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Abstract. For many data analysis tasks, obtaining the causal relationships between
interacting objects is of crucial interest. Here, the case of modelling causal relationships via
causal orderings is considered. Triplet ordering preferences are used to perform Monte Carlo
sampling of the posterior causal orderings originating from the analysis of experiments involving
observation as well as, usually few, interventions, like knockouts in case of gene expression. The
performance of this sampling approach is compared to a previously used sampling via pairwise
ordering preference as well as to the sampling of the full posterior distribution. This is performed
for artificially generated causal, i.e. directed acyclic graphs (DAGs) with a scale-free structure,
i.e. a power-law distribution for the out-degree. The sampling using the triplets ordering turns
out to be superior to both other approaches, similar to our previous work, where the less-realistic
case of Erdős-R é nyi random graphs was considered.

1. Introduction
When analysing large sets of data, on important task is to identify causal relationships [1]
between the objects described by the data. One example is the analysis of gene regulatory
networks, which have received a great deal of attention. In this context, Gaussian models like
the Graphical Lasso [2] or approaches based on mutual information [3] are very popular for
inferring gene regulation networks.

When time series of the data are available, the Granger causality [4] is a common approach
in general. If time-resolved gene-expression data is available, methods like dynamic Bayesian
networks [5] or ordinary differential equations [6] can be applied. Nevertheless, in many cases
the temporal resolution is too coarse or it is not at all possible to measure time series. For
this case, another popular approach, following the work of Pearl [1], focuses on causal Gaussian
Bayesian networks. One can retrieve bounds on causal effects and thus partially determine causal
relationships using only observational data [7]. To go beyond this, one can perform intervention
calculus [8]. This means in real or numerical experiments, through suitable manipulations,
one assigns to selected variables some fixed values. Therefore, they are not affected by the
standard dynamics of the systems, while their state value is still available to their interaction
partners. Examples are gene knockouts or gene knockdowns in gene regulatory networks.
Or, for networks modelling infectious diseases, interventions could be implemented by medical
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treatments. In this paper we focus on estimating causal Bayesian networks in the presence
of arbitrary mixtures of (non-time resolved) observational and interventional data [9, 10], i.e.
wild-types and knockout/down experiments with possibly multiple interventions within each
experiment.

As explained in Ref. [9] estimating the underlying DAG (Directed Acyclic Graph) structure
of a causal Bayesian network is equivalent to finding of the so-called causal ordering between
the genes of interest. In general, this causal ordering is unknown and belongs to a very large
ordering space (p! possible orderings for p genes) which cannot be explored exhaustively. The
solution suggested by Ref. [9] consists in sampling causal orderings in the posterior distribution
using Markov chain Monte Carlo (MCMC) simulations.

At each MCMC step, a new causal ordering is sampled according to a proposal distribution
(for example the Mallows distribution) and the maximum likelihood of the model must be
computed given the new ordering to accept or reject the sampled ordering. Thanks to the closed
formulas developed in Ref. [9], this likelihood maximisation can be done exactly and efficiently
but requires a computational effort which still grows with the sixth power of the number p of
interacting objects (e.g. genes). Thus, each single Monte Carlo step is computationally rather
expensive.

Mathematically a proper MCMC is guaranteed to converge to the correct sampling, but only
on diverging time scales. Given that for practical applications one only has a finite amount
of computational resources available, only small networks can be treated in this way. For
this reason, an approximation based solely on pairwise probabilities of ordering preference has
recently been introduced [11]. This resulted in a considerable increase of efficiency, but led in
many cases to less reliable parameter estimates.

Recently, we have extended [12] this approximation to triplet probabilities. We have shown
that this results in a strongly increased accuracy with respect to the pairwise approach. Also we
have shown that, when allocating a comparable amount of the numerical resources for the two
algorithms, the triplet approach outperforms the sampling approach based on the full maximum
likelihoods. Nevertheless, the past study was performed for Erdős-R é nyi random graphs [13],
which is the most simple graph model, showing no structure at all, resulting, e.g., in a Poisson
degree distribution. For real systems the underlying graphs usually have a more complicated
structure, [14] often resulting in a scale-free, i.e. power-law, degree distribution. For this
reason, we have applied the pair- and triplet-based approaches to scale-free graphs. The most
important results are that the approximations still outperform the full MCMC sampling and
that the triplet-based approach is again better than the pair-based one. Also, we investigated
which influence the out-degree of the manipulated node has on the amount of information about
the causal structure obtained for the graph.

2. Model and Algorithms
First, we will present the graphical model which is behind this approach. Next, we show
how model parameters are estimated by using likelihood calculation and how interventions are
incorporated into the scheme. These two sections summarise the detailed descriptions of Ref. [9].
Next, we explain sampling of causal orderings, which we used to establish the causal structure.
This allows us to calculate averages of the estimated quantities. Finally, we show how pair- and
triplet-approximations are used to speed up the sampling procedure. For the convenience of the
reader, this section contains a sufficient amount of details to allow for an implementation of the
method and follows closely the presentation in Ref. [12].

