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Abstract

Reliability-redundancy is a recurrent problem in engineering where designed systems are
meant to be very reliable. However, the cost of manufacturing very high reliability components
increases exponentially, therefore redundancy of less reliable components is a palliative solution.
Nonetheless, the question remains how many components of low reliability (and of what extent
of reliability) should be coupled to produce a system of high reliability. In this paper, I compare
the performance of particle swarm optimization (PSO) and simulated annealing (SA) on a
system of electricity distribution in a rural hospital. The results proved that PSO outperformed
SA. In addition, considering the problem as reliability maximization and cost minimization
bi-objective give a useful insight on how the cost increase exponentially at a certain given
reliability of the system.

1. Introduction

Reliability-redundancy allocation problems is a recurrent problem in engineering. The
layout of the problem in this paper is sometimes known as "Complex Bridge System."
The objective of the design is to produce a very reliable system at a minimum cost. This
can be achieved by either using more reliable material an/or using redundant material
in parallel. The increase of the redundancy comes with the increase of the cost, the
volume, and the weight of the system. It is therefore necessary to specify the maximum
redundancy acceptable in the system. The challenge is to find the redundancy that is
acceptable and will maximize the total reliability of the system even with components
that have limited reliability. The advantage of the redundancy is that it gives guaranty
that the whole system will continue operating even if one component fails.

In this exercise, I consider the problem as an application of electricity distribution to
a rural hospital from a power plant located in city. However, the power line follows a
circuit on which there are couple of villages that need power as well. The power company
therefore has to build power transformers in vicinity of each village. The main objective
is to maximize the reliability that the power reaches the hospital without failure (or
limited failure). The design of the network is imposed by villages needing electricity.
The figure 1 displays the layout of the distribution design. However, the power company
can increase the reliability of the system by coupling many power transformations if
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necessary or buying very reliable ones or both. The objective is to find the reliability
of each component and how many of each component should be coupled in parallel. I
test simulated annealing and particle swarm optimization implementations to meet the
aforementioned objective. I also explore the bi-objective approach in order to find the
efficient Pareto frontier for the cost minimization and reliability maximization.

Figure 1: Power distribution layout

2. Mono-objective formulation

The problem used in this paper has been presented in several papers including [1] and
solved using different algorithms ranging from particles swarm optimization to genetic
algorithms.

Maximize Rs = R1R2 + R3R4 + R1R4R5 + R2R3R5

−R1R2R3R4 − R1R2R3R5 − R1R2R4R5

−R1R3R4R5 − R2R3R4R5 + 2R1R2R3R4R5

(1)

subject to:

g1(r, n) =
m

∑
i=1

wiv2
i n2

i ≤ V (2)

g2(r, n) =
m

∑
i=1

αi

(
− T

log ri

)βi

[ni + exp(0.25ni)] ≤ C (3)

g3(r, n) =
m

∑
i=1

wini exp(0.25ni) ≤W (4)

Ri = 1− (1− ri)
ni (5)
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0 ≤ ri ≤ 1 ri ∈ R and 1 ≤ ni ≤ 5 ni ∈ Z (6)

The equations 2, 3 and 4 are constraints about the system volume, the cost and the weight,

respectively. The equation 2 can also be seen as the combination of redundancy/volume
and weight constraint. It imposes the total volume of materials composing the system.
The values of parameters used in the formulation are given in Table 1. They have been
gathered from [2] and [1].

Table 1: Summary of parameters used in the study

Parameter Definition Value
V The upper limit on the sum of the subsystems’ product

of volume and weight
110

W The upper limit of the weight of the system 200
C The upper limit on the cost of the system 175
T Time during which the material should not fail 1000
ri Reliability of the component i -
ni The number of components in the ith subsystem (redun-

dancy)
1 ≤ i ≤ m

wi The weight of each component in the subsystem i [7, 8, 8, 6, 9]
vi Volume of each component in the subsystem i [1, 2, 3, 4, 2] 1

βi and αi Physical characteristics of the system components
m Number of subsystems in the system 5
Ri Reliability of the subsystem i -

3. Resolution algorithms

3.1 Particle Swarm Optimization (PSO)

The PSO optimization is a stochastic global optimization method. It is inspired from
the behavior of some schooling animals such as birds and fish. The algorithm can be
summarized as follows: It starts by initializing a given number of particles randomly over
a searching space. The particles moves with a velocity and find the global best position
after a number of iterations. At each iteration, each particle adjust its velocity based on its
best position (pbest) as well as the best position of its neighbors (gbest) and then compute
the new position that the particle moves to. If the new position is better than the previous
pbest then updates the pbest. Similarly if the new position is better than the best global
position gbest then update the gbest.
In computation, the number of particles was set to 100 and the number of iteration was
set to 100 as well. The stopping criteria were either the number of iterations or if there
is no improvement higher than 10−8 from an iteration to another. The package used is

1The values correspond to wiv2
i
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provided by pyswarm2 implemented in Python. The package has the ability to handle
constraints.

