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Interconnection through u-average passivity in discrete time

Alessio Moreschini1,2, Mattia Mattioni1, Salvatore Monaco1 and Dorothée Normand-Cyrot2

Abstract— The paper discusses the preservation of u-average
passivity throughout suitable interconnection. The concept of
power preserving connection is introduced. It is instrumental
to ensure u-average passivity of the interconnected system with
respect to new external controls.

Index Terms— Nonlinear output feedback, Alge-
braic/geometric methods, Sampled-data control.

I. INTRODUCTION

The notions of dissipativity or passivity emerged in the
analysis of physical systems to formalize the energy behavior
induced by dissipating components [1], [2].

From the very first pioneering works on these topics by
Willems, this concept has been proved to be fundamental
for the analysis and control of nonlinear systems at large
also because of the intrinsic connection between energy
dissipation and Lyapunov-stability theory [3]. An impor-
tant feature characterizing passivity is that when suitably
interconnecting passive systems the overall system is still
passive. This inspired a huge number of control techniques
typically exploited in control engineering [2], [4]. Indeed,
these interconnecting properties lead to nowadays well con-
solidated methodologies making reference to the so-called
Passivity-Based Control (PBC); among many, the role and
the properties of the interconnection are extensively exploited
in Interconnection and Damping Assignment (IDA-PBC)
and Control by Interconnection (CbI) [5]–[7]. Moreover, a
variety of problems involving complex systems can be recast
in the framework of energy-dissipation by modeling the
complexity as a suitable power preserving interconnection;
as an example, multi-agent and networked systems can be
seen as interconnected passive subsystems [8]–[11].

All of this holds for continuous-time systems for which a
consolidated body of methodologies for control and design
has been proposed throughout the last decades. On the other
hand, in the digitalization era discrete-time systems are be-
coming more and more demanded to model the information
world. Accordingly, passivity and dissipation analysis are
fundamental whereas several problems are still unsolved due
to notable pathological issues arising in discrete time. In this
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3, Rue Joliot Curie, 91192, Gif-sur-Yvette, France
{alessio.moreschini,dorothée.normand-cyrot
}@l2s.centralesupelec.fr

respect, a different concept of passivity has been introduced
in [12] and referred to as average passivity; this notion
involves passivity with respect to a new output defined as the
average of the actual output over the control effort. This new
discrete-time passivity concept solves part of the fundamental
issues related to dissipative discrete-time systems as the one
related to the necessity of a nonzero input-output link [13]–
[15].

In the framework of discrete-time u-average passive sys-
tems, a complete understanding of the properties under
elementary interconnections is still unclear. The purpose of
this paper is hence to make a first step in this direction by
investigating the dissipating properties of the interconnec-
tion of average passive discrete-time systems through the
corresponding u-average outputs. In doing so, the properties
of the interconnection preserving average passivity of the
overall systems are discussed with special emphasis toward
power preserving patterns between the inputs and the u-
average outputs rendering the exchange of energy lossless.
By exploiting u-average passivity thus we characterize the
family of power preserving patterns. The standard cases
of parallel and feedback interconnection are investigated.
In the latter case we show that, for u-average passivity
to be preserved by the interconnected system, a particular
power preserving pattern needs to be detailed. The results
are specified to the LTI case for a deeper understanding of
the involved computation and illustrated through the case of
interconnected discrete-time van der Pol-like oscillators.

The paper is organized as follows. Preliminaries on dis-
crete dynamics and average passivity are given in Section II.
Parallel and feedback interconnections of nonlinear discrete-
time systems are investigated in Section III. An academic
example is discussed in Section IV to illustrate the average
passivity properties under feedback interconnection of u-
average passive systems. Section V concludes the paper with
future perspectives.

