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MAXIMAL IMMEDIATE EXTENSIONS OF VALUED

DIFFERENTIAL FIELDS

MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVEN

Abstract. We show that every valued differential field has an immediate

strict extension that is spherically complete. We also discuss the issue of

uniqueness up to isomorphism of such an extension.

Introduction

In this paper a valued differential field is a valued field K of equicharacteristic
zero, equipped with a derivation ∂ : K → K that is continuous with respect to the
valuation topology on the field. (The difference with [1] and [2] is that there the
definition did not include the continuity requirement.)

Let K be a valued differential field. Unless specified otherwise, ∂ is the derivation
of K, and we let v : K× = K \ {0} → Γ = v(K×) be the valuation, with valuation
ring O = Ov and maximal ideal O = Ov of O; we use the subscript K, as in ∂K ,
vK , ΓK , OK , OK , if we wish to indicate the dependence of ∂, v, Γ, O, O on K. We
denote the residue field O/O of K by res(K). When the ambient K is clear from the
context we often write a′ instead of ∂(a) for a ∈ K, and set a† := a′/a for a ∈ K×.

By [1, Section 4.4], the continuity requirement on ∂ amounts to the existence of
a ϕ ∈ K× such that ∂O ⊆ ϕO; the derivation of K is said to be small if this holds
for ϕ = 1, that is, ∂O ⊆ O. By an extension of K we mean a valued differential
field extension of K. Let L be an extension of K. We identify Γ in the usual way
with an ordered subgroup of ΓL and res(K) with a subfield of res(L), and we say
that L is an immediate extension of K if Γ = ΓL and res(K) = res(L). We call the
extension L of K strict if for every ϕ ∈ K×,

∂O ⊆ ϕO ⇒ ∂LOL ⊆ ϕOL, ∂O ⊆ ϕO ⇒ ∂LOL ⊆ ϕOL.

With these conventions in place, our goal is to establish the following:

Theorem. Every valued differential field has an immediate strict extension that is
spherically complete.

We consider this as a differential analogue of Krull’s well-known theorem in [5, §13]
that every valued field has a spherically complete immediate valued field extension.
(Recall that for a valued field the geometric condition of spherical completeness is
equivalent to the algebraic condition of being maximal in the sense of not having a
proper immediate valued field extension.) In our situation, strictness is analogous
to the extended derivation “preserving the norm”. Weakening the theorem by
dropping “strict” would still require strictness at various places in the proof, for
example when using Lemma 4.5 and in coarsening arguments at the end of Section 6.
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Throughout this paper K is a valued differential field. For the sake of brevity
we say that K has the Krull property if K has a spherically complete immediate
strict extension. Let us first consider two trivial cases:

Case Γ = {0}. Then K itself is a spherically complete immediate strict extension
of K, and thus K has the Krull property.

Case ∂ = 0. Take a spherically complete immediate valued field extension L of
the valued field K. Then L with the trivial derivation is a spherically complete
immediate strict extension of K, so K has the Krull property.

Thus towards proving our main theorem we can assume Γ ̸= {0} and ∂ ̸= 0 when
convenient. We shall freely use facts (with detailed references) from Sections 3.4,
4.1, 4.2, 4.3, 4.4, 4.5, 5.7, 6.1, 6.2, 6.3, 6.5, 6.6, 6.9, 9.1, 9.2, 10.5, and 11.1 in [1].

Special cases of the main theorem are in [1]: by [1, Corollary 6.9.5], ifK has small
derivation and ∂O ̸⊆ O, then K has a spherically complete immediate extension
with small derivation; in [1, Corollary 11.4.10] we obtained spherically complete
immediate extensions of certain asymptotic fields. What is new compared to the
proofs of these special cases? Mainly the notion of strict extension, the invariant
convex subgroup S(∂) of Γ, the flexibility condition on K, and the lemmas about
these (related) concepts; see Sections 1, 3, 4, 6. We also generalize in Section 2 the
notion of Newton degree from [1, 11.1, 11.2] to our setting. This gives us the tools
to adapt in Section 5 the proofs of these special cases to deriving our main theorem
for K such that Γ> has no least element and S(∂) = {0}. Section 6 shows how that
case extends to arbitrary K using coarsening by S(∂).

We give special attention to asymptotic fields, a special kind of valued differential
field introduced in [1, Section 9.1]: K is asymptotic if for all nonzero f, g ∈ O,

f ∈ gO ⇐⇒ f ′ ∈ g′O.

For us, H-fields are asymptotic fields of particular interest, see [1, Section 10.5]: an
H-field is an ordered valued differential field K whose valuation ring O is convex
and such that, with C = {f ∈ K : f ′ = 0} denoting the constant field of K, we
have O = C + O, and for all f ∈ K, f > C ⇒ f ′ > 0. Hardy fields extending R
are H-fields. Our theorem answers some questions about Hardy fields and H-fields
that have been around for some time. For example, it gives the following positive
answer to Question 2 in Matusinski [6]. (However, in [6] the notion of H-field is
construed too narrowly.) See also the remarks at the end of Section 3.

Corollary. Each H-field has an immediate spherically complete H-field extension.

(Here strictness of the extension is automatic by Lemma 1.11 below.) This corollary
follows from our main theorem in conjunction with the following: any immediate
strict extension of an asymptotic field is again asymptotic by Lemma 1.12 below;
and any immediate asymptotic extension L of an H-field K has a unique field
ordering extending that of K in which OL is convex; equipped with this ordering,
L is an H-field by [1, Lemma 10.5.8].

Uniqueness. By Kaplansky [4], a valued field F of equicharacteristic zero has up to
isomorphism over F a unique spherically complete immediate valued field extension.
In Section 7 we prove such uniqueness in the setting of valued differential fields,
but only when the valuation is discrete. We also discuss there a conjecture from [1]
about this, and recent progress on it.
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In Section 8 we give an example of an H-field where such uniqueness fails. Here
we use some basic facts related to transseries from Sections 10.4, 10.5, 13.9, and
Appendix A in [1].

Acknowledgements. We thank the referee for suggesting to make the paper more
accessible by including explicit statements of some material from [1].

Notations and conventions. We borrow these notational conventions from [1].
For the reader’s convenience we repeat what is most needed in this paper. We set
N := {0, 1, 2, . . . } and let m, n range over N.

A valuation (tacitly, on a field) takes values in an ordered (additively written)
abelian group Γ, where “ordered” here means “totally ordered”, and for such Γ,

Γ< := {γ ∈ Γ : γ < 0}, Γ⩽ := {γ ∈ Γ : γ ⩽ 0},
and likewise we define the subsets Γ>, Γ⩾, and Γ̸= := Γ \ {0} of Γ. For α, β ∈ Γ,
α = o(β) means that n|α| < |β| for all n ⩾ 1.

For a field E we set E× := E \ {0}. Let E be a valued field with valuation
v : E× → ΓE = v(E×), valuation ring OE and maximal ideal OE of OE . When the
ambient valued field E is clear from the context, then for a, b ∈ E we set

a ≍ b :⇔ va = vb, a ≼ b :⇔ va ⩾ vb, a ≺ b :⇔ va > vb,

a ≽ b :⇔ b ≼ a, a ≻ b :⇔ b ≺ a, a ∼ b :⇔ a− b ≺ a.

It is easy to check that if a ∼ b, then a, b ̸= 0, and that ∼ is an equivalence relation
on E×; let a∼ be the equivalence class of an element a ∈ E× with respect to ∼.
We use pc-sequence to abbreviate pseudocauchy sequence; see [1, Sections 2.2, 3.2].
Let also a valued field extension F of E be given. Then we identify in the usual
way res(E) with a subfield of res(F ), and ΓE with an ordered subgroup of ΓF .

Next, let E be a differential field of characteristic 0 (so the field E is equipped
with a single derivation ∂ : E → E, as in [1]). Then we have the differential ring
E{Y } = E[Y, Y ′, Y ′′, . . . ] of differential polynomials in an indeterminate Y , and we
set E{Y } ̸= := E{Y } \ {0}. Let P = P (Y ) ∈ E{Y } have order at most r ∈ N, that
is, P ∈ E[Y, Y ′, . . . , Y (r)]. Then P =

∑
i PiY

i, as in [1, Section 4.2], with i ranging

over tuples (i0, . . . , ir) ∈ N1+r, Y i := Y i0(Y ′)i1 · · · (Y (r))ir , and the coefficients Pi

are in E, and Pi ̸= 0 for only finitely many i. For such i we set

|i| := i0 + i1 + · · ·+ ir, ∥i∥ := i1 + 2i2 + · · ·+ rir.

The degree and the weight of P ̸= 0 are, respectively,

degP := max
{
|i| : Pi ̸= 0

}
∈ N, wtP := max

{
∥i∥ : Pi ̸= 0

}
∈ N.

For d ∈ N we let Pd :=
∑

|i|=d PiY
i be the homogeneous part of degree d of P ,

so P =
∑

d∈N Pd where Pd = 0 for all but finitely many d ∈ N. We also use

the decomposition P =
∑

σ P[σ]Y
[σ]; here σ ranges over words σ = σ1 · · ·σd ∈

{0, . . . , r}∗, Y [σ] := Y (σ1) · · ·Y (σd), all P[σ] ∈ E and P[σ] ̸= 0 for only finitely
many σ, and P[σ] = P[π(σ)] for all σ = σ1 · · ·σd and permutations π of {1, . . . , d},
with π(σ) = σπ(1) · · ·σπ(d). We set ∥σ∥ := σ1 + · · · + σd for σ = σ1 · · ·σd, so

∥i∥ = ∥σ∥ whenever Y i = Y [σ]. We also use for a ∈ E the additive conjugate
P+a := P (a+Y ) ∈ E{Y } and the multiplicative conjugate P×a := P (aY ) ∈ E{Y }.
If P /∈ E, the complexity of P is the triple (r, s, t) ∈ N3 where r is the order of P , s is
the degree of P in Y (r), and t is the total degree of P (so s, t ⩾ 1). For the purpose
of comparing complexities of differential polynomials we order N3 lexicographically.
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Thus for P,Q ∈ E{Y } \ E, the complexity of P and the complexity of Q are less
than the complexity of PQ.

For a valued differential field K we construe the differential fraction field K⟨Y ⟩
of K{Y } as a valued differential field extension of K by extending v : K× → Γ to
the valuation K⟨Y ⟩× → Γ by requiring vP = min vPi for P ∈ K{Y } ̸=.

1. Preliminaries

We recall some basics about valued differential fields, mainly from Section 4.4 and
Chapter 6 of [1], and add further material on compositional conjugation, strict
extensions, the set Γ(∂) ⊆ Γ, the convex subgroup S(∂) of Γ, and coarsening. We
finish this preliminary section with facts about the dominant degree of a differential
polynomial as needed in the next section. In this section ϕ ranges over K×.

Compositional conjugation. The compositional conjugate Kϕ of K is the val-
ued differential field that has the same underlying valued field as K, but with
derivation ϕ−1

∂. Let L be an extension of K. Then Lϕ extends Kϕ, and

L strictly extends K ⇐⇒ Lϕ strictly extends Kϕ.

Therefore, K has the Krull property iffKϕ has the Krull property: L is a spherically
complete immediate strict extension of K iff Lϕ is a spherically complete immediate
strict extension of Kϕ. Moreover,

∂O ⊆ ϕO ⇐⇒ the derivation ϕ−1
∂ of Kϕ is small.

Thus for the purpose of showing that K has the Krull property it suffices to deal
with the case that its derivation ∂ is small.

Strict extensions. Suppose ∂ is small. Then ∂O ⊆ O by [1, Lemma 4.4.2], so ∂

induces a derivation
a+ O 7→ (a+ O)′ := a′ + O

on the residue field res(K); the residue field of K with this derivation is called
the differential residue field of K and is denoted by res(K) as well. Note that the
derivation of res(K) is trivial iff ∂O ⊆ O.

The field C((t)) of Laurent series with derivation ∂ = d/dt and the usual valuation,
where O = C[[t]] and O = tC[[t]], is a valued differential field, since ∂O = O = t−1O.
It is an example of a valued differential field with ∂O ⊆ O, but ∂O ̸⊆ O. On the
other hand, under a mild assumption on Γ we do have ∂O ⊆ O ⇒ ∂O ⊆ O:

Lemma 1.1. Suppose ∂O ⊆ O and Γ> has no least element. Then ∂O ⊆ O.

Proof. For f ∈ O we have f = gh with g, h ∈ O, so f ′ = g′h+ gh′ ∈ O. □

Lemma 1.2. Suppose ∂O ⊆ O and ∂O ̸⊆ O. Then for all ϕ: ∂O ⊆ ϕO ⇔ ϕ ≽ 1.

Proof. From ∂O ⊆ ϕO, we get ϕ−1
∂O ⊆ O, so the derivation ϕ−1

∂ is small, and thus
ϕ−1

∂O ⊆ O, hence ∂O ⊆ ϕO, which in view of ∂O ̸⊆ O gives ϕ ≽ 1. For the
converse, note that if ϕ ≽ 1, then O ⊆ ϕO. □

This leads easily to:

Lemma 1.3. Suppose ∂ is small and the extension L of K has small derivation.
Then the differential residue field res(L) of L is an extension of the differential
residue field res(K) of K. If in addition ∂O ̸⊆ O, then L is a strict extension of K.
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Lemma 1.4. Let L be an algebraic extension of K. Then L strictly extends K.