3.2 Simulated Annealing

Simulated annealing is a global optimization belonging to the field of the stochastic
optimization and metaheuristics [3]. The algorithm works by generating an initial state
with a starting temperature. For each iteration, a candidate point is generated and
accepted if its fitness leads to improvement of the solution. The candidate point could
be accepted with a probability (that depends on on the temperature) even if its fitness
does not improve the solution. At each iteration, temperature is cooled down following a
cooling schedule. The candidates points selection simulates Boltzmann distribution.

4. Bi-objective formulation

One alternative formulation of the problem is to consider it as a bi-objective optimization
problem where the first objective remains the same as in the equation 1 and then consider
the equation 3 as minimization objective. In this case we want to maximize the reliability
while minimizing the cost. The formulation becomes:

Maximize Rs = R1R2 + R3R4 + R1R4R5 + R2R3R5

−R1R2R3R4 − R1R2R3R5 − R1R2R4R5

−R1R3R4R5 − R2R3R4R5 + 2R1R2R3R4R5

Minimize g2(r, n) =
m

∑
i=1

αi

(
− T

log ri

)βi

[ni + exp(0.25ni)] (7)

subject to:

Equations 2, 4, 5 and 6.

The bi-objective was resolved using the ε-method. The algorithm can be summarized
in three steps.

Algorithm 1 ε-method for soving bi-objective problem

1: Resolve for Rs alone (get R̄1). Determine the corresponding cost (c̄1). The point (R̄1, c̄1)
is an endpoint of efficient frontier

2: Resolve for g2 alone (get c̄2). Determine the corresponding reliability (R̄2). The point
(R̄2, c̄2) is the other endpoint of efficient frontier

3: Keep Rs and add g2 to the set of constraints, and vary its right hand side (by amount
ε)

2https://pythonhosted.org/pyswarm/
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5. Numerical Results

5.1 Mono-objective results

The two algorithms were run 50 times. The "best known results" are taken from [2] who
did a comparative study and concluded their method yielded the best results compared
to all other algorithms available at the time. They have used in their study "PSO using
Gaussian distribution and chaotic distribution".
The most salient results from the SA, PSO and the best known results suggest all that
the redundancy for the subsystems 1, 2 and 5 should be 3, 3, and 1, respectively. In
addition, PSO and SA concord that 3 transformers can be set in parallel in subsystem 3
(Table 2). The reliability of all components are required to be higher than 0.5 with the
highest reliability required in the subsystem 3 with a value of about 0.91. Overall, the best
reliability of the system obtained from the two algorithm are equal for 3 digital decimal.
The PSO yielded better results. It can be inferred as well that the cost is the limiting
resource for reliability maximization (Table 2) and SA provided less satisfactory results
with a higher standard deviation (Figure 2).

Table 2: Results of Particle Swam Optimization and Simulated Annealing compared to the best known
results

Parameter Best known results[2] PSO SA
n (3, 3, 2, 4, 1) (3, 3, 3, 3, 1) (3, 3, 2, 3, 1)
r1 0.826678 0.826176260 0.745312312
r2 0.857172 0.863356826 0.816112405
r3 0.914629 0.864910125 0.915260424
r4 0.648918 0.714651387 0.766155776
r5 0.715291 0.717516082 0.668408642
Rs 0.99988957 0.99989175 0.99971838
Slack 1 (volume) 5 18.0 33.0
Slack 2 (cost) 0.000339 0.00230 2.793
Slack 3 (weight) 1.5604 4.26477 28.693
Mean 0.99988594 0.9998333 0.99857200
Std. Dev. 6.9e-07 5.31e-05 8.63e-04

5.2 Bi-objective results

The bi-objective results using the PSO gives an insight on the trade-off between the
reliability and the cost of the materials. From a cost of about 60 and a reliability averaging
099, a marginal increase of the reliability lead to an exponential increase of the cost (Figure
3). For instance, if we set the cost to 60, then reliability of the system Rs = 0.995131,
r = [0.6952, 0.7647, 0.7871, 0.4337, 0.5192], n = [3, 3, 2, 3, 2], slack 1 = 46.0 (Volume), and
slack 3 = 0.00024 (Weight). In this case, the bounding constraint is the weight. Theoretically
it means we could design a system with a reliability of 0.995 and a volume of 64 (reducing
the original volume by 46).
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Figure 2: Comparison of the performance of PSO, SA and the best known solution from the literature. Bars
represent the standard deviation associated to each implementation

Figure 3: Bi-objective optimal Pareto frontier

6. Conclusion

This exercise showed the performance of two algorithm (PSO and SA). The two algorithms
have some stochasticity. PSO used a population of points whereas, SA used a single
particle. PSO sightly outperformed SA, however, this discrepancy may be attributed
to the implementation of SA with a searching space too high or the stopping criteria.
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Furthermore, bi-objective approach allowed to understand the trade-off between the cost
and the reliability of the system.
However, the reliability as given in this exercise remains valid in laboratory conditions
but may fail in real situation where the material will be subject to different weather and
climate conditions. The best approach may be to use an algorithm giving an interval of
reliability (probability branch and bound seems a good candidate algorithm). A second
approach would be to use the fuzzy theory as proposed by [1] where each reliability
is replaced by three reliabilities representing respectively, the expected reliability, the
pessimistic (lower bound) and the optimistic one (upper bound).
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