II. PRELIMINARIES

R and N denote, respectively, the set of real and natural
numbers including 0. For all vectors v ∈ Rn, |v| and
v> define the norm and transpose of v respectively. Given
v ∈ Rn, the square norm is defined as ‖v‖2 := v>v.
Id and I denote respectively the identity operator and the
identity matrix. Given a smooth vector field over Rn, the Lie
derivative operator is defined as Lf =

∑n
i=1 fi(x) ∂

∂xi
. Given

two smooth vector fields f, g, one defines the Lie bracket as
[f, g] = LfLg − LgLf . The arguments of the functions are
dropped when clear from the context so that x := x(k) with
k ≥ 0.



A. Differential/Difference Representation

As discussed in [16], the following couple of differential-
difference equations describes a nonlinear discrete-time
single-input dynamics Σd

x+ = F0(x) (1a)
∂x+(u)

∂u
= G(x+(u), u) with x+(0) = x+ (1b)

where F0(·) is a Rn-valued smooth map and G(·, u) is a
vector field on Rn, parameterized by u ∈ U ⊂ R and
assumed complete. When the initial condition x+(0) is fixed,
completeness of G(·, u) ensures integrability of (1b) so
recovering the usual representation in the form of a map.
In fact, for any pair (x, u) ∈ Rn × R, denoting by x+(u)
any curve in Rn parameterized by u ∈ R, one gets

x+(u) = F (x, u) = x+(0) +

∫ u

0

G(x+(w), w)dw (2)

with initial condition x+(0) = F0(x). Accordingly, setting
x = x(k) and u = u(k), one gets x(k + 1) = x+(u(k)) for
all times k ≥ 0. It is a matter of computation to verify that
a given smooth map F (x, u) can be described by equations
of the form (1) provided F (·, 0) is invertible.
In the following, we assume that Σd with input u = 0
possesses an equilibrium at x = 0 (F0(0) = 0). Some
manipulations over the trajectories associated with dynamics
(1) are instrumental. At first, by expanding G(·, u) in powers
of u as G(·, u) = G1(·)+

∑
i≥1

ui

i! Gi+1(·) one gets a family
of control vector fields over Rn, the G′is, characterizing the
geometric structure of the flow associated to the solution of
the differential equation (1b) (see [16] for further details). In
this respect, one gets that (2) rewrites for all (x, u) ∈ Rn×R
as

x+(u) = euG(·,u)Id
∣∣
x+ (3)

where euG(·,u) is the flow associated with G(·, u) which is
characterized by the exponent series uG(·, u) defined as

uG(·, u) = uG1 +
u2

2
G2 +

u3

3!
(G3 +

1

2
[G1, G2]) +O(u4).

As usual, the notation O(up) for any integer p ≥ 1, defines
the remaining higher order terms in the series expansion in
u. From (3), one computes the first terms in the expansion
of F (·, u) in u as follows

F (x, u) = euG1+u2

2 G2+u3

3! (G3+ 1
2 [G1,G2])+O(u4)Id

∣∣
F0(x)

=

F0(x) + uLG1
Id
∣∣
F0(x)

+
u2

2
(L2

G1
+ LG2

)Id
∣∣
F0(x)

+O(u3).

As a consequence of the form (1), given any smooth
enough map h(·) : Rn → R, one gets

h(x+(u)) = h(F0(x)) +

∫ u

0

LG(·,w)h(x+(w))dw (4)

with LG(·,w)h(x+(w)) = LG1h(F0(x)) + w(L2
G1

+
LG2)h(F0(x))+O(w2). In a more compact form, exploiting

the flow associated with the solution to the differential
equation (1b), one gets

h(x+(u)) =euG(·,u)h
∣∣
x+ = h(F0(x)) + uLG1h(F0(x))

+
u2

2
(L2

G1
h(F0(x)) + LG2

h(F0(x))) +O(u3).

B. Average passivity in discrete time

The concept of average passivity has been introduced in
[12] to relax the necessity of a direct input/output link, that
is unavoidable in discrete time when referring to a more
classical passivity concept [17]. The following definition is
recalled denoting by Σd(h) the discrete-time system (1) with
output map h(·) : Rn → R.