Proof. Proposition 6.2.1 of [1] says that if the derivation of K is small, then so is
the derivation of L. Now, if ∂O ⊆ ϕO, then ϕ−1

∂ is small, hence ϕ−1
∂L is small,

and thus ∂LOL ⊆ ϕOL. Next, assume ∂O ⊆ ϕO. Then ϕ−1
∂ is small and induces the

trivial derivation on res(K). Hence ϕ−1
∂L is small, and the derivation it induces

on res(L) extends the trivial derivation on res(K), so is itself trivial, as res(L) is
algebraic over res(K). Thus ϕ−1

∂LOL ⊆ OL, that is, ∂LOL ⊆ ϕOL. □

In this lemma the derivation of L is assumed to be continuous for the valuation
topology, because of the meaning we assigned to extension of K and to valued
differential field. In the proof of the lemma we used Proposition 6.2.1 in [1], but
that proposition does not assume this continuity. Thus if we drop the implicit
assumption that the derivation of L is continuous, then Lemma 1.4 goes through,
with the continuity of this derivation as a consequence.

For immediate extensions, strictness reduces to a simpler condition:

Lemma 1.5. Let L be an immediate extension of K such that for all ϕ, if ∂O ⊆ ϕO,
then ∂LOL ⊆ ϕOL. Then L is a strict extension of K.

Proof. Suppose ∂O ⊆ ϕO. Given f ∈ OL we have f = g(1 + ε) with g ∈ O and
ε ∈ OL, hence f

′ = g′(1 + ε) + gε′ ∈ ϕOL. □

The following related fact will also be useful:

Lemma 1.6. Suppose ∂ is small and L is an immediate extension of K such that
∂LOL ⊆ OL. Then ∂L is small.

Proof. If a ∈ OL, then a = b(1+ε) with b ∈ O, ε ∈ OL, so a
′ = b′(1+ε)+bε′ ∈ OL. □

Let us record the following observations on extensions M ⊇ L ⊇ K:

(1) If M ⊇ K is strict, then L ⊇ K is strict.
(2) If M ⊇ L and L ⊇ K are strict, then so is M ⊇ K.
(3) If L is an elementary extension of K, then L ⊇ K is strict.
(4) Any divergent pc-sequence in K pseudoconverges in some strict extension

of K; this is an easy consequence of (3), cf. [1, Remark after Lemma 2.2.5].

The set Γ(∂). Note that if a, b ∈ K×, a ≼ b, and O ⊆ aO, then O ⊆ bO. The set
Γ(∂) ⊆ Γ, denoted also by ΓK(∂) if we need to specify K, is defined as follows:

Γ(∂) := {vϕ : ∂O ⊆ ϕO}.
This is a nonempty downward closed subset of Γ, with an upper bound in Γ if ∂ ̸= 0.
Moreover, Γ(∂) < v(∂O). Lemma 1.2 has a reformulation:

Corollary 1.7. If ∂O ⊆ O and ∂O ̸⊆ O, then Γ(∂) = Γ⩽.

Lemma 1.8. If vϕ ∈ Γ(∂) is not maximal in Γ(∂), then ∂O ⊆ ϕO.

Proof. Let a ∈ K× be such that vϕ < va ∈ Γ(∂). Then a−1
∂ is small, so a−1

∂O ⊆ O,
and thus ∂O ⊆ aO ⊆ ϕO. □

Corollary 1.9. Suppose ΓK(∂) has no largest element, L extends K, and for all ϕ,
if ∂O ⊆ ϕO, then ∂LOL ⊆ ϕOL. Then L strictly extends K.

Proof. If vϕ ∈ ΓK(∂), then vϕ ∈ ΓL(∂), but vϕ is not maximal in ΓL(∂), and thus
∂OL ⊆ ϕOL by Lemma 1.8. □

Lemma 1.10. If L strictly extends K with ΓL = Γ, then ΓL(∂) = ΓK(∂).
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The case of asymptotic fields. In this subsection we assume familiarity with
Sections 6.5, 9.1, and the early parts of Section 9.2 in [1]. Recall that K is said to
be asymptotic if for all f, g ∈ K with 0 ̸= f, g ≺ 1 we have f ≺ g ⇐⇒ f ′ ≺ g′.
In that case we put Ψ :=

{
v(f†) : f ∈ K×, f ̸≍ 1

}
⊆ Γ; if we need to make the

dependence on K explicit we denote Ψ by ΨK . We recall from [1, Section 9.1] that
then Ψ < v(f ′) for all f ∈ O. An asymptotic field K is said to be grounded if Ψ has
a largest element, and ungrounded otherwise.

Lemma 1.11. Suppose K and L are asymptotic fields, and L is an immediate
extension of K. Then L is a strict extension of K.

Proof. Assume ∂O ⊆ O; we show that ∂OL ⊆ OL. (Using Lemma 1.5, apply this
to ϕ−1

∂ in the role of ∂, for vϕ ∈ Γ(∂).) Now ∂O ⊆ O means that there is no γ ∈ Γ<

such that Ψ ⩽ γ, by [1, Lemma 9.2.9]. Since ΓL = Γ, we have ΨL = Ψ, and so
there is no γ ∈ Γ<

L such that ΨL ⩽ γ, which gives ∂OL ⊆ OL. □

Here is a partial converse. (The proof assumes familiarity with asymptotic couples.)

Lemma 1.12. Suppose K is asymptotic and L strictly extends K with ΓL = Γ.
If K is ungrounded or res(K) = res(L), then L is asymptotic.

Proof. Let a ∈ L×, a ̸≍ 1. Then a = bu with b ∈ K× and a ≍ b, so u ≍ 1 and
a† = b†+u†. Using Γ = ΓL and the equivalence of (i) and (ii) in [1, Proposition 9.1.3]
applied to L, we see that for L to be asymptotic it is enough to show that a† ≍ b†,
which in turn will follow from u′ ≺ b† in view of u′ ≍ u†.

Suppose that Ψ has no largest element. Take ϕ with v(b†) < v(ϕ) ∈ Ψ. Then
vϕ < v(∂O), so ∂O ⊆ ϕO, hence ∂OL ⊆ ϕOL, which by [1, Lemma 4.4.2] gives
∂OL ⊆ ϕOL, and thus u′ ≼ ϕ ≺ b†.

Next, suppose that res(K) = res(L). Then in the above we could have taken
u = 1 + ε with ε ≺ 1. Then ∂O ⊆ b†O, so ∂OL ⊆ b†OL, hence u

′ = ε′ ≺ b†. □

For an example of a non-strict extension L ⊇ K of asymptotic fields, take K = R
with the trivial valuation and trivial derivation, and L = R((t)) with the natural
valuation f 7→ order(f) : L× → Z given by order(f) = k for

f = fkt
k + fk+1t

k+1 + · · ·

with fk ̸= 0 and all coefficients fk+n ∈ R, and derivation ∂ = d/dt given by
∂(f) =

∑
k ̸=0 kfkt

k−1 for f =
∑

k fkt
k. Note that ΓL(∂) = Z<, so 0 /∈ ΓL(∂).

The following isn’t needed, but is somehow missing in [1].

Lemma 1.13. If K is asymptotic and Γ> has a least element, then K is grounded.

Proof. Suppose f ∈ O, f ̸= 0, and v(f) = min(Γ>). Replacing K by Kϕ where
ϕ = f† we arrange v(f†) = 0. There is no γ ∈ Γ with 0 < γ < v(f), which in view
of v(f) = v(f ′) and Ψ < v(∂O) gives 0 = maxΨ. □

Another class of valued differential fields considered more closely in [1] is the class
of monotone fields: by definition, K is monotone iff f† ≼ 1 for all f ∈ K×. If K
is monotone, then so is any strict extension L of K with ΓL = Γ, by [1, Corol-
lary 6.3.6]. Note that K has a monotone compositional conjugate iff for some
ϕ ∈ K× we have f† ≼ ϕ for all f ∈ K×. If K has a monotone compositional
conjugate, then clearly any strict extension L of K with ΓL = Γ has as well.
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The stabilizer of Γ(∂). By this we mean the convex subgroup

SK(∂) :=
{
γ ∈ Γ : Γ(∂) + γ = Γ(∂)

}
of Γ, also denoted by S(∂) if K is clear from the context. Thus

S(∂)⩾ =
{
γ ∈ Γ⩾ : Γ(∂) + γ ⊆ Γ(∂)

}
.

Note that Γ(∂) is a union of cosets of S(∂). We have Γ(a∂) = Γ(∂) + va and
S(∂) = S(a∂) for all a ∈ K×. So S(∂) is invariant under compositional conjugation.
Normalizing ∂ so that 0 ∈ Γ(∂) has the effect that S(∂) ⊆ Γ(∂).

Lemma 1.14. Suppose K is asymptotic. Then S(∂) = {0}.

Proof. We have Ψ < v(∂O), so Ψ ⊆ Γ(∂). Therefore, if γ ∈ Γ>, say γ = vg, g ∈ K×,
then β := v(g†) ∈ Ψ ⊆ Γ(∂), yet β + γ = v(g′) /∈ Γ(∂), hence γ /∈ S(∂). □

The following is also easy to verify.

Lemma 1.15. If Γ(∂) has a supremum in Γ, then S(∂) = {0}.

In particular, if Γ(∂) has a maximum, then S(∂) = {0}. If ∂ ̸= 0 and Γ is
archimedean, then clearly also S(∂) = {0}. In Section 3 we need the following:

Lemma 1.16. Suppose S(∂) = {0}. Then for any ε ∈ Γ> there are γ ∈ Γ(∂) and
δ ∈ Γ \ Γ(∂) such that δ − γ ⩽ ε.

Proof. Let ε ∈ Γ>. Then ε /∈ S(∂), so we get γ ∈ Γ(∂) with δ := γ + ε /∈ Γ(∂). □

For cases where S(∂) ̸= {0}, let k be a field of characteristic 0 with a valuation
w : k → ∆ = w(k×), and let K = k((t)) be the field of Laurent series over k. Then
we have the valuation f 7→ order(f) : K× → Z, where order(f) = k means that
f = fkt

k + fk+1t
k+1 + · · · with fk ̸= 0 and all coefficients fk+n ∈ k. We combine

these two valuations into a single valuation v : K× → Γ extending the valuation w
on k, with Γ having ∆ and Z as ordered subgroups, ∆ convex in Γ, and Γ = ∆+Z;
it is given by v(f) = w(fk) + k, with k = order(f). Next, we equip K with the
derivation ∂ = t · d/dt given by ∂(f) =

∑
k kfkt

k for f =
∑

k fkt
k. Then K with

the valuation v and the derivation ∂ is a (monotone) valued differential field, with
∂O =

{
f ∈ K : order(f) ⩾ 1

}
. It follows easily that

Γ(∂) = {γ ∈ Γ : γ ⩽ δ for some δ ∈ ∆},

and thus S(∂) = ∆.

Coarsening. We begin with reminders about coarsening from [1, Sections 3.4, 4.4].
Let ∆ be a convex subgroup of Γ. This yields the ordered abelian quotient group
Γ̇ = Γ/∆ of Γ, with the coarsened valuation

v̇ = v∆ : K× → Γ̇, v̇(a) := v(a) + ∆

on the underlying field of K. The ∆-coarsening K∆ of K is the valued differential
field with the same underlying differential field as K, but with valuation v̇. Its
valuation ring is

Ȯ = {a ∈ K : va ⩾ δ for some δ ∈ ∆} ⊇ O,

with maximal ideal

Ȯ = {a ∈ K : va > ∆} ⊆ O.
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The residue field

K̇ := res(K∆) = Ȯ/Ȯ
is itself a valued field with valuation v : K̇× → ∆ given by

v(a+ Ȯ) := v(a) for a ∈ Ȯ \ Ȯ,

and with valuation ring {a + Ȯ : a ∈ O}. We identify res(K) with res(K̇) via
res(a) 7→ res(a+ Ȯ) for a ∈ O. The following is [1, Corollary 4.4.4]:

Lemma 1.17. If ∂O ⊆ O then ∂Ȯ ⊆ Ȯ.

Suppose the derivation ∂ of K is small. Then ∂ is also small as a derivation of K∆,
and the derivation on K̇ induced by the derivation of K∆ is small as well. This
derivation on K̇ then induces the same derivation on res(K̇) as ∂ on K induces
on res(K). The operation of coarsening commutes with compositional conjugation:

(Kϕ)∆ and (K∆)
ϕ are the same valued differential field, to be denoted by Kϕ

∆.

The next lemma describes the downward closed subset Γ̇(∂) of Γ̇ almost completely

in terms of Γ(∂) and the canonical map π : Γ → Γ̇. Let α range over Γ.

Lemma 1.18. If ∂Ȯ ⊆ ϕȮ, then vϕ ∈
⋂

α>∆ Γ(∂) + α. As a consequence we have

either Γ̇(∂) = πΓ(∂), or Γ̇(∂) = πΓ(∂) ∪ {µ̇} with µ̇ = max Γ̇(∂).

Proof. Suppose ∂Ȯ ⊆ ϕȮ. Then ϕ−1
∂Ȯ ⊆ Ȯ, so ϕ−1

∂Ȯ ⊆ Ȯ, hence ∂Ȯ ⊆ ϕȮ. For
a ∈ K× with α = va > ∆ we have aȮ ⊆ O, so ∂Ȯ ⊆ ϕȮ ⊆ ϕa−1O, and thus
∂O ⊆ ϕa−1O, which gives vϕ− α ∈ Γ(∂). We conclude that

vϕ ∈
⋂
α>∆

Γ(∂) + α.

It follows from Lemma 1.17 that πΓ(∂) ⊆ Γ̇(∂). Suppose that vϕ > Γ(∂)+∆. Then

by the above, v̇ϕ− α̇ ∈ πΓ(∂) for all α̇ ∈ Γ̇>. If πΓ(∂) has no largest element, then
we get v̇ϕ = supπΓ(∂). If πΓ(∂) has a largest element, then v̇ϕ −maxπΓ(∂) must

be the least positive element of Γ̇>, and Γ̇(∂) = πΓ(∂) ∪ {v̇ϕ}. □

The following will be needed in deriving Proposition 7.2:

Lemma 1.19. Let L be an immediate strict extension of K such that res(L∆) =
res(K∆). Then L∆ is a strict extension of K∆.

