Poisson’s, which is highly 427 

dispersive and which the analytical solution cannot account for with the choice of parameters. 428 

An important aspect of the analytical solution is that it does not account for a distribution of 429 

aspect radii and therefore the asymptote of attenuation at low frequencies scales as Q-1  f,  430 

while at high frequencies scales as Q-1  f -1 (Gurevich et al. 2010). The comparison between 431 

the measured attenuation and result of the analytical indicates that the sample D indeed has a 432 

distribution of aspect radii as would be expected (e.g. Cheng and Toksöz 1979, Subramanyian 433 

et al. 2015). In sample BS-V5 (Figures 7c and d) it is not clear whether the sample has a 434 

narrower distribution in aspect radii, given that the attenuation curve is only partially 435 

observed. 436 

 437 

Berea sandstone has been extensively studied in the past and it contains substantial amounts 438 

of clay, which fills pores and coats grains (e.g. Kareem et al. 2017). Christensen and Wang 439 

(1985) observed an increase in compressional wave velocities and a decrease in shear wave 440 

velocities with pore pressure in water saturated Berea sandstone, attributing the observations 441 

to the high compressibility of clays that make up parts of the cement. Zoback and Byerlee 442 

(1975) also attribute the compressibility of clay to the increase in permeability with increasing 443 



24 

 

pore pressure in Berea sandstone. At seismic frequencies Pimienta et al (2017) observe a 444 

sensitivity of the frequency dependent Poisson ratio to fluid pressure in a Berea sandstone 445 

sample saturated with a glycerine-water mixture.  They apply different fluid pressures up to 9 446 

MPa at a constant effective stress of 1 MPa, however they do not elaborate on what may be 447 

inducing the increase in Poisson’s ratio with fluid pressure. Although the experiments carried 448 

out in our study are very similar to those of Mikhaltsevitch et al. (2016) in terms of rock type, 449 

fluid properties and the range of effective stresses applied, the fluid pressure was 4 MPa in 450 

sample BS-V5 and 3 MPa for sample D. The difference in fluid pressure is not very large, 451 

however, for future research on squirt flow as an attenuation mechanism, the impact of 452 

changes in fluid pressure could be very interesting because of the sensitivity of squirt flow to 453 

crack aspect ratio. In Berea sandstone, where clays coat grains, a variation in fluid pressure at 454 

constant effective stress could facilitate a change in crack aspect ratio, which could in turn be 455 

identified in the measured frequency dependence of attenuation and modulus dispersion. 456 

 457 
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 458 

Figure 7. a) Young’s modulus and b) attenuation QE
-1 for the dry and glycerine-saturated 459 

Berea sandstone (sample D) measured at 10 MPa effective stress by Mikhaltsevitch et al. 460 

(2016), together with the results of the analytical solution (AS) for squirt flow. For 461 

comparison, c) the Young’s modulus and d) attenuation QE
-1 of the dry and glycerine-462 

saturated sample BS-V5 at 5 MPa effective stress, together with the results of the analytical 463 

solutions for the drained-undrained transition and squirt flow. 464 

 465 

4. Conclusions 466 

 467 

We performed hydrostatic and axial forced oscillations experiments on a dry and glycerine-468 

saturated Berea sandstone sample. In the glycerine saturated sample the measured attenuation 469 

is frequency dependent with an attenuation peak at ~0.1 Hz and a second, partial, peak 470 

beginning at ~3 Hz. The first attenuation peak is in response to fluid pressure diffusion from 471 

the sample into the pore fluid lines, referred to as the drained-undrained transition. The 472 

second partial attenuation peak is likely in response to squirt flow, resulting from microscopic 473 

a)

c)

b)

d)
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heterogeneities in the compressibility of the porous solid frame of the rock. The fit of 474 

analytical solutions for the drained-undrained transition and squirt flow satisfactorily 475 

reproduced the measured attenuation and moduli. A comparison with independently 476 

conducted experiments on a very similar sample under comparable conditions appears to 477 

confirm the sensitivity of squirt flow to variations in the characteristic aspect ratios of the 478 

compliant porosity.  479 
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