Definition 2.1 (u-average passivity): Given Σd(h), let the
u-average output mapping be defined as

hav(x, u) :=
1

u

∫ u

0

h(x+(w))dw (5)

for any (x, u) ∈ Rn × R, with hav(x, 0) := h(x+(0)) and
x+(0) = F0(x). Σd(h) is said to be u-average passive if
there exists a positive semi-definite function S(·) : Rn →
R≥0 (the storage function) such that, for all (x, u) ∈ Rn×R

S(x+(u))− S(x) ≤
∫ u

0

h(x+(w))dw = uhav(x, u). (6)

It is worth mentioning that u-average passivity of (1)
with respect to h(·) is equivalent to usual passivity of (1)
with respect to hav(·, u). As discussed in [12], a necessary
condition for u-average passivity is for Σd(h) to possess
relative degree rd = 1 (that is ∂h(x+(u))

∂u 6= 0) and, thus,
for Σd(hav(·, u)) to possess relative degree ravd = 0 (i.e.,
∂hav(·,u)

∂u 6= 0) at least in a neighborhood of the equilibrium.

In [18], [19], the notion of u-average passivity from some
nominal control value ū has been introduced to deal with
incremental-like passivity properties in discrete time. The
following definition is hence recalled.

Definition 2.2 (u-average passivity from ū): Σd(h) is u-
average passive from ū ∈ R if there exists a positive semi-
definite function S(·) : Rn → R≥0 (the storage function,
with S(0) = 0) such that, for all (x, u) ∈ Rn × R,

S(x+(u))− S(x) ≤ (u− ū)havū (x, u). (7)

with havū (x, u) = 1
u−ū

∫ u

ū
h(x+(w))dw.

Remark 2.1: From (7), it is clear that, when ū ≡ 0, u-
average passivity from ū recovers classical u-average pas-
sivity.

III. INTERCONNECTION OF PASSIVE SYSTEMS

For i = 1, 2, consider the respective discrete-time systems
Σi(hi) with state dynamics

x+
i (ui) = Fi(xi, ui) = Fi(xi, 0) +

∫ ui

0

Gi(x
+
i (w), w)dw

(8)



and output maps hi(·) : Rn → R; assume u-average
passivity with respective averaged outputs havi (xi, ui) =∫ ui

0
hi(xi(w))dw and storage functions Si(·) : Rn → R≥0.

For the sake of compactness, we denote x = col(x1, x2).
In what follows, given two discrete-time dynamics of

the form (8), we investigate the average passivity proper-
ties arising when an input/output connection is established
through an interconnecting pattern between the inputs and
the associated outputs. More precisely, we formalize the
interconnection between two systems through an operator

Φc : (h1(x1), h2(x2), u1, u2) 7→
(
u1

u2

)
(9)

describing the interconnecting pattern that links the outputs
(h1(·), h2(·)) to the inputs (u1, u2) via u-averaging.

At first, we define a power preserving pattern ensuring no
loss of energy throughout the interconnection process (loss-
less connection). The following definition is instrumental.

Definition 3.1: The interconnection between Σ1(h1) and
Σ2(h2) given in (8) for i = 1, 2 is said power preserving if
there exists an interconnecting pattern (9) satisfying∫ u1

0

h1(x+
1 (w)) dw +

∫ u2

0

h2(x+
2 (w)) dw = 0 (10)

when
(
u1

u2

)
= Φc(h1(x1), h2(x2), u1, u2).

By definition of u average passivity, the integral form (10)
rewrites as

u1h
av
1 (x1, u1) + u2h

av
2 (x2, u2) = 0 (11)

so highlighting that the interconnection involves the u-
average outputs. In fact, among these power preserving
interconnections, the simplest way to solve (11) is to set

Φc(h1(x1), h2(x2), u1, u2) =

(
0 −1
1 0

)(
hav1 (x1, u1)
hav2 (x2, u2)

)
(12)

so recovering the classical power preserving interconnection
expressed with respect to average outputs. The solution to the
implicit equality (11) defines a preliminary power preserving
state-feedback that we denote ū = ū(x) This underlines that
the internal exchange of energy provided by the pattern Φc

via ū is preserved under the interconnection.