Proof. Note that L∆ is an immediate extension ofK∆. Suppose ∂Ȯ ⊆ ϕȮ; applying
Lemmas 1.5 and 1.6 to the extension L∆ of K∆, it suffices to derive from this
assumption that ∂ȮL ⊆ ϕȮL. The proof of Lemma 1.18 gives ∂O ⊆ ϕa−1O for
every a ∈ K× with va > ∆, and so ∂OL ⊆ ϕa−1OL for such a. Thus for f ∈ OL
we have v(f ′) > vϕ − α for all α > ∆, so v(f ′/ϕ) > −α for all α > ∆, that is,

f ′/ϕ ∈ ȮL, so f
′ ∈ ϕȮL. This shows ∂ȮL ⊆ ∂OL ⊆ ϕȮL, as desired. □

Dominant degree. We summarize here from [1, Section 6.6] what we need about
the dominant part and dominant degree of a differential polynomial and its behavior
under additive and multiplicative conjugation. We give the definitions, but refer
to [1, Section 6.6] for the proofs. In this subsection we assume the derivation ∂ of K
is small, and we choose for every P ∈ K{Y }̸= an element dP ∈ K× with dP ≍ P ,
such that dP = dQ whenever P ∼ Q, P,Q ∈ K{Y } ̸=. Let P ∈ K{Y }̸=.



MAXIMAL IMMEDIATE EXTENSIONS OF VALUED DIFFERENTIAL FIELDS 9

We have d−1
P P ≍ 1, in particular, d−1

P P ∈ O{Y }, and we define the dominant

part DP ∈ res(K){Y }̸= to be the image of d−1
P P under the natural differential ring

morphism O{Y } → res(K){Y }. Note that degDP ⩽ degP . The dominant degree
of P is defined to be the natural number ddegP := degDP ; unlike DP it does not
depend on the choice of the elements dP ∈ K×. Given also Q ∈ K{Y } ̸= we have
ddegPQ = ddegP +ddegQ. If f ≼ 1 in an extension L of K with small derivation
satisfies P (f) = 0, then DP (f + OL) = 0 and thus ddegP ⩾ 1.

Lemma 1.20. If a ∈ K and a ≼ 1, then ddegP+a = ddegP .

Lemma 1.21. Let a, b ∈ K, g ∈ K× be such that a− b ≼ g. Then

ddegP+a,×g = ddegP+b,×g.

Lemma 1.22. If g, h ∈ K× and g ≼ h, then ddegP×g ⩽ ddegP×h.

For these facts, see [1, Lemma 6.6.5(i), Corollary 6.6.6, Corollary 6.6.7].

2. Eventual Behavior

In this section Γ ̸= {0}. We let ϕ range over K×, and σ, τ over N∗. We also fix a
differential polynomial P ∈ K{Y }̸=. Here we generalize parts of [1, Sections 11.1,
11.2] by dropping the assumption there that K is asymptotic. The condition vϕ <
(Γ>)′ there becomes the condition vϕ ∈ Γ(∂) here.

Behavior of vFn
k (ϕ). The differential polynomials Fn

k (X) ∈ Q{X} ⊆ K{X} for
0 ⩽ k ⩽ n were introduced in [1, Section 5.7] in connection with compositional
conjugation: there we considered the K-algebra morphism

Q 7→ Qϕ : K{Y } → Kϕ{Y }
defined by requiring that Q(y) = Qϕ(y) for Q ∈ K{Y } and all y in all differential
field extensions of K. The Fn

k (X) (1 ⩽ k ⩽ n) satisfy

(Y (n))ϕ = Fn
n (ϕ)Y

(n) + Fn
n−1(ϕ)Y

(n−1) + · · ·+ Fn
1 (ϕ)Y

′

and F 0
0 = 1, Fn

0 = 0 for n ⩾ 1. (For example, F 1
1 = X and F 2

2 = X2, F 2
1 = X ′.)

We also recall from there that for τ = τ1 · · · τd ⩾ σ = σ1 · · ·σd,
F τ
σ := F τ1

σ1
· · ·F τd

σd
.

In order to better understand v(Pϕ) as a function of ϕ we use from Lemma 5.7.4
in [1] and its proof the identities

(Y [τ ])ϕ =
∑
σ⩽τ

F τ
σ (ϕ)Y

[σ], (Pϕ)[σ] =
∑
τ⩾σ

F τ
σ (ϕ)P[τ ]. (1)

The next two lemmas have the same proof as [1, Lemmas 11.1.1, 11.1.2].

Lemma 2.1. If ∂O ⊆ O and ϕ ≼ 1, then v(Pϕ) ⩾ v(P ), with equality if ϕ ≍ 1.

We set δ = ϕ−1
∂ in the next two results.

Lemma 2.2. Suppose that δO ⊆ O, and let 0 ⩽ k ⩽ n.

(i) If ϕ† ≼ ϕ, then Fn
k (ϕ) ≼ ϕ

n and Fn
n (ϕ) = ϕn.

(ii) If ϕ† ≺ ϕ and k < n, then Fn
k (ϕ) ≺ ϕn.

Corollary 2.3. Suppose that δO ⊆ O and ϕ† ≼ ϕ, and τ ⩾ σ. Then F τ
σ (ϕ) ≼ ϕ

∥τ∥

and F τ
τ (ϕ) = ϕ∥τ∥. If ϕ† ≺ ϕ and τ > σ, then F τ

σ (ϕ) ≺ ϕ∥τ∥.
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Let P have order ⩽ r, so P =
∑

i PiY
i with i ranging over N1+r. We define the

dominant degree ddegP ∈ N and the dominant weight dwtP ∈ N by

ddegP = max
{
|i| : Pi ≍ P

}
, dwtP = max

{
∥i∥ : Pi ≍ P

}
.

Thus if K has small derivation, then ddegP = degDP as in the previous section,
and dwtP = wtDP , agreeing with the dominant weight from [1, Sections 4.5, 6.6].

Lemma 2.4. Suppose ∂O ⊆ O and ϕ ≍ 1. Then ddegPϕ = ddegP .

Proof. Set

d := ddegP, Id :=
{
i : Pi ≍ P, |i| = d

}
, I<d :=

{
i : Pi ≍ P, |i| < d

}
.

Then
P = Q+R+ S with Q :=

∑
i∈Id

PiY
i, R :=

∑
i∈I<d

PiY
i,

and so

Pϕ = Qϕ +Rϕ + Sϕ, Pϕ ≍ P, Qϕ ≍ Q ≍ P, Rϕ ≍ R, Sϕ ≍ S ≺ P,

by Lemma 2.1, and R ≍ P if R ̸= 0. Also degQϕ = degQ = d and degRϕ =
degR < d by [1, Corollary 5.7.5], and thus ddegPϕ = d. □

It is convenient to introduce two operators D,W: K{Y }̸= → K{Y }̸=:

D(P ) :=
∑
i∈I

PiY
i, I := {i : Pi ≍ P},

W(P ) :=
∑
i∈J

PiY
i, J :=

{
i ∈ I : ∥i∥ = dwtP

}
.

Thus D(P ) and W(P ) are of degree ddegP , and every monomial Y i occurring
in W(P ) has weight ∥i∥ = dwtP . Note that P ≍ D(P ) ≍ W(P ). If K has
small derivation, then the nonzero coefficients of D(P ) are ≍ dP , and the image
of d−1

P D(P ) under the natural differential ring morphism O{Y } → res(K){Y }
equals the dominant part DP of P .

Lemma 2.5. Suppose Γ> has no smallest element and ∂O ⊆ O. Then there exists
an α ∈ Γ< such that for w := dwtP we have

D(Pϕ) ∼ ϕw W(P )

for all ϕ with α < vϕ < 0, so ddegPϕ = ddegP and dwtPϕ = dwtP for such ϕ.

Proof. For any monomial Y i = Y [τ ] we have (Y [τ ])ϕ =
∑

σ⩽τ F
τ
σ (ϕ)Y

[σ] by (1).

Now let ϕ ≻ 1. Then ϕ† ≺ ϕ: this is clear if ϕ′ ≼ ϕ, and follows from [1, Lem-
ma 6.4.1(iii)] when ϕ′ ≻ ϕ. Thus by Corollary 2.3 and using ∥i∥ = ∥τ∥:

(Y i)ϕ ∼ ϕ∥i∥Y i.

Now P = W(P ) + Q with Q ∈ K{Y }, and for each monomial Y i, either Qi ≺ P ,
or Qi = Pi ≍ P and ∥i∥ < dwtP . Then

Pϕ = W(P )ϕ +Qϕ, W(P )ϕ ∼ ϕw W(P ) for w := dwtP .

Now Γ> has no smallest element, so given any β ∈ Γ> and n ⩾ 1 there is an α ∈ Γ>

such that nγ < β whenever γ ∈ Γ and 0 < γ < α. Thus by considering the
individual monomials in Q we obtain an α ∈ Γ< such that Qϕ ≺ ϕw W(P ) whenever
α < vϕ < 0. Any such α witnesses the property stated in the lemma. □
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Corollary 2.6. If Γ> has no least element, ϕ0 ∈ K× and v(ϕ0) ∈ Γ(∂), then there
exists α < v(ϕ0) such that ddegPϕ0 = ddegPϕ whenever α < v(ϕ) < v(ϕ0).

Proof. Apply Lemma 2.5 to Kϕ0 and Pϕ0 in the role of K and P . □

Newton degree. In this subsection we assume Γ> has no least element. Let
P ∈ K{Y }̸= have order ⩽ r ∈ N. For d ⩽ degP we define

Γ(P, d) :=
{
γ ∈ Γ(∂) : ddegPϕ = d for some ϕ with vϕ = γ

}
.

Note that in this definition of Γ(P, d) we can replace “some” by “all” in view
of Lemma 2.4, and hence the nonempty sets among the Γ(P, d) with d ⩽ degP
partition Γ(∂). Note also that if γ ∈ Γ(P, d), then (γ − α, γ] ⊆ Γ(P, d) for some
α ∈ Γ> by Corollary 2.6, so each convex component of Γ(P, d) in Γ is infinite.

Lemma 2.7. The set Γ(P, d) has only finitely many convex components in Γ.

Proof. Let i range over the tuples (i0, . . . , ir) ∈ N1+r with |i| ⩽ degP , and like-
wise for j. Let N be the number of pairs (i, j) with i ̸= j. We claim that for
every ϕ0 ∈ K× with vϕ0 ∈ Γ(∂) the set Γ(P, d) has at most N + 1 convex compo-
nents with an element ⩽ vϕ0. (It follows easily from this claim that Γ(P, d) has
at most N + 1 convex components.) By renaming Kϕ0 and Pϕ0 as K and P it
suffices to prove the claim for ϕ0 = 1. So we assume that ∂O ⊆ O and have to
show that Γ(P, d) has at most N + 1 components with an element ⩽ 0. We now
restrict i further by the requirement that Pi ̸= 0, and likewise for j. By the proof
of Lemma 2.5,

ddegPϕ = max

{
|i| : vPi + ∥i∥vϕ = min

j
vPj + ∥j∥vϕ

}
for vϕ < 0.

For each i we have the function fi : QΓ → QΓ given by fi(γ) = vPi + ∥i∥γ. For
any i, j, either fi = fj or we have a unique γ = γi,j ∈ QΓ with fi(γ) = fj(γ).
Let γ1 < · · · < γM with M ⩽ N be the distinct values of γi,j < 0 obtained in this
way, and set γ0 := −∞ and γM+1 := 0. Then on each interval (γm, γm+1) with
0 ⩽ m ⩽ M , the functions fi − fj have constant sign: −, 0, or +. In view of the
above identity for ddegPϕ it follows easily that for each m with 0 ⩽ m ⩽ M the
value of ddegPϕ is constant as vϕ ranges over (γm, γm+1)∩Γ. Thus Γ(P, d) has at
most M + 1 convex components. □

It follows from Lemmas 2.5 and 2.7 that there exists d ⩽ degP and a ϕ0 ∈ K×

such that vϕ0 ∈ Γ(∂), vϕ0 is not maximal in Γ(∂), and ddegPϕ = d for all ϕ ≼ ϕ0
with vϕ ∈ Γ(∂). We now define the Newton degree ndegP of P to be this eventual
value d ∈ N of ddegPϕ. Note that if Γ(∂) does have a maximal element vϕ, then

ndegP = ddegPϕ.

Also, for f ∈ K× and Q ∈ K{Y } ̸= we have

ndegP f = ndegP, ndegPQ = ndegP + ndegQ.

Newton degree and multiplicative conjugation. In this subsection Γ> has no
least element. Here we consider the behavior of ndegP×g as a function of g ∈ K×.
Indeed, ndegP×g ⩾ 1 is a useful necessary condition for the existence of a zero f ≼ g
of P in a strict extension of K, as stated in the following generalization of [1, Lem-
ma 11.2.1]:
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Lemma 2.8. Let g ∈ K× and suppose some f ≼ g in a strict extension of K
satisfies P (f) = 0. Then ndegP×g ⩾ 1.

Proof. For such f we have f = ag with a ≼ 1, and Q(a) = 0 for Q := P×g. So
Qϕ(a) = 0 for all ϕ with vϕ ∈ Γ(∂), hence ddegQϕ ⩾ 1 for those ϕ, and thus
ndegQ ⩾ 1. □

Next some results on Newton degree that follow easily from corresponding facts at
the end of Section 1 on dominant degree, using also that compositional conjugation
commutes with additive and multiplicative conjugation by [1, Lemma 5.7.1].