A. Parallel interconnection of passive systems

Let us study the average passivity properties of the parallel
interconnection of (8) for i = 1, 2 that is when setting

u = u1 = u2 h(x) = h1(x1) + h2(x2). (13)

Theorem 3.1: Consider the parallel interconnection of u-
average passive systems (8) with i = 1, 2. Then, the resulting
system

x+
1 (u) =F1(x1, u) (14a)

x+
2 (u) =F2(x2, u) (14b)

with output h(x) := h1(x1) + h2(x2) is u-average passive
with storage function S(x) = S1(x1) + S2(x2).

Σ1

Σ2

hav1 (x1, ū1)

hav2 (x2, ū2)

u1

u2

-

+

+v1

+ v2h2

h1

Fig. 1: Power preserving feedback interconnection between
Σ1(h1) and Σ2(h2) via average outputs with external v.

Proof: Because each subsystem Σi(hi) in (8) (i = 1, 2)
u-average passive, one gets that

∆S(x) :=S(x+(u))− S(x)

≤
∫ u1

0

h1(x+
1 (w))dw +

∫ u2

0

h2(x+
2 (w))dw.

Because u = u1 = u2 one gets

∆S(x) ≤
∫ u

0

[h1(x+
1 (w)) + h2(x+

2 (w))]dw

=

∫ u

0

h(x+(w))dw = uhav(x, u)

and thus the result.

The above result shows that, when considering the parallel
interconnection of u-average passive systems (8), passivity in
the u-average sense is preserved with respect to the natural
output induced by the sum of the single ones. It is worth
to note that the averaged output, in this case, is also equal
to the sum of the averaged outputs associated to (8) when
setting u = ui for i = 1, 2.

Remark 3.1: We note that the parallel interconnection (13)
is not power preserving in the sense of Definition 3.1.

B. Feedback interconnection of passive systems

Let us now define a feedback interconnection of (8)
enhancing u-average passivity of the resulting system. To
this end, let us consider the input u = col(u1, u2)

u = Φc(h1(x1), h2(x2), ū) + v. (15)

with v = col(v1, v2) being external inputs and ū =
col(ū1, ū2) being the power preserving feedback computed
as the solution to the interconnecting pattern

ū = Φc(h1(x1), h2(x2), ū) (16)

satisfying (10) (equivalently, (11)) in Definition 3.1. The
following Lemma is instrumental.

Lemma 3.1: Consider the systems Σi(hi) being u-average
passive with storage functions Si(·) : Rn → R≥0. Consider
the state power preserving interconnection (16). Then, the
augmented system Σc

x+
1 (u1) =F1(x1, u1) (17a)

x+
2 (u2) =F2(x2, u2) (17b)



with output

hc(x) := col(h1(x1), h2(x2)) (18)

is u-average passive from ū = ū(x), solution to (16), and
storage function Sc(x) := S1(x) + S2(x) verifying the
dissipation inequality

∆Sc(x) ≤(u− ū)>havc,ū(x, u), (19)

with

havc,ū(x, u) =

( 1
u1−ū1

∫ u1

ū1
h1(x+

1 (w))dw
1

u2−ū2

∫ u2

ū2
h2(x+

2 (w))dw

)
.

Proof: Under the internal state power-preserving inter-
connection ū = Φc(h1(x1), h2(x2), ū) solution to (11), one
has

2∑
i=1

∫ ūi

0

hi(x
+
i (w))dw = 0.