Lemma 2.9. If a ∈ K and a ≼ 1, then ndegP+a = ndegP .

Lemma 2.10. Let a, b ∈ K, g ∈ K× be such that a− b ≼ g. Then

ndegP+a,×g = ndegP+b,×g.

Lemma 2.11. If g, h ∈ K× and g ≼ h, then ndegP×g ⩽ ndegP×h.

For g ∈ K× we set ndeg≺g P := max{ndegP×f : f ≺ g}.

Lemma 2.12. For a, g ∈ K with a ≺ g we have ndeg≺g P+a = ndeg≺g P .

Proof. Use that ndegP+a,×f = ndegP×f for a ≼ f ≺ g, by Lemma 2.10. □

It will also be convenient to define for γ ∈ Γ,

ndeg⩾γ P := max{ndegP×g : g ∈ K×, vg ⩾ γ}.
By Lemma 2.11, ndeg⩾γ P = ndegP×g for any g ∈ K× with γ = vg. From
Lemmas 2.11 and 2.10 we easily obtain:

Corollary 2.13. Let a, b ∈ K and α, β ∈ Γ be such that v(b− a) ⩾ α and β ⩾ α.
Then ndeg⩾β P+b ⩽ ndeg⩾α P+a.

Newton degree in a cut. In this subsection Γ> has no least element. We do
not need the material here to obtain the main theorem. It is only used in proving
Corollaries 4.6 and 4.7, which are of interest for other reasons.

Let (aρ) be a pc-sequence in K, and put γρ = v(as(ρ) − aρ) ∈ Γ∞, where s(ρ) is
the immediate successor of ρ. Using Corollary 2.13 in place of [1, Corollary 11.2.8]
we generalize [1, Lemma 11.2.11]:

Lemma 2.14. There is an index ρ0 and d ∈ N such that for all ρ > ρ0 we have
γρ ∈ Γ and ndeg⩾γρ

P+aρ = d. Denoting this number d by d
(
P, (aρ)

)
, we have

d
(
P, (aρ)

)
= d
(
P, (bσ)

)
whenever (bσ) is a pc-sequence in K equivalent to (aρ).

As in [1, Section 11.2], we now associate to each pc-sequence (aρ) in K an ob-
ject cK(aρ), the cut defined by (aρ) in K, such that if (bσ) is also a pc-sequence
in K, then

cK(aρ) = cK(bσ) ⇐⇒ (aρ) and (bσ) are equivalent.

We do this in such a way that the cuts cK(aρ), with (aρ) a pc-sequence in K, are
the elements of a set c(K). Using Lemma 2.14 we define for a ∈ c(K) the Newton
degree of P in the cut a as

ndega P := d
(
P, (aρ)

)
= eventual value of ndeg⩾γρ

P+aρ ,

where (aρ) is any pc-sequence in K with a = cK(aρ). Let (aρ) be a pc-sequence
in K and a = cK(aρ). For y ∈ K the cut cK(aρ + y) depends only on (a, y), and
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so we can set a+ y := cK(aρ + y). Likewise, for y ∈ K× the cut cK(aρy) depends
only on (a, y), and so we can set a · y := cK(aρy). We record some basic facts
about ndega P :

Lemma 2.15. Let (aρ) be a pc-sequence in K, a = cK(aρ). Then

(i) ndega P ⩽ degP ;
(ii) ndega P

f = ndega P for f ∈ K×;
(iii) ndega P+y = ndega+y P for y ∈ K;
(iv) if y ∈ K and vy is in the width of (aρ), then ndega P+y = ndega P ;
(v) ndega P×y = ndega·y P for y ∈ K×;

(vi) if Q ∈ K{Y }̸=, then ndega PQ = ndega P + ndegaQ;
(vii) if P (ℓ) = 0 for some pseudolimit ℓ of (aρ) in a strict extension of K, then

ndega P ⩾ 1;

Proof. Most of these items are routine or follow easily from earlier facts. Item (iv)
follows from (iii), and (vii) from Lemma 2.8. □

3. Flexibility

We assume in this section about our valued differential field K that

Γ ̸= {0}, ∂ ̸= 0.

After the first three lemmas we introduce the useful condition of flexibility , which
plays a key role in the rest of the story.

Lemma 3.1. Let P ∈ K{Y }̸= be such that degP ⩾ 1. Suppose ∂ is small and the
derivation of res(K) is nontrivial. Then the set{

vP (y) : y ∈ K, P (y) ̸= 0
}

⊆ Γ

is coinitial in Γ.

Proof. Given Q ∈ K{Y }, the gaussian valuation v(Q×f ) of Q×f for f ∈ K depends
only on v(f) by [1, Lemma 4.5.1(ii)], and so we obtain a function vQ : Γ∞ → Γ∞
with vQ(vf) = v(Q×f ) for f ∈ K. We have vP (γ) = mind vPd

(γ) ∈ Γ for γ ∈ Γ,
and by [1, Corollary 6.1.3], vPd

(γ) = v(Pd)+dγ+o(γ) if Pd ̸= 0 and γ ∈ Γ̸=. Using
also degP ⩾ 1, it follows that vP (Γ) is a coinitial subset of Γ. By [1, Lemma 4.5.2],
there is for each β ∈ vP (Γ) a y ∈ K with vP (y) = β. □

Lemma 3.2. Let P ∈ K{Y }̸= be such that degP ⩾ 1. Then the set{
vP (y) : y ∈ K

}
⊆ Γ∞

is infinite.

Proof. By compositional conjugation we arrange that ∂ is small. Take an elementary
extension L of K such that ΓL contains an element > Γ. Let ∆ be the convex hull
of Γ in ΓL, and let L∆ be the ∆-coarsening of L with valuation v̇ and (nontrivial)

value group Γ̇L = ΓL/∆. By Lemma 1.17, the derivation of L∆ remains small,
and since ∂ ̸= 0, the derivation of res(L∆) is nontrivial. So by the preceding

lemma, the set
{
v̇P (y) : y ∈ L, P (y) ̸= 0

}
is coinitial in Γ̇L. Hence the set{

vP (y) : y ∈ L, P (y) ̸= 0
}
is coinitial in ΓL. Thus

{
vP (y) : y ∈ K, P (y) ̸= 0

}
is

coinitial in Γ, and hence infinite. □



14 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVEN

Lemma 3.3. Suppose Γ> has no least element and S(∂) = {0}. Let P ∈ K{Y }̸=
be such that ndegP ⩾ 1, and let β ∈ Γ>. Then the set{

vP (y) : y ∈ K, |vy| < β
}

⊆ Γ∞

is infinite.

Proof. Let γ ∈ Γ(∂) and δ ∈ Γ \ Γ(∂); then there are a, g ∈ K such that

a ≺ 1, vg = γ, 0 < v(g−1a′) ⩽ δ − γ.

To see this, take a, d ∈ K such that a ≺ 1, vd = δ, and d−1a′ ≽ 1. Take g ∈ K with
vg = γ. Then a′ ≽ d, and so g−1a′ ≽ g−1d. It remains to note that g−1a′ ≺ 1.

This fact and Lemma 1.16 yield an elementary extension L of K, with ele-
ments ϕ ∈ L× and a ∈ OL such that vϕ ∈ ΓL(∂L), vϕ ⩾ Γ(∂) and 0 < v(ϕ−1a′) <
Γ>. Let ∆ be the convex subgroup of ΓL consisting of the ε ∈ ΓL with |ε| < Γ>.

Then res(Lϕ
∆) has nontrivial derivation with value group ∆ ̸= {0}. Take a nonzero

f ∈ L such that f−1Pϕ ≍ 1 in Lϕ{Y }. Let P∆ ∈ res(Lϕ
∆){Y } be the image

of f−1Pϕ ∈ OLϕ{Y } under the natural map OLϕ{Y } → res(Lϕ
∆){Y }. From

ndegP ⩾ 1 it follows that degP∆ ⩾ 1. Now apply Lemma 3.2 to res(Lϕ
∆) and P∆

in the role of K and P . □

Recall that a∼ is the equivalence class of a ∈ K× with respect to the equivalence
relation ∼ on K×. We define K to be flexible if Γ> has no least element and for
all P ∈ K{Y }̸= with ndegP ⩾ 1 and all β ∈ Γ> the set{

P (y)∼ : y ∈ K, |vy| < β, P (y) ̸= 0
}

is infinite. Flexibility is an elementary condition on valued differential fields, in the
sense of being expressible by a set of sentences in the natural first-order language
for these structures. Flexibility is invariant under compositional conjugation. By
Lemma 3.3 we have:

Corollary 3.4. If Γ> has no least element and S(∂) = {0}, then K is flexible.

Combined with earlier results on S(∂) this gives large classes of valued differential
fields that are flexible. For example, if Γ> has no least element, then K is flexible
whenever K is asymptotic or Γ is archimedean. If Γ> has no least element and K
is flexible, does it follow that S(∂) = {0}? We don’t know.

Remark. In [2, p. 292] we defined a less “flexible” notion of flexibility. We stated
there as Theorem 4.1, without proof, that every real closed H-field has a spherically
complete immediate H-field extension, and mentioned that we used flexibility in
handling the case where the real closed H-field has no asymptotic integration. It
turned out that for that case “Theorem 4.1” was not needed in [1], and so it was
not included there. As we saw in the introduction, Theorem 4.1 from [2] is now
available, even without the real closed assumption, as a special case of the main
theorem of the present paper.

4. Lemmas on Flexible Valued Differential Fields

In this section we assume about K that ∂ ̸= 0, Γ ̸= {0}, and Γ> has no least
element. (Flexibility is only assumed in Lemmas 4.4 and 4.5.) We let a, b, y range
over K and m, n, d, v, w over K×. Also, P and Q range over K{Y } ̸=.
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Using strict extensions and flexibility we now adapt the subsection “Vanishing”
of [1, Section 11.4] to our more general setting.

Let ℓ be an element in an extension L of K such that ℓ /∈ K and v(K − ℓ) :={
v(a − ℓ) : a ∈ K

}
has no largest element. Recall that then ℓ is a pseudolimit of

a divergent pc-sequence in K and v(K − ℓ) ⊆ Γ.
We say that P vanishes at (K, ℓ) if for all a and v with a − ℓ ≺ v we have

ndeg≺v P+a ⩾ 1, that is ndegP+a,×b ⩾ 1 for some b ≺ v. By Lemma 2.8, if L is
an immediate strict extension of K and P (ℓ) = 0, then ndegP+a,×b ⩾ 1 whenever
ℓ − a ≼ b, hence P vanishes at (K, ℓ). Let Z(K, ℓ) be the set of all P that vanish
at (K, ℓ). Here are some frequently used basic facts:

(1) P ∈ Z(K, ℓ) ⇐⇒ P+b ∈ Z(K, ℓ− b);
(2) P ∈ Z(K, ℓ) ⇐⇒ P×m ∈ Z(K, ℓ/m);
(3) P ∈ Z(K, ℓ) =⇒ PQ ∈ Z(K, ℓ) for all Q;
(4) P ∈ K× =⇒ P /∈ Z(K, ℓ).

(In general, Z(K, ℓ)∪{0} is not closed under addition, see the remark following the
proof of Corollary 4.6 below.) Moreover, if P /∈ Z(K, ℓ), we have a, v with a−ℓ ≺ v
and ndeg≺v P+a = 0, and then also ndeg≺v P+b = 0 for any b with b − ℓ ≺ v, by
Lemma 2.12.

Lemma 4.1. Y − b /∈ Z(K, ℓ).

Proof. Take a and v such that a− ℓ ≺ v ≍ b− ℓ. Then for P := Y − b and m ≺ v
we have P+a,×m = mY + (a− b) and m ≺ a− b, so DP+a,×m

∈ res(K)×. It follows
that ndeg≺v P+a = 0. □

Lemma 4.2. Suppose P /∈ Z(K, ℓ), and let a, v be such that a − ℓ ≺ v and
ndeg≺v P+a = 0. Then P (f) ∼ P (a) for all f in all strict extensions of K with
f − a ≍ m ≺ v for some m. (Recall: m ∈ K× by convention.)

Proof. Let f in a strict extension E of K satisfy f − a ≍ m ≺ v, so f = a + mu
with u ≍ 1 in E. Now

P+a,×m = P (a) +R with R ∈ K{Y }, R(0) = 0,

so for ϕ ∈ K× we have

Pϕ
+a,×m = P (a) +Rϕ.

From ndegP+a,×m = 0 we get ϕ ∈ K× with ∂O ⊆ ϕO and Rϕ ≺ P (a). Thus

P (f) = P+a,×m(u) = Pϕ
+a,×m(u) = P (a) +Rϕ(u) in Eϕ,

with Rϕ(u) ≼ Rϕ ≺ P (a) in Eϕ, so P (f) ∼ P (a). □

Suppose L is a strict extension of K. Then the conclusion applies to f = ℓ, and so
for P and a, v as in the lemma we have P (ℓ) ∼ P (a), hence P (ℓ) ̸= 0. Thus for P ,
a, v as in the lemma we have P (f) ∼ P (a) ∼ P (ℓ) for all f ∈ K with f − ℓ ≺ v.

Lemma 4.3. Suppose that P,Q /∈ Z(K, ℓ). Then PQ /∈ Z(K, ℓ).

Proof. Take a, b, v, w such that a− ℓ ≺ v, b− ℓ ≺ w and

ndeg≺v P+a = ndeg≺wQ+b = 0.

We can assume a − ℓ ≼ b − ℓ. Take n ≍ a − ℓ and d ∈ K with d − ℓ ≺ n. Then
d− ℓ ≺ v and d− ℓ ≺ w, so ndeg≺v P+a = ndeg≺v P+d = 0, and so ndeg≺n P+d = 0.
Likewise, ndeg≺nQ+d = 0, so ndeg≺n(PQ)+d = 0. □
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Lemma 4.4. Assume K is flexible. Let P ∈ Z(K, ℓ), and let any b be given. Then
there exists an a such that a− ℓ ≺ b− ℓ and P (a) ̸= 0, P (a) ̸∼ P (b).