Accordingly, by computing ∆Sc(x) = ∆Sc(x
+(u))− S(x)

and exploiting u-average passivity of (8), one gets from (10)

∆Sc(x) ≤
2∑

i=1

∫ ui

0

hi(x
+
i (w))dw

=

2∑
i=1

∫ ūi

0

hi(x
+
i (w))dw︸ ︷︷ ︸

=0

+

2∑
i=1

∫ ui

ūi

hi(x
+
i (w))dw

and thus the results.
The following result can be thus proved.
Theorem 3.2: Let, for i = 1, 2, the systems Σi(hi) be

u-average passive with respective storage functions Si(·) :
Rn → R≥0. Consider the input (15) with ū = ū(x)
being the power-preserving interconnection (16). Then, the
interconnected system

x+
1 (ū1(x) + v1) =F1(x1, ū1(x) + v1) (20a)

x+
2 (ū2(x) + v2) =F2(x2, ū2(x) + v2) (20b)

with output (18) is u-average passive with storage function
Sc(x) := S1(x) + S2(x). Namely, the dissipation inequality

∆S(x) ≤ v>hc,ū(x, ū(x) + v) (21)

holds with average output

hc,ū(x, ū(x) + v) =

( 1
v1

∫ v1
0
h1(x+

1 (ū1 + `))d`
1
v2

∫ v2
0
h2(x+

2 (ū2 + `))d`

)
. (22)

Proof: By Lemma 3.1, u-average passivity of (20)
from (16) holds. Thus, by plugging the input (15) into the
dissipation inequality (19) one gets

∆Sc(x) ≤
2∑

i=1

∫ ūi+vi

ūi

hi(x
+
i (w))dw

=

2∑
i=1

∫ vi

0

hi(x
+
i (ūi + `))d` = v>hc,ū(x, ū(x) + v)

so concluding the proof.

Remark 3.2: The input (15) is composed of two terms:
the exogenous signal v and an interconnecting feedback ū =
ū(x) defining the pattern as the solution to (10). This latter
term is a power preserving state feedback computed over
the averaged outputs havi (xi, ui) when setting the exogenous
signal in (15) vi = 0 (that is u = ū). Such an interconnection
is not realized through the direct input/averaged-output ports
obtained through the feedback u = u(x, v) solution to(

u1

u2

)
=

(
0 −1
1 0

)(
hav1 (x1, u1)
hav2 (x2, u2)

)
+ v. (23)

Indeed, it is a matter of computations to verify that in
that case, average passivity of the overall systems is not
preserved by the interconnection whereas only classical
passivity stands with respect to the output H(x, v) =
col(hav1 (x1, u1), hav2 (x2, u2)) with (u1, u2)> solution to
(23). Nevertheless, a direct input-output link is still needed
for this.

Remark 3.3: Theorem 3.2 defines a family of feedback
interconnections preserving u-average passivity of the overall
system. As it is clear from (21), under an external source v
and for a fixed ū in (16), the average outputs are defined
starting from the same outputs of the single systems (8)
but averaged over the new interconnected dynamics (20)
deduced from (15). Thus, starting from average passivity of
the single systems (8) with outputs hi(xi), the interconnected
system is u-average passive under the power preserving
stated feedback ū = ū(x) solving (16). A family of u-
average outputs of the form (22) computed starting from
hi(xi) and associated to ū = ū(x) exists with each element
being parametrized by the choice of the interconnection
patter Φc(·) satisfying (10).

Remark 3.4: When one of the systems involved in the
interconnection (17) is not average passive, under certain
conditions involving stability, one can prove that the cor-
responding interconnection through (15) provides the total
energy variation

∆Sc(x) = Sc(x
+(ū))− Sc(x) +

2∑
i=1

∫ ūi+vi

ūi

hi(x
+
i (w))dw

allowing to conclude that the interconnected system Σc(h) is
average passive if Sc(x

+(ū)) ≤ Sc(x) yields for all x ∈ R2n.

1) Computational aspects : The power preserving inter-
connecting feedback (16) is defined as the implicit solution
of a nonlinear equality induced by the averaged outputs.
Although exact computations are tough to be carried out
in general, an approximate solution to (16) does exist (at
least locally) as specified in the following proposition. To
this end, assume, without loss of generality that for i = 1, 2,
(8) possesses an equilibrium at the origin. For the sake of
facility, let us assume the interconnecting pattern be defined
by (12). Thus, the following result holds true.

Proposition 3.1: Consider, for i = 1, 2, the discrete-time
systems Σi(hi) in (8) with equilibrium at x = 0 and being u-
average passive. Consider the interconnection (12). Then, for



all x in a neighborhood of the origin, the equality (16) with
pattern (12) locally admits a solution ūa = ūa(x) verifying
ū(0) = 0. Thus, the interconnected system (20) is locally
passive when setting u = ūa(x) + v.

Proof: First, consider the expansion of the average
outputs associated to hi(xi) as given, for i = 1, 2, as

havi (xi, ui) = hi(Fi(xi, 0)) + uiLGihi(Fi(xi, 0)) +O(u2
i ),

where O(u2
i ) contains all the remaining terms of a higher

order of the control variable ui. By substituting such an
expansion in the equality (16) one gets

ū1 =− h2(F2(x2, 0)) + ū2LG2
h2(F2(x2, 0)) +O(u2

2)

ū2 =h1(F1(x1, 0)) + ū1LG1h1(F1(x1, 0)) +O(u2
1)

By invoking the implicit function theorem, for all x in the
neighborhood of the origin, an approximate solution exists
because the non-singularity condition∣∣∣∂Φc(h1(x1), h2(x2), u1, u2)

∂u

∣∣∣
u=0

=
∣∣∣A(x)

∣∣∣ 6= 0

with

A(x) :=

(
1 LG2(·,0)h2(F2(x2, 0))

−LG1(·,0)h1(F1(x1, 0)) 1

)
holds true since each Σi(hi) in (8) has relative degree 1.
Accordingly, one gets local passivity from Theorem 3.2 when
u = ūa(x) + v with

ūa(x) = A−1(x)

(
−h2(F2(x2, 0))
h1(F1(x1, 0))

)
.

2) The case of average passive LTI systems: Consider,
for i = 1, 2, the case in which (8) are LTI that is

x+
i (ui) = Aixi +Biui (24a)

yi = Cixi (24b)

with relative degree ri = 1, (i.e., CiBi 6= 0). Then, assuming
(24) average passive with quadratic storage function Si(x) =
1
2x
>
i Pixi and Pi > 0, the average outputs get the form

havi (xi, ui) = CiAixi + 1
2CiBiui. In that case, the power

preserving interconnection (12) is specified as

Φc(x) =

(
0 −C2A2

C1A1 0

)
x+

(
0 − 1

2C2B2
1
2C1B1 0

)
u

so that the equality (16) admits, because of the relative degree
condition, a unique solution ū = Fx with

F =

(
F1 F2

F3 F4

)
=

(
1 1

2C2B2

− 1
2C1B1 1

)−1(
0 −C2A2

C1A1 0

)
When considering the pattern (12), one gets the overall
system

x+
1 (ū1 + v1) = (A1 +B1F1)x1 +B1F2x2 +B1v1 (25a)

x+
2 (ū2 + v2) = B2F3x1 + (A2 +B2F4)x2 +B2v2 (25b)

y1 = C1x1, y2 = C2x2 (25c)

that is u-average passive with output provided as the aver-
age of (25c) along the interconnected system (25a)-(25b);
namely, setting Sc(x) = x>1 P1x1 + x>2 P2x2, one gets

∆Sc(x) ≤ v>havc,ū(x, ū(x) + v)

with average output h̃avc,ū(x, v) = havc,ū(x, ū(x) + v),

h̃av
c,ū(x, v) =

(
C1(A1 +B1F1)x1 + C1B1F2x2 + 1

2
C1B1v1

C2B2F3x1 + C2(A2 +B2F4)x2 + 1
2
C2B2v2

)
.