Proof. Take v ≍ b− ℓ and a1 ∈ K with a1− ℓ ≺ v, so ndeg≺v P+a1
⩾ 1, which gives

m ≺ v with ndegP+a1,×m ⩾ 1. By flexibility of K, the set{
P (a1 +my)∼ : |vy| < β, P (a1 +my) ̸= 0

}
is infinite, for each β ∈ Γ>, so we can take y such that a1 + my − ℓ ≺ v and
0 ̸= P (a1 +my) ̸∼ P (b). Then a := a1 +my has the desired property. □

Lemma 4.5. Assume K is flexible, L is a strict extension of K, P,Q /∈ Z(K, ℓ)
and P −Q ∈ Z(K, ℓ). Then P (ℓ) ∼ Q(ℓ).

Proof. By Lemma 4.3 we have b and v such that

ℓ− b ≺ v, ndeg≺v P+b = ndeg≺vQ+b = 0.

Replacing ℓ by ℓ− b and P,Q by P+b, Q+b we arrange b = 0, that is,

ℓ ≺ v, ndeg≺v P = ndeg≺vQ = 0,

so P (0) ̸= 0 and Q(0) ̸= 0. If a ≺ v, then by the remark preceding Lemma 4.3,

P (a) ∼ P (0) ∼ P (ℓ), Q(a) ∼ Q(0) ∼ Q(ℓ).

If P (ℓ) ̸∼ Q(ℓ), then P (0) ̸∼ Q(0), so (P − Q)(a) ∼ (P − Q)(0) for all a ≺ v,
contradicting P −Q ∈ Z(K, ℓ) by Lemma 4.4. Thus P (ℓ) ∼ Q(ℓ). □

Relation to the Newton degree in a cut. Let (aρ) be a divergent pc-sequence
in K with pseudolimit ℓ. The following generalizes [1, Lemma 11.4.11], with the
same proof except for using Lemma 4.2 instead of [1, Lemma 11.4.3].

Corollary 4.6. If P (aρ)⇝ 0, then P ∈ Z(K, ℓ).

Proof. Suppose P /∈ Z(K, ℓ). Take a and v such that a−ℓ ≺ v and ndeg≺v P+a = 0.
Now v(a − aρ) = v(a − ℓ), eventually, so by Lemma 4.2 we have P (aρ) ∼ P (a)
eventually, so v

(
P (aρ)

)
= v
(
P (a)

)
̸= ∞ eventually. □

In particular, if P (aρ) ⇝ 0, then P (Y ) + ε ∈ Z(K, ℓ) for all ε ∈ K such that
ε ≺ P (aρ) eventually. We now connect the notion of P vanishing at (K, ℓ) with
the Newton degree ndega P of P in the cut a = cK(aρ) (introduced in the last
subsection of Section 2) generalizing [1, Lemma 11.4.12]. The proof is the same,
except for using Lemma 2.12 and Corollary 2.13 above instead of [1, Lemma 11.2.7]:

Corollary 4.7. ndega P ⩾ 1 ⇐⇒ P ∈ Z(K, ℓ). More precisely,

ndega P = min
{
ndeg≺v P+a : a− ℓ ≺ v

}
.

Proof. We may assume v(ℓ − aρ) is strictly increasing with ρ. Given any index ρ,
take v ≍ ℓ−aρ, take ρ′ > ρ, and set a := aρ′ . Then a−ℓ ≺ v. Now γρ := v(ℓ−aρ) =
v(v) = v(a− aρ), and thus (using Corollary 2.13 for the last inequality):

ndeg≺v P+a ⩽ ndeg≼v P+a = ndeg⩾γρ
P+a ⩽ ndeg⩾γρ

P+aρ
.

It follows that min
{
ndeg≺v P+a : a− ℓ ≺ v

}
⩽ ndega P . For the reverse inequality,

let a and v be such that a − ℓ ≺ v. Let ρ be such that ℓ − aρ ≼ ℓ − a. Then
aρ − a ≺ v and γρ = v(ℓ− aρ) > v(v), so by Lemma 2.12:

ndeg⩾γρ
P+aρ

⩽ ndeg≺v P+aρ
= ndeg≺v P+a.

Therefore ndega P ⩽ min
{
ndeg≺v P+a : a− ℓ ≺ v

}
. □
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5. Constructing Immediate Extensions

Our goal in this section is to establish the following:

Theorem 5.1. Suppose ∂ ̸= 0, Γ ̸= {0}, Γ> has no least element, and S(∂) = {0}.
Then K has the Krull property.

Much of this section is very similar to the subsection “Constructing immediate ex-
tensions” of [1, Section 11.4], but there are some differences that make it convenient
to give all details. In the next section we show how to derive our main theorem
from Theorem 5.1 by constructions involving coarsening by S(∂).

In the rest of this section we assume about K that ∂ ̸= 0, Γ ̸= {0}, and Γ> has no
least element. We also keep the notational conventions of the previous section, and
assume that ℓ is an element of a strict extension L of K.

Lemma 5.2. Suppose Z(K, ℓ) = ∅. Then P (ℓ) ̸= 0 for all P , and K⟨ℓ⟩ is an
immediate strict extension of K. Suppose also that M is a strict extension of K
and g ∈ M satisfies v(a − g) = v(a − ℓ) for all a. Then there is a unique valued
differential field embedding K⟨ℓ⟩ →M over K that sends ℓ to g.

Proof. Clearly P (ℓ) ̸= 0 for all P . Let any nonzero element f = P (ℓ)/Q(ℓ) of the
extension K⟨ℓ⟩ of K be given. Lemma 4.3 gives a and v such that

a− ℓ ≺ v, ddeg≺v P+a = ddeg≺vQ+a = 0,

and so P (ℓ) ∼ P (a) and Q(ℓ) ∼ Q(a) by Lemma 4.2, and thus f ∼ P (a)/Q(a). It
follows that K⟨ℓ⟩ is an immediate extension of K.

It is clear that Z(K, g) = Z(K, ℓ) = ∅, so g is differentially transcendental overK
and K⟨g⟩ is an immediate extension of K, by the first part of the proof. Given
any P we take a and v such that a− ℓ ≺ v and ddeg≺v P+a = 0. Then P (a) ∼ P (g)
and P (a) ∼ P (ℓ), and thus vP (g) = vP (ℓ). Hence the unique differential field
embeddingK⟨ℓ⟩ →M overK that sends ℓ to g is also a valued field embedding. □

Lemma 5.3. Suppose K is flexible, Z(K, ℓ) ̸= ∅, and P is an element of Z(K, ℓ)
of minimal complexity. Then K has an immediate strict extension K⟨f⟩ such that
P (f) = 0 and v(a−f) = v(a−ℓ) for all a, and such that ifM is any strict extension
of K and s ∈ M satisfies P (s) = 0 and v(a− s) = v(a− ℓ) for all a, then there is
a unique valued differential field embedding K⟨f⟩ →M over K that sends f to s.

Proof. Let P have order r and take p ∈ K[Y0, . . . , Yr] such that

P = p(Y, Y ′, . . . , Y (r)).

Then p is irreducible by P having minimal complexity in Z(K, ℓ) and Lemma 4.3.
Thus we have an integral domain

K[y0, . . . , yr] = K[Y0, . . . , Yr]/(p), yi = Yi + (p) for i = 0, . . . , r,

with fraction field K(y0, . . . , yr) = K(y0, . . . , yr−1)[yr] where y0, . . . , yr−1 are alge-
braically independent over K. Let s ∈ K(y0, . . . , yr)

×, so

s = g(y0, . . . , yr)/h(y0, . . . , yr−1)

where g ∈ K[Y0, . . . , Yr ]̸
=, h ∈ K[Y0, . . . , Yr−1 ]̸

=, and g(Y, Y ′, . . . , Y (r)) /∈ Z(K, ℓ).
(This nonmembership in Z(K, ℓ) can be arranged by taking g of lower degree in Yr
than p.) The comment following the proof of Lemma 4.2 gives an a such that

g(ℓ, ℓ′, . . . , ℓ(r)) ∼ g(a, a′, . . . , a(r)), h(ℓ, . . . , ℓ(r−1)) ∼ h(a, . . . , a(r−1)),
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so vg(ℓ, ℓ′, . . . , ℓ(r)), vh(ℓ, . . . , ℓ(r−1)) ∈ Γ. We claim that

vg(ℓ, ℓ′, . . . , ℓ(r))− vh(ℓ, . . . , ℓ(r−1))

depends only on s and not on the choice of g and h. To see this, let g1 ∈
K[Y0, . . . , Yr], h1 ∈ K[Y0, . . . , Yr−1] be such that g1(Y, . . . , Y

(r)) /∈ Z(K, ℓ), h1 ̸= 0,
and s = g1(y0, . . . , yr)/h1(y0, . . . , yr−1). Then

gh1 − g1h ∈ pK[Y0, . . . , Yr], (gh1)(Y, . . . , Y
(r)), (g1h)(Y, . . . , Y

(r)) /∈ Z(K, ℓ),

which yields the claim by Lemma 4.5. We now set, for g, h as above,

vs := vg(ℓ, ℓ′, . . . , ℓ(r))− vh(ℓ, . . . , ℓ(r−1)),

or more suggestively,

vs = v
(
G(ℓ)/H(ℓ)

)
∈ Γ, with G = g(Y, . . . , Y (r)), H = h(Y, . . . , Y (r−1)).

We thus have extended v : K× → Γ to a map

v : K(y0, . . . , yr)
× → Γ.

Let s ∈ K(y0, . . . , yr)
× and take g ∈ K[Y0, . . . , Yr], h ∈ K[Y0, . . . , Yr−1] with

g(Y, Y ′, . . . , Y (r)) /∈ Z(K, ℓ) and h ̸= 0 such that s = g(y0, . . . , yr)/h(y0, . . . , yr−1).
Let s1, s2 ∈ K(y0, . . . , yr)

×. Then v(s1s2) = vs1 + vs2 follows easily by means of
Lemma 4.3. Next, assume also s1 + s2 ̸= 0; to prove that v : K(y0, . . . , yr)

× → Γ
is a valuation it remains to show that then v(s1 + s2) ⩾ min(vs1, vs2). For i = 1, 2
we have si = gi(y0, . . . , yr)/hi(y0, . . . , yr−1) where

0 ̸= gi ∈ K[Y0, . . . , Yr], 0 ̸= hi ∈ K[Y0, . . . , Yr−1],

and gi has lower degree in Yr than p. Then for s := s1 + s2 we have

s = g(y0, . . . , yr)/h(y0, . . . , yr−1), g := g1h2 + g2h1, h = h1h2,

and so g ̸= 0 (because s ̸= 0) and g has also lower degree in Yr than p. In
particular, g(Y, . . . , Y (r)) /∈ Z(K, ℓ), hence vs = v

(
g(ℓ, . . . , ℓ(r))/h(ℓ, . . . , ℓ(r−1))

)
,

and so by working in the valued field K⟨ℓ⟩ we see that vs ⩾ min(vs1, vs2), as
promised. Thus we now have K(y0, . . . , yr) as a valued field extension of K. To
show that K(y0, . . . , yr) has the same residue field as K, consider an element s =
g(y0, . . . , yr) /∈ K with nonzero g ∈ K[Y0, . . . , Yr] of lower degree in Yr than p; it
suffices to show that s ∼ b for some b. Set G := g(Y, . . . , Y (r)) and take a and v
with a − ℓ ≺ v and ndeg≺vG+a = 0. Then G(ℓ) ∼ G(a) by Lemma 4.2, so for
b := G(a) we have v(s− b) = v

(
g(y0, . . . , yr)− b

)
= v(G(ℓ)− b) > vb, that is, s ∼ b.

This finishes the proof that the valued field F := K(y0, . . . , yr) is an immediate
extension of K.

Next we equip F with the derivation extending the derivation of K such that
y′i = yi+1 for 0 ⩽ i < r. Setting f := y0 we have f (i) = yi for i = 0, . . . , r,
F = K⟨f⟩ = K(y0, . . . , yr), and P (f) = 0. Note that v(G(f)) = v(G(ℓ)) for
every nonzero G ∈ K[Y, . . . , Y (r)] of lower degree in Y (r) than P , in particular,
v(f − a) = v(ℓ− a) for all a. We now show that the derivation of F is continuous
and that F is a strict extension of K.

Let ϕ ∈ K× and vϕ ∈ Γ(∂). To get ∂OF ⊆ ϕOF , we set

S :=
{
H(f) : H ∈ K

[
Y, . . . , Y (r−1)

]
, H(f) ≼ 1

}
.
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(If r = 0, then we have K
[
Y, . . . , Y (r−1)

]
= K, so S = O.) By Lemma 1.5 and by

[1, Lemma 6.2.3] applied to K
(
f, . . . , f (r−1)

)
in the role of E and with F = L it is

enough to show that ∂S ⊆ ϕOF and ∂(S ∩ OF ) ⊆ ϕOF . We prove the first of these
inclusions. The second follows in the same way.

Let H ∈ K
[
Y, . . . , Y (r−1)

]
\ K with H(f) ≼ 1; we have to show H(f)′ ≼ ϕ. We

can assume H(f)′ ̸= 0. Take H1(Y ), H2(Y ) ∈ K
[
Y, . . . , Y (r−1)

]
such that

H ′ = H(Y )′ = H1(Y ) +H2(Y )Y (r) in K{Y }.

Then

H ′(f) = H(f)′ = H1(f) +H2(f)f
(r),

and for all a,

H ′(a) = H(a)′ = H1(a) +H2(a)a
(r).

We now distinguish two cases:

Case 1: P has degree > 1 in Y (r), or H2 = 0. Then H ′ has lower degree in Y (r)

than P , so we can take a, v with a− ℓ ≺ v, ndeg≺vH+a = 0, and ndeg≺vH
′
+a = 0,

so H(a) ∼ H(f) ≼ 1 and H ′(a) ∼ H ′(f). Hence H(f)′ ∼ H(a)′ ≼ ϕ.

Case 2: P has degree 1 in Y (r) and H2 ̸= 0. Then

H ′ =
G1P +G2

G
, G1, G2, G ∈ K[Y, . . . , Y (r−1)], G1, G ̸= 0,

so 0 ̸= H(f)′ = G2(f)/G(f), so G2 ̸= 0. By Lemma 4.3 there is a v such that for
some a we have a− ℓ ≺ v and

ndeg≺vH+a = ndeg≺v(G1)+a = ndeg≺v(G2)+a = ndeg≺vG+a = 0.

Fix such v, and let A ⊆ K be the set of all a satisfying the above. Then for a ∈ A
we have G(f) ∼ G(a) and H(f) ∼ H(a), so H(a)′ ≼ ϕ. Also G1(f) ∼ G1(a) and

G(f)H(f)′ = G2(f) ∼ G2(a),

G(a)H(a)′ = G1(a)P (a) +G2(a).

We now make crucial use of Lemma 4.4 to arrange that

v
(
G1(a)P (a) +G2(a)

)
= min

(
v(G1(a)P (a)), v(G2(a)

)
by changing a if necessary. Hence G2(a) ≼ G1(a)P (a) +G2(a) = G(a)H(a)′, so

G(f)H(f)′ ∼ G2(a) ≼ G(a)H(a)′ ∼ G(f)H(a)′ ≼ G(f)ϕ

and thus H(f)′ ≼ ϕ. This concludes the proof that F is a strict extension of K.

Suppose s in a strict extensionM of K satisfies P (s) = 0 and v(a−s) = v(a−ℓ) for
all a. By Lemma 4.2 and the remarks following its proof we have vQ(s) = vQ(f)
for all Q /∈ Z(K, ℓ), in particular, Q(s) ̸= 0 for all Q of lower complexity than P .
Thus we have a differential field embedding K⟨f⟩ →M over K sending f to s, and
this is also a valued field embedding. □
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Proof of Theorem 5.1. Assume S(∂) = {0}; we show that K has an immediate
strict extension that is maximal as a valued field. We can assume that K itself is
not yet maximal, and it is enough to show that then K has a proper immediate
strict extension, since by Lemma 1.10 the property S(∂) = {0} is preserved by
immediate strict extensions. As K is not maximal, we have a divergent pc-sequence
in K, which pseudoconverges in an elementary extension of K, and thus has a
pseudolimit ℓ in a strict extension of K. If Z(K, ℓ) = ∅, then Lemma 5.2 provides
a proper immediate strict extension of K, and if Z(K, ℓ) ̸= ∅, then Lemma 5.3
provides such an extension. This concludes the proof of Theorem 5.1. □

6. Coarsening and S(∂)

In this section we finish the proof of the main theorem stated in the introduction.

Making S(∂) vanish. In this subsection we set ∆ := S(∂) and assume ∆ ̸= {0}.
Then Γ(∂) has no largest element, and so v(∂O) > Γ(∂) by Lemma 1.8. The next

lemma says much more. Let K∆ be the ∆-coarsening, with valuation ring Ȯ.

Lemma 6.1. v(∂Ȯ) > Γ(∂).

Proof. Let a ∈ Ȯ. If va ⩾ 0, then va′ > Γ(∂) by the above. If va < 0, then va ∈ ∆
and va′ − 2va = v((1/a)′) > Γ(∂), so va′ > Γ(∂) + 2va = Γ(∂). □

It follows in particular that if ∂ is small, then the derivation of res(K∆) is trivial.

Let π : Γ → Γ̇ := Γ/∆ be the canonical map, so πΓ(∂) ⊆ Γ̇. We also have Γ̇(∂) :=

Γ̇K∆(∂) ⊆ Γ̇, with πΓ(∂) ⊆ Γ̇(∂) by Lemma 1.18.

Lemma 6.2. SK∆(∂) = {0} ⊆ Γ̇.

Proof. If πΓ(∂) = Γ̇(∂), then clearly SK∆(∂) = {0}. Suppose that πΓ(∂) ̸= Γ̇(∂).

(We don’t know if this can happen.) Then Lemma 1.18 tells us that Γ̇(∂) has a
largest element, and so SK∆(∂) = {0} by Lemma 1.15. □

Lifting strictness. Let K have small derivation and let L be an immediate ex-
tension of K with small derivation. Let ∆ be a convex subgroup of Γ, giving rise
to the extension L∆ of K∆, both with value group Γ̇ = Γ/∆. Note that if ϕ ∈ K×

and vϕ ∈ ΓK(∂), then ϕ−1
∂ is small with respect to v, and thus small with respect

to v̇ by Lemma 1.17, so v̇ϕ ∈ Γ̇K∆(∂). We show that under various assumptions
strictness of L∆ ⊇ K∆ yields strictness of L ⊇ K:

Lemma 6.3. Suppose L∆ strictly extends K∆ and res(L∆) = res(K∆). Then L
strictly extends K.

Proof. Let ϕ ∈ K×, vϕ ∈ Γ(∂) and 0 ̸= f ∈ OL. Then f = g(1 + ε) with g ∈ K×

and v̇(ε) > 0, so vf = vg and f ′ = g′(1 + ε) + gε′. Now v(g′) > v(ϕ). Since L∆

strictly extends K∆ we have v̇(ε′) > v̇(ϕ), so v(ε′) > v(ϕ). Hence v(f ′) > v(ϕ). □

Lemma 6.4. Suppose L∆ strictly extends K∆ and ∆ = S(∂) ̸= {0}. Then L
strictly extends K.

Proof. Let 0 ̸= f ∈ OL. Then f = gu with g ∈ K and v(u) = 0, so g ∈ O and

f ′ = g′u+ gu′. We have v(g′u) = v(g′) > Γ(∂). By Lemma 6.1 we have v̇(∂Ȯ) > γ̇

for every γ ∈ Γ(∂). Since L∆ strictly extends K∆, this gives v̇(∂ȮL) > γ̇ for every

γ ∈ Γ(∂), hence v(∂ȮL) > Γ(∂), and so v(u′) > Γ(∂). This gives v(f ′) > Γ(∂). □
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Building strict extensions by extending the residue field. Suppose the
derivation of K is small. Let f ∈ O, and let a be an element in a field exten-
sion of K, transcendental over K. We extend the derivation of K to the derivation
on K(a) such that a′ = f . We equip K(a) with the gaussian extension of the
valuation of K [1, Lemma 3.1.31]: the unique valuation on K(a) extending the
valuation of K such that a ≼ 1 and res a is transcendental over res(K). So for
b = P (a)/Q(a) ∈ K(a) where 0 ̸= P,Q ∈ K[Y ], we have vb = vP − vQ; in
particular, ΓK(a) = Γ and res

(
K(a)

)
= res(K)(res a).

Lemma 6.5. The derivation of K⟨a⟩ is small. If ∂O ⊆ O, then ∂OK(a) ⊆ OK(a).

Proof. Given P = PdY
d + · · · + P0 ∈ K[Y ] (where P0, . . . , Pd ∈ K), we have

P (a)′ = P ′
da

d + · · · + P ′
0 + f · (∂P/∂Y )(a), hence P (a) ≺ 1 ⇒ P (a)′ ≺ 1, and

P (a) ≼ 1 ⇒ P (a)′ ≼ 1. Let b ∈ OK⟨a⟩. Then b = P (a)/Q(a) where P,Q ∈ K[Y ]
and P (a) ≺ 1 ≍ Q(a), so P (a)′ ≺ 1 and Q(a)′ ≼ 1, hence

b′ =
P (a)′Q(a)− P (a)Q(a)′

Q(a)2
≺ 1.

Thus ∂OK⟨a⟩ ⊆ OK⟨a⟩. Similarly one shows that if ∂O ⊆ O, then ∂OK(a) ⊆ OK(a). □

Lemma 6.6. Suppose vf > Γ(∂). Then L := K(a) is a strict extension of K.

Proof. Let ϕ ∈ K× and ∂O ⊆ ϕO. Then the derivation of Kϕ is small and Lϕ =
Kϕ(a) where ϕ−1

∂(a) = ϕ−1f ≺ 1. Hence by the preceding lemma applied to Kϕ,
ϕ−1f instead of K, f , we have ϕ−1

∂OL ⊆ OL and hence ∂OL ⊆ ϕOL. In the same
way we show that if ∂O ⊆ ϕO, then ∂OL ⊆ ϕOL. □

This leads to the following variant of [1, Corollary 6.3.3]:

Corollary 6.7. Suppose ∂O ⊆ O and let E be a field extension of res(K). Then
there is a strict extension L of K such that ΓL = Γ, the derivation of res(L) is
trivial, and res(L) is, as a field, isomorphic to E over res(K).

Proof. We can reduce to the case E = res(K)(y). If y is transcendental over res(K),
then the corollary holds with L = K(a) as defined above with f = 0, by Lemma 6.6.
Next, suppose y is algebraic over res(K), with minimum polynomial F (Y ) ∈
res(K)[Y ] over res(K). Take monic F ∈ O[Y ] with image F in res(K)[Y ]. Then F
is irreducible in K[Y ]. Take a field extension L = K(a) of K where a is algebraic
over K with minimum polynomial F over K. Then there is a unique valuation
vL : L

× → Γ that extends the valuation of K; see [1, Lemma 3.1.35]. Then L with
this valuation and the unique derivation extending the derivation of K has the
desired property, by Lemma 1.4 and the remark following its proof. □

For future reference we also state [1, Corollary 6.3.3] itself:

Lemma 6.8. Let E be a differential field extension of res(K). Then there is an
extension L of K with small derivation having the same value group as K and
differential residue field isomorphic to E over res(K).

Further generalities about coarsening. In this subsection we suspend our con-
vention that K denotes a valued differential field, and just assume it is a valued
field, not necessarily of characteristic 0. Notations not involving ∂ keep their usual
meaning; in particular, the valuation of K is v : K× → Γ = v(K×). Let ∆ be a
convex subgroup of Γ. Then the coarsening K∆ of K by ∆ is the valued field with



22 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVEN

the same underlying field as K, but with valuation v̇ = v∆ : K× → Γ̇ = Γ/∆. The
residue field res(K∆) of K∆ is turned into a valued field with value group ∆ and
residue field res(K) as described in the subsection on coarsening of Section 1. The
following well-known fact is [1, Corollary 3.4.6], and is used several times below:

Lemma 6.9. The valued field K is spherically complete iff the valued fields K∆

and res(K∆) are spherically complete.

Let F be a valued field extension of K∆ with value group vF (F
×) = Γ/∆. Let

also res(F ) be given a valuation w : res(F )× → ∆ that extends the valuation
v : res(K∆)

× → ∆. Then we can extend v : K× → Γ to a map v : F× → Γ as
follows. For f ∈ F×, take g ∈ K× and u ∈ F× such that f = gu and vF (u) = 0;
then resu ∈ res(F )×, so w(resu) ∈ ∆; it is easy to check that v(g) + w(resu) ∈ Γ
depends only on f and not on the choice of g, u; now put v(f) := v(g) + w(resu).

Lemma 6.10. v : F× → Γ is a valuation on F with ∆-coarsening v∆ = vF .

Proof. Clearly v : F× → Γ is a group morphism with vF (f) = v(f) + ∆ ∈ Γ/∆ for
f ∈ F×. Also, if f ∈ F× and vF (f) > 0, then vf > 0 and v(1 + f) = 0. Next,
for f1, f2 ∈ F× with f1 + f2 ̸= 0 one shows that v(f1 + f2) ⩾ min

{
vf1, vf2

}
by

distinguishing the cases vF (f1) = vF (f2) and vF (f1) < vF (f2). □

Let L be the valued field extension of K that has the same underlying field as F
and has valuation v as above. Then the lemma above says that L∆ = F , and
the valuation w on res(F ) equals the valuation v : res(L∆)

× → ∆ induced by
v : L× → Γ and ∆. If res(L∆) is an immediate extension of res(K∆), then L is
an immediate extension of K. See the following diagram, where arrows like 99K
indicate partial maps; for example, the residue map of K∆ is defined only on Ȯ.

K∆
� � //

��

F

��

= L∆

res(K∆)

v
$$

� � // res(F )

w
||

∆

In the situation above, assume K is of characteristic zero and is equipped with a
small derivation (with respect to v), and F is equipped with a small derivation (with
respect to vF ) that makes it a valued differential field extension of K∆. Assume
also that the induced derivation on res(F ) is small with respect to w. Then the
derivation of F is small as a derivation of L (with respect to the valuation v of L).

Putting it all together. First one more special case of the main theorem:

Proposition 6.11. Suppose ∂ is small and the derivation of res(K) is nontrivial.
Then K has the Krull property.