Remark 3.5: When specifying the direct connection (23)
to this case, that is under output-feedback connection, one
gets uc = Fx+Dv with

D =

(
D1

D2

)
=

(
1 1

2C2B2

− 1
2C1B1 1

)−1

,

so yielding classical passivity of the overall system with

H(x, v) =

(
C1(A1 + 1

2
B1F1)x1 + 1

2
C1B1F2x2 + 1

2
C1B1D1v

1
2
C2B2F3x1 + C2(A2 + 1

2
B2F4)x2 + 1

2
C2B2D2v

)
which is not the average of the outputs (25c) deduced from

the original systems under the resulting interconnection.

IV. ILLUSTRATIVE EXAMPLE

Let assume the interconnection between two nonlinear van
der Pol oscillators in discrete time described by [20], [21],

x+
i (u) = xi +

1

2
(J −Ri(xi))(x

+
i + xi) + gi(xi)ui (26)

with xi = col(x1
i , x

2
i ) ∈ R2 and, for µi > 0

J =

(
0 1
−1 0

)
, R(x1) =

(
0 0
0 −µi(1− (x1

i )2)

)
, B =

(
0
1

)
x+
i = (I − Ai(xi))

−1(I + Ai(xi))xi, gi(xi) = (I −
Ai(xi))

−1B and Ai(xi) = 1
2 (J −R(xi)). (26) is u-average

passive with u-average output havi (xi, ui) = g>i (xi)(x
+
i +

1
2gi(xi)ui) and storage function Si(xi) = 1

2x
>
i xi.

The two oscillators are feedback connected through (16)
being exactly computed as

ū =

(
− 1

2‖g2(x2)‖2g>1 (x1) −g>2 (x2)
g>1 (x1) − 1

2‖g1(x1)‖2g>2 (x2)

)
1 + 1

4 ||g1(x1)||2||g2(x2)||2
x+

with x+ = col(x+
1 , x

+
2 ). Thus, in accordance with Theorem

3.2, one gets that the overall interconnected system is average
passive with average output h̃avc,ū(x, v) = havc,ū(x, ū(x) + v)

h̃av
c,ū(x, v) =

(
g>1 (x1)(x+

1 + g1(x1)ū1(x)) + 1
2
‖g1(x1)‖2v1

g>2 (x2)(x+
2 + g2(x2)ū2(x)) + 1

2
‖g2(x2)‖2v2

)
.

Accordingly, under zero-state detectability, one can stabilize
the system at the origin by introducing the damping feedback
v = −κhavc,ū(x, ū(x) + v) so that v = v(x) is given by

v = κ

 g>
1 (x1)(x+

1 +g1(x1)ū1(x))
1+κ

2 ‖g1(x1)‖2
g>
2 (x2)(x+

2 +g2(x2)ū2(x))
1+κ

2 ‖g2(x2)‖2

 , κ > 0.

Simulations: For completeness, simulations of the dis-
cussed example are reported in Figure 2 by setting µ1 = 0.8,



Fig. 2: Passive interconnection of two van der Pol oscillators:
v = 0 vs = −κhavc,ū(x, ū(x) + v)

µ2 = 0.6 and with initial conditions x1 = ( 3
4π, 0), x2 =

(− 3
4π, 0). More in details, for both the oscillators, we report

the time evolutions of the states, the outputs yi = hi(xi) and
the control actions. Two cases are reported for the intercon-
nected system: (i) only the power preserving interconnection
feedback is applied (i.e., v = 0 and u = ū(x) as in (15)-
(16)); (ii) the power preserving interconnection feedback is
complemented with a stabilizing damping feedback from the
overall average output with κ = 1. These simple simulations
also let one understand that such a connection could bring
to synchronization.

V. CONCLUSIONS

This paper formalizes the average dissipativity properties
arising when interconnecting u-average passive discrete-time
systems under suitable patterns preserving power exchanges.
The methodologies apply to sampled-data systems as well.
This study is preliminary to the development of new PBC
strategies in discrete-time in terms of CbI and IDA-PBC by

exploiting the u-average passivity properties of the intercon-
nection. Further understanding of those properties in case of
discrete port-Hamiltonian systems [22] is undergoing too.
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