In view of Lemma 1.3, this is just [1, Corollary 6.9.5]. We have not yet completely
settled the case S(∂) = {0} of the main theorem, but we can now take care of this:

Proposition 6.12. Suppose S(∂) = {0} and Γ> has a least element. Then K has
the Krull property.
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Proof. Let 1 denote the least element of Γ>. We first note that Γ(∂) has a largest
element: otherwise, Γ(∂) would be closed under adding 1, and so 1 ∈ S(∂), a
contradiction. Thus by compositional conjugation we can arrange that Γ(∂) = Γ⩽,
so the derivation of K is small. We have the convex subgroup ∆ := Z1 of Γ,
so the valuation of the differential residue field res(K∆) of the coarsening K∆ is
discrete. The completion res(K∆)

c of the valued field res(K∆) is a spherically
complete immediate extension of res(K∆). Since the derivation of K is small, so
is that of K∆ and hence that of res(K∆). (See the remarks after Lemma 1.17.)
The derivation of res(K∆) is nontrivial: with ϕ ∈ K satisfying vϕ = 1 we have
∂O ̸⊆ ϕO, since Γ(∂) = Γ⩽, so we can take g ∈ O with v(g′) ⩽ vϕ = 1, and then
v∆(g) ⩾ 0 = v∆(g

′). This derivation extends uniquely to a continuous derivation
on res(K∆)

c, and res(K∆)
c equipped with this derivation is a strict extension of

the valued differential field res(K∆).

K∆
� � //

��

F

��

= L∆

res(K∆)
� � // res(F ) ∼= res(K∆)

c

By applying Lemma 6.8 to the differential field extension res(K∆)
c ⊇ res(K∆) we

obtain an extension F ofK∆ with small derivation, the same value group vF (F
×) =

Γ/∆ as K∆, and with differential residue field res(F ) isomorphic to res(K∆)
c

over res(K∆). Extending F further using Proposition 6.11, if necessary, we ar-
range also that F is spherically complete.

Next we equip res(F ) with a valuation w : res(F )× → ∆ that makes res(F )
isomorphic as a valued differential field to res(K∆)

c over res(K∆). This places us in
the situation of the previous subsection, and so we obtain an extension L of K with
the same value group Γ such that L∆ = F (so L and F have the same underlying
differential field), the valuation induced by L and ∆ on res(L∆) = res(F ) equals w,
and the derivation of L is small. It follows easily that L is an immediate extension
ofK. Since F = L∆ and res(L∆) are spherically complete, L is spherically complete
by Lemma 6.9. Since the derivation of L is small and ΓK(∂) has largest element 0,
the extension L of K is strict, by Lemma 1.5. □

We can now finish the proof of our main theorem. We are given K and have to show
thatK has a spherically complete immediate strict extension. We already did this in
several cases, and by Theorems 5.1 and Proposition 6.12 it only remains to consider
the case ∆ := S(∂) ̸= {0}. We assume this below and also arrange by compositional

conjugation that the derivation is small. By Lemma 6.1 we have ∂Ȯ ⊆ Ȯ, and so
the derivation of res(K∆) is trivial. Take a spherically complete immediate valued
field extension E of the valued field res(K∆). By Corollary 6.7 applied to K∆ we
obtain a strict extension F of K∆ with value group vF (F

×) = Γ/∆, the derivation
of res(F ) is trivial, and res(F ), as a field, is isomorphic to E over res(K∆). We
equip res(F ) with a valuation w : res(F )× → ∆ that makes res(F ) isomorphic as
a valued field to E over res(K∆). We are now in the situation of the previous
subsection, and so we obtain an extension L of K with the same value group Γ
as K such that L∆ = F (so L and F have the same underlying differential field),
the valuation induced by L and ∆ on res(L∆) = res(F ) equals w, and the derivation
of L is small. Now res(L∆) is an immediate extension of res(K∆), hence L is an
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immediate extension of K, and so L strictly extends K by Lemma 6.4.

K∆
� � strict //

��

L∆
� � strict //

��

M∆

��
res(K∆)

� � // res(L∆) res(M∆)

Lemma 6.2 yields SK∆(∂) = {0}, and so SL∆(∂) = {0} by Lemma 1.10. Then
Theorem 5.1 and Proposition 6.12 yield a spherically complete immediate strict
extension G of L∆. This places us again in the situation of the previous subsection,
with L and G in the role of K and F . Hence we obtain an extension M of L
with the same value group Γ as L such that M∆ = G (so M and G have the same
underlying differential field), the valuation induced by M and ∆ on res(M∆) =
res(G) = res(F ) equals w, and the derivation of L is small. Therefore M is an
immediate extension of L and thus of K. Since M∆ and res(M∆) are spherically
complete, M is spherically complete by Lemma 6.9. The extension M of L is strict
by Lemma 6.3. Thus M is a spherically complete immediate strict extension of K
as required. This concludes the proof of the main theorem. □

7. Uniqueness

Let us say that K has the uniqueness property if it has up to isomorphism over K
a unique spherically complete immediate strict extension. If Γ = {0} and more
generally, if K is spherically complete, then K clearly has the uniqueness property.
If ∂ = 0, then the derivation of any immediate strict extension of K is also trivial,
so K has the uniqueness property. The next result describes a more interesting
situation where K has the uniqueness property.

Proposition 7.1. Suppose Γ = Z. Then K has the uniqueness property.

Proof. Let K̂ be the completion of the discretely valued field K. Then the unique

extension of ∂ to a continuous function K̂ → K̂ is a derivation on K̂ that makes K̂
an immediate strict extension of K. If L is any spherically complete immediate

extension of K, then we have a unique valued field embedding K̂ → L over K, and
this embedding is clearly an isomorphism of valued differential fields. □

Proposition 7.2. Suppose ∆ is a convex subgroup of Γ and res(K∆) is spherically
complete. If K∆ has the uniqueness property, then so does K.

Proof. Let L and M be spherically complete immediate strict extensions of K.
Then res(L∆) and res(M∆) are immediate valued field extensions of res(K∆) and
thus equal to res(K∆). Hence L∆ and M∆ are spherically complete immediate
extensions of K∆, and L∆ and M∆ are strict extensions of K∆ by Lemma 1.19.

Next, let i : L∆ → M∆ be an isomorphism over K∆; it is enough to show that
then i : L → M is an isomorphism over K. For a ∈ L× we have a = b(1 + ε) with
b ∈ K× and ε ∈ ȮL, so i(a) = b(1+ i(ε)) and i(ε) ∈ ȮM , hence va = vb = vi(a). □

One could try to use this last result inductively, but at this stage we do not even
know if uniqueness holds when Γ = Z2, lexicographically ordered.
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The role of linear surjectivity. In the next section we give an example of an
H-field K that doesn’t have the uniqueness property. This has to do with the fact
that certain linear differential equations over this K have no solution in K. Here
we focus on the opposite situation: as in [1, Section 5.1] a differential field E of
characteristic zero is said to be linearly surjective if for all a1, . . . , an, b ∈ E the
linear differential equation

y(n) + a1y
(n−1) + · · ·+ any = b

has a solution in E. For valued differential fields this property is related to
differential-henselianity: we say that K is differential-henselian (for short: d-hen-
selian) if K has small derivation and every differential polynomial P ∈ O{Y } =
O[Y, Y ′, Y ′′, . . . ] whose reduction P ∈ res(K){Y } has degree 1 has a zero in O;
cf. [1, Chapter 7]. If K is d-henselian, then its differential residue field res(K) is
clearly linearly surjective. Here is a differential analogue of Hensel’s Lemma:

If K has small derivation, res(K) is linearly surjective, and K is spherically
complete, then K is d-henselian. This is [1, Corollary 7.0.2]; the case where K is
monotone goes back to Scanlon [7].

Conjecture. If K has small derivation and res(K) is linearly surjective, then K has
the uniqueness property.

For monotone K this conjecture has been established: [1, Theorem 7.4]. It has also
been proved for K whose value group has finite archimedean rank and some related
cases in [3]. Recently, Nigel Pynn-Coates has proved the conjecture in the case of
most interest to us, namely for asymptotic K. This is part of work in progress.

8. Nonuniqueness

We begin with a general remark. Let A ∈ K[∂] and suppose the equation A(y) = 1
has no solution in any immediate strict extension of K. Assume in addition that
a ∈ K is such that the equation A(y) = a has a solution y0 in an immediate strict
extension K0 of K and the equation A(y) = a+1 has a solution y1 in an immediate
strict extension K1 of K. Extending K0 and K1 we arrange that K0 and K1 are
spherically complete, and we then observe that K0 and K1 cannot be isomorphic
over K. Thus K does not have the uniqueness property.

Below we indicate a real closed H-field K where the above assumptions hold for
a certain A ∈ K[∂] of order 1, and so this K does not have the uniqueness property.

The first two subsections contains generalities about solving linear differential
equations of order 1 in immediate extensions of d-valued fields. In the last subsec-
tion we assume familiarity with [1, Sections 5.1, 11.5, 11.6, 13.9, Appendix A].

We recall from [1, Section 9.1] that an asymptotic field K is said to be d-valued
(short for: “differential-valued”) if O = C + O. (So each H-field is d-valued.) We
also recall that if K is an asymptotic field, then for f ∈ K× with f ̸≍ 1, the
valuation v(f†) of the logarithmic derivative of f only depends on vf , so we have
a function ψ : Γ ̸= := Γ \ {0} → Γ with ψ(vf) = v(f†) for such f . If we want to
stress the dependence on K we write ψK instead of ψ, and for γ ∈ Γ ̸= we also set
γ′ := γ+ψ(γ). The pair (Γ, ψ) is an asymptotic couple, that is (see [1, Section 6.5]):
ψ(α + β) ⩾ min

{
ψ(α), ψ(β)

}
for all α, β ∈ Γ ̸= with α + β ̸= 0; ψ(kγ) = ψ(γ) for

γ ∈ Γ ̸= and 0 ̸= k ∈ Z; and

Ψ :=
{
ψ(γ) : γ ∈ Γ ̸=} < (Γ>)′ :=

{
γ′ : γ ∈ Γ>

}
.
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Slowly varying functions. In this subsection K is an asymptotic field, Γ ̸= {0},
and A ∈ K[∂] is of order 1. Proposition 8.4 below is a variant of [1, Proposi-
tion 9.7.1]. Recall from [1, Section 9.7] that for an ordered abelian group G and
U ⊆ G a function η : U → G is said to be slowly varying if η(α)− η(β) = o(α− β)
for all α ̸= β in U ; note that then γ 7→ γ+η(γ) : U → G is strictly increasing. Note
also that ψ : Γ ̸= → Γ is slowly varying [1, Lemma 6.5.4(ii)].

Lemma 8.1. Let a ∈ K× and s = a†. Then there is a slowly varying function
η : Γ \ {va} → Γ such that v(y† − s) = η(vy) for all y ∈ K× with vy ̸= va.

Proof. We can take η(γ) := ψ(γ − va) for γ ∈ Γ \ {va}. □

Lemma 8.2. Assume K is d-valued. Let s ∈ K be such that v(y† − s) < (Γ>)′ for
all y ∈ K×. Then there is a slowly varying function η : Γ → Γ such that

η(vy) = v(y† − s) for all y ∈ K×.

Proof. Let y range over K×. Take a nonzero ϕ in an elementary extension L

of K such that ϕ† − s ≼ y† − s for all y; thus δ := v(ϕ† − s) <
(
Γ>
L

)′
. From

v(y† − s) ⩽ v(ϕ† − s) we get y† − ϕ† ̸∼ s− ϕ†, and thus

v(y†−s) = v
(
(y†−ϕ†)−(s−ϕ†)

)
= min

{
v
(
(y/ϕ)†

)
, δ
}

= min
{
ψL(vy−vϕ), δ

}
,

where in case y ≍ ϕ we use that L is d-valued to get the last equality. Thus
v(y†− s) = η(vy), where η : Γ → Γ is defined by η(γ) := min

{
ψL(γ−vϕ), δ

}
. Next

we show that η is slowly varying. The function γ 7→ ψL(γ − vϕ) : ΓL \ {vϕ} → ΓL

is slowly varying, hence so is the restriction of η to Γ \ {vϕ}. Moreover, if vϕ ∈ Γ
and γ ∈ Γ \ {vϕ}, then η(vϕ) = δ, so

η(γ)− η(vϕ) = min
{
ψL(γ − vϕ), δ

}
− δ

= min
{
ψL(γ − vϕ)− δ, 0

}
= o(γ − vϕ)

by [1, Lemma 9.2.10(iv)] applied to the asymptotic couple (ΓL, ψL − δ), which has
small derivation. □

Lemma 8.3. Suppose K is d-valued and
{
f ∈ K : vf ∈ (Γ>)′

}
⊆ (K×)†. Then

there is a slowly varying function η : Γ \ v(kerA) → Γ such that

v
(
A(y)

)
= vy + η(vy) for all y ∈ K with vy /∈ v(kerA).

Proof. We have A = a0 + a1∂ with a0, a1 ∈ K, a1 ̸= 0; put s := −a0/a1. For
y ∈ K× we get A(y) = a1y(y

† − s), hence v
(
A(y)

)
= va1 + vy + v(y† − s), and the

claim follows from Lemmas 8.1 and 8.2. □

We refer to [1, Section 11.1] for the definition of the subset E e(A) of Γ, for un-
grounded K; since A has order 1, this set E e(A) has at most one element. Recall
also that K is said to be of H-type or H-asymptotic if ψ restricts to a decreasing
function Γ> → Γ, and to have asymptotic integration if (Γ ̸=)′ = Γ.

Proposition 8.4. Let K be d-valued of H-type with asymptotic integration. Then
there is a slowly varying function η : Γ \ E e(A) → Γ such that

v
(
A(y)

)
= vy + η(vy) for all y ∈ K× with vy /∈ E e(A).
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Proof. By [1, Lemma 10.4.3] we have an immediate d-valued extension L of K such
that

{
s ∈ L : vs ∈ (Γ>

L )
′} ⊆ (L×)†. Applying Lemma 8.3 to L in place of K yields

a slowly varying function η : Γ \ v(kerLA) → Γ such that

v
(
A(y)

)
= vy + η(vy) for all y ∈ K with vy /∈ v(kerLA).

It only remains to note that v
(
(kerLA) \ {0}

)
⊆ E e

L(A) = E e(A). □

Application to solving first-order linear differential equations. In this sub-
section K is d-valued, A ∈ K[∂] has order 1, and g ∈ K is such that g /∈ A(K), so
S := v

(
A(K)− g

)
⊆ Γ.

Lemma 8.5. Suppose K is henselian of H-type with asymptotic integration. Also
assume E e(A) = ∅ and S does not have a largest element. Let L = K(f) be a field
extension of K with f transcendental over K, equipped with the unique derivation
extending that of K such that A(f) = g. Then there is a valuation of L that makes L
an immediate asymptotic extension of K.

Proof. Take a well-indexed sequence (yρ) in K such that
(
v
(
A(yρ)− g

))
is strictly

increasing and cofinal in S. Proposition 8.4 yields a strictly increasing function
i : Γ → Γ with v

(
A(y)

)
= i(vy) for all y ∈ K×. Hence for ρ < σ,

v
(
A(yρ)− g

)
= v

(
(A(yρ)− g)− (A(yσ)− g)

)
= v

(
A(yρ − yσ)

)
= i

(
v(yρ − yσ)

)
,

so i
(
v(yρ − yσ)

)
< i
(
v(yσ − yτ )

)
and thus v(yρ − yσ) < v(yσ − yτ ) for ρ < σ < τ .

Hence (yρ) is a pc-sequence. Suppose towards a contradiction that yρ ⇝ y ∈ K.
Then v(yρ − y) is eventually strictly increasing, so v

(
A(yρ)−A(y)

)
= i
(
v(yρ − y)

)
is eventually strictly increasing, and thus eventually v

(
A(yρ) − g

)
⩽ v

(
A(y) − g

)
,

contradicting the assumption that S has no largest element. Hence (yρ) does not
have a pseudolimit in K. It remains to use [1, Proposition 9.7.6]. □

Here is a situation where the hypothesis about S in Lemma 8.5 is satisfied:

Lemma 8.6. If S ⊆ v
(
A(K)

)
, then S does not have a largest element.

Proof. Let y ∈ K be given; we need to find ynew ∈ K with A(ynew)− g ≺ A(y)− g.
Since v

(
A(y)− g

)
∈ v
(
A(K)

)
∩Γ, we can pick h ∈ K× such that A(h) ∼ A(y)− g.

Set ynew := y−h. Then A(ynew)−g =
(
A(y)−g

)
−A(h) ≺ A(y)−g as required. □

Some differential-algebraic lemmas. In this subsection E is a differential field
of characteristic zero and F is a differential field extension of E.

Lemma 8.7. Let F be algebraic over E, and f ′ + af = 1 with a ∈ E and f ∈ F .
Then g′ + ag = 1 for some g ∈ E.

Proof. We can assume that n := [F : E] < ∞. The trace map trF |E : F → E is
E-linear and satisfies trF |E(y

′) = trF |E(y)
′ for all y ∈ F and trF |E(1) = n. Thus

g := 1
n trF |E(f) ∈ E satisfies g′ + ag = 1. □

Lemma 8.8. Let F = E⟨y⟩ where y is differentially transcendental over E, and
let a ∈ E(y). Then there is no f ∈ F \ E with f ′ + af = 1.

Proof. This is a special case of [1, Lemma 4.1.5]. □

Lemma 8.9. Let Y be an indeterminate over a field G and let R ∈ G(Y ) be such
that R(Y ) = R(Y + g) for infinitely many g ∈ G. Then R ∈ G.



28 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVEN

Proof. We have R = P/Q with P,Q ∈ G[Y ]. Let Z be an indeterminate over G(Y ).
Then R(Y ) = R(Y + g) for infinitely many g ∈ G yields

P (Y )Q(Y + Z) = Q(Y )P (Y + Z).

Substituting g − Y for Z yields P (Y )Q(g) = Q(Y )P (g) for all g ∈ G. Choosing g
such that Q(g) ̸= 0, we obtain R(Y ) = P (Y )/Q(Y ) = P (g)/Q(g) ∈ G. □

Corollary 8.10. Let F = E(y) with y′ ∈ E \ ∂E, and let a ∈ E \ (E×)†. Then
there is no f ∈ F \ E with f ′ + af = 1.

Proof. By [1, Lemma 4.6.10], y is transcendental over E, and by [1, Corollary 4.6.13]
there is no g ∈ F× with g′+ag = 0. For each c ∈ CE we have an automorphism σc
of the differential field E(y) which is the identity on E and sends y to y+c. Suppose

f ′ + af = 1, f ∈ F . Then
(
f − σc(f)

)′
+ a
(
f − σc(f)

)
= 0 and hence σc(f) = f ,

for each c ∈ CE . Hence f ∈ F by the preceding lemma. □

Non-isomorphic spherically complete extensions. We now use the preceding
subsections to construct an H-field K with two spherically complete immediate
H-field extensions that are not isomorphic over K. Let M be the subgroup of
the ordered multiplicative group GLE of LE-monomials generated by the rational
powers of ex and the iterated logarithms ℓn of x:

M =
⋃
n

eQx ℓQ0 · · · ℓQn .

We consider the spherically complete ordered valued Hahn field

M := R[[M]] ⊆ R[[GLE]].

Note that L :=
⋃

n ℓ
Q
0 · · · ℓQn is a convex subgroup of M with L ∩ eQx = {1} and

M = L eQx, and so M = L[[eQx]] where L = R[[L]]. (Our use of the symbols L, L
differs slightly from that in [1, Section 13.9].) We equipM with the unique strongly
R-linear derivation satisfying

(erx)′ = r erx, (ℓr0)
′ = r ℓr−1

0 , (ℓrn+1)
′ = r ℓr−1

n+1(ℓ0 · · · ℓn)−1 (r ∈ Q).

Then M is an H-field with constant field R. The element λ ∈ L is defined by

λ :=

( ∞∑
n=1

ℓn

)′

=

∞∑
n=0

(ℓ0 · · · ℓn)−1,

as in [1, Section 13.9]. Consider the real closed H-subfield E := R⟨λ, ℓ0, ℓ1, . . .⟩rc
of L and the real closedH-subfieldK := E[[eQx]] ofM . Note that L is an immediate
extension of E and M is an immediate extension of K. Thus K has the same
divisible value group Qv(ex)⊕

⊕
n Qv(ℓn) asM , and K has asymptotic integration.

Note also that (ℓn) is a logarithmic sequence in K in the sense of [1, Section 11.5].
We set A := ∂ − λ ∈ E[∂]. Let K∗ be an immediate H-field extension of K.

By [1, Lemma 11.5.13] we have kerK∗ A = {0}. Moreover, −λ creates a gap overK∗,
by [1, Lemma 11.5.14] and so A(y) ̸≍ 1 for all y ∈ K∗, by [1, Lemma 11.5.12]; in
particular 1 /∈ A(K∗). These remarks apply in particular to K∗ = M . We are
going to show:

Proposition 8.11. For every c ∈ R there is an element y in some immediate
H-field extension Kc of K with A(y) = ex +c.
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By Lemma 1.11, any immediate H-field extension of K strictly extends K. Thus
in view of the remark in the beginning of this section and using Proposition 8.11:

Corollary 8.12. There is a family (Kc)c∈R of spherically complete immediate strict
H-field extensions Kc of K that are pairwise non-isomorphic over K.

In particular, K does not have the uniqueness property. Towards the proof of the
proposition, we still need two lemmas.

Lemma 8.13. The elements ℓ0, ℓ1, . . . of L are algebraically independent over the
subfield R⟨λ⟩ = R(λ, λ′, . . . ) of L.

Proof. The element λ is differentially transcendental over R by [1, Corollary 13.6.3],
and hence over R(ℓ0, ℓ1, . . . ), so λ, λ′, λ′′, . . . are algebraically independent over
R(ℓ0, ℓ1, . . . ). Since ℓ0, ℓ1, . . . are algebraically independent over R,

ℓ0, ℓ1, ℓ2, . . . , λ, λ
′, λ′′, . . .

are algebraically independent over R. Hence ℓ0, ℓ1, . . . are algebraically independent
over R(λ, λ′, . . . ). □

Let B := ∂ + (1 − λ) ∈ E[∂]. We have λ /∈ (M×)† by [1, Lemma 11.5.13] and
1 = (ex)† ∈ (M×)†, so 1− λ /∈ (M×)†, that is, kerM B = {0}.

Lemma 8.14. 1 /∈ B(E).

Proof. Put L0 := R⟨λ⟩ and Ln+1 := R⟨λ, ℓ0, . . . , ℓn⟩, so Ln+1 = Ln(ℓn) in view

of ℓ′n = ℓ†n−1 ∈ Ln for n ⩾ 1, and ℓ′0 = 1 ∈ L0. Note that E is algebraic over
R⟨λ, ℓ0, ℓ1, . . .⟩ =

⋃
n Ln. By Lemma 8.7 it suffices that 1 /∈ B(Ln) for all n.

The case n = 0 follows from Lemma 8.8. Suppose 1 /∈ B(Ln). Now Ln+1 =
Ln(ℓn) and ℓn is transcendental over Ln, by Lemma 8.13, so 1 /∈ B(Ln+1) by
Corollary 8.10. □

Proof of Proposition 8.11. Let c ∈ R and g := ex +c ∈ K.

Claim 1: A(y) ̸= g and A(y)− g −≍ ex, for all y ∈ K.

This is obvious for y = 0, so assume y ∈ K×. Let r range over Q and let the yr ∈ E
be such that y =

∑
r yr e

rx with the reverse-well-ordered set {r : yr ̸= 0} having
largest element r0. Then

A(y) =
∑
r

(
y′r + (r − λ)yr

)
erx .

For r0 ̸= 0 we have r0 − λ ≍ 1, so r0 − λ /∈ (L×)†, and thus for r0 > 1,

A(y)− g ∼
(
y′r0 + (r0 − λ)yr0

)
er0x −≍ ex .

Next, assume r0 = 1. By Lemma 8.14 we have y′1 + (1− λ)y1 − 1 ̸= 0, and thus

A(y)− g ∼
(
y′1 + (1− λ)y1 − 1

)
ex −≍ ex .

Finally, if r0 < 1, then A(y)− g ∼ −g ≍ ex.

Since K is an H-field with asymptotic integration we can pick for every f ∈ K×

an element If ∈ K× with If ̸≍ 1 and (If)′ ∼ f .

Claim 2: Suppose f ∈ K× and f −≍ ex. Then If ≍ f .
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To prove this, note that h† ≼ 1 for all h ∈ M×, hence f/If ∼ (If)† ≼ 1 and so
f ≼ If . If f ≺ If , then f ′ ≺ (If)′ ∼ f , whereas f −≍ ex means f† ≍ (ex)† = 1, a
contradiction. Thus f ≍ If , as claimed.

Let y ∈ K be given, and set z := A(y)− g and ynew := y − Iz ∈ K. Then

znew := A(ynew)− g = z − (Iz)′ + λIz.

By Claim 1 we have z −≍ ex, so Iz ≍ z by Claim 2, and thus λIz ≺ z. Since
z − (Iz)′ ≺ z, this yields znew ≺ z.

This argument shows that the subset v
(
A(K) − g

)
of Γ does not have a largest

element. By [1, Example at end of Section 11.1, Lemma 11.5.13] we have E e
K(A) = ∅.

Thus Proposition 8.11 follows from Lemma 8.5. □

To finish this paper we indicate how the operator B differs in its behavior on E
from that on its immediate extension L. This uses the following:

Lemma 8.15. Let L be an H-asymptotic field with asymptotic integration and
divisible value group ΓL, and let s ∈ L be such that

S :=
{
v(s− a†) : a ∈ L×} ⊆ Ψ↓

L.

Then the following are equivalent for g ∈ L×:

(i) vg /∈ v
(
D(L)

)
for D := ∂ − s ∈ L[∂];

(ii) g† − s creates a gap over L.

Proof. If S has no largest element, this is [1, Lemma 11.6.15]. Suppose S has a
largest element. Then [1, Lemma 10.4.6] yields an H-asymptotic extension L(b)
with b ̸= 0, b† = s, η := vb /∈ ΓL, and ΓL(b) = Γ⊕Zη, and ΨL(b) = ΨL∪{maxS} ⊆
Ψ↓

L. The rest of the argument is as in the proof of [1, Lemma 11.6.15]. □

In contrast to Lemma 8.14 we have:

Proposition 8.16. B(L) = L; in particular 1 ∈ B(L).

Proof. Set s := λ − 1. We have λ ≺ 1 and for a ∈ L× we have a† ≺ 1. Thus{
v(s− a†) : a ∈ L×} = {0} ⊆ Ψ↓

L.

Let g ∈ L×. Applying Lemma 8.15 yields:

vg /∈ v
(
B(L)

)
⇐⇒ g† − s creates a gap over L.

We have λn ⇝ λ. If vg /∈ v
(
B(L)

)
, then λn ⇝ s + g† by [1, 11.5.12] and the

above equivalence, so v(1 + g†) > ΨL by [1, Lemma 11.5.2]. But g† ≺ 1, so

v(1 + g†) = 0 ∈ Ψ↓
L. Thus v

(
B(L)

)
= v(L×). As we saw, v(g† − s) ∈ Ψ↓

L for all
g ∈ L×, so E e

L (B) = ∅, by [1, Example at end of Section 11.1]. The desired result
now follows from Lemmas 8.5 and 8.6 and the spherical completeness of L. □

As a consequence of Proposition 8.16 we have ex ∈ A(M): taking y ∈ L with
B(y) = 1 gives A(y ex) = ex. In view of the remarks just before Proposition 8.11
we also obtain that ex +c /∈ A(M) for all nonzero c ∈ R.
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