2.1. Model
Here, we study directed graphs G = (V,E) with p nodes i ∈ V . Pairs of nodes i, j are connected
by directed edges (i, j) ∈ E, with weights wi,j . The matrix W = (wi,j) contains all weights.
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A nonzero weight describes a causal relationship. We assume that the graph is acyclic, i.e. a
DAG. Without loss of generality, we can assume that the nodes are ordered according the causal
relationships, i.e. wi,j > 0 ⇒ i < j. This means within the following random process only nodes
i can have causal effects on nodes j if i < j:

To each node j = 1, . . . , p a Gaussian random variable Xj is associated given by

Xj = mj +
∑

i<j

wi,jXi + εj with εj ∼ N(0,σ2
j ) . (1)

Thus, the equations are deterministic except the term εj which generates fluctuations of the
variables, e.g., for fluctuations of gene expression and σ2

j determines the strength of fluctuations.
In particular, the parameters m = (m1, . . . ,mp) and σ = (σ1, . . . ,σp) represent the mean values
and the standard deviations if all interactions were absent. In the following an experiment
corresponds to one realisation of the random process (1).

Furthermore, within the model it is possible to perform interventions on the nodes, which
assign the variable of a node a fixed value instead of generating the value according to (1). In
the DAG these values are used as inputs to the descendants when generating a realisation of the
process, i.e. performing an experiment numerically [15].

2.2. Estimating Model Parameters
Given are N experimental data points xk = (xk1, . . . , x

k
p) (1 ≤ k ≤ N) assumed to be generated

according to (1). The set of nodes subject to interventions on experiment k is denoted by
Jk, respectively (Jk = ∅ means no intervention for the k’th experiment). We denote by
Kj = {k | j &∈ Jk} the experiments where there was no intervention on node j and by Nj = |Kj |
the number of times node j was not target of an intervention. The log-likelihood of the joint
experimental outcome given the parameters has been derived in detail in Ref. [9]. Here we only
state the final result for brevity:

#(m,σ,W) = − log(2π)

2

∑

j

Nj −
∑

j

Nj log(σi) −
1

2

∑

j

1

σ2
j

∑

k∈Kj

(xkj − xkWeTj − mj)
2 , (2)

where eTj denotes the transpose of the unit vector which has a value 1 in position j and
zero entries everywhere else. Note in order to write this equation in the standard form
of the multinomial distribution, one uses the covariance matrix Σ = LTdiag(σ2)L, where
L = (I − W)−1 and I = diag(1) [9]. The above stated form is more convenient, because it
is already diagonal. We omit the dependence of # on the data here for brevity of notation.
For the given N measurements, the parameters m̂, σ̂,Ŵ leading to the maximum likelihood
estimator (MLE)

#max = #(m̂, σ̂,Ŵ) = max
m,σ,W

#(m,σ,W) (3)

can be obtained [9] in a straightforward way by the following procedure: First one obtains for
each experiment k = 1, . . . , N the measurements normalised with respect to the experiments
where there was no intervention on node j, for each node j:

yk,j = xk − 1

Nj

∑

k′∈Kj

xk′ . (4)

Next one solves the linear system of size p(p− 1)/2
∑

i′|i′<j

ŵi′,j

∑

k∈Kj

yk,ji yk,ji′ =
∑

k∈Kj

yk,ji yk,jj for i < j, 1 ≤ i, j,≤ N (5)
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to obtain estimates ŵi,j of the weights for the MLE. Solving a linear system with O(p2) variables
takes O(p6) steps. From this solution one obtains, still just following [9], estimates of the mean
values

m̂j =
1

N j

∑

k∈Kj

(xkj − xkŴeTj ) (6)

and of the variances

σ̂j =
1

N j

∑

k∈Kj

(yk,jj − yk,jŴeTj )
2 . (7)

2.3. Estimating the Posterior Distribution
So far, we have assumed that the causal ordering of the model is given by o0 = (1, 2, . . . , p).
In experimental situations, if the data was actually generated according the DAG model,
the ordering is most of the time unknown, i.e. all estimates will depend on the ordering:
#max = #max(o). For the general case, if the data was not generated according to a DAG
model, the modelling must involve many orderings. Thus, in experiments and subsequent model
estimation, one is actually interested in either the ordering which maximises the MLE, or,
alternatively, in obtaining the posterior distribution involving all (or the dominant) orderings
weighted by the corresponding ordering-dependent MLEs.

Both can be obtained in principle by iterating over all p! possible causal orderings o, i.e.
permutations of the natural numbers 1, . . . , p. Each time one has to reorder the measurement
data according this ordering, and to obtaine the MLE (3) via solving (4), (5), (6) and (7).
Clearly, if p is too large, this enumeration is not feasible any more.

One alternative approach is to use a MCMC simulation, where orderings o(t) according the
likelihood exp(#max(o)) are sampled, t denotes the number of steps. A convenient approach to
achieve this is the Metropolis algorithm. Here, within each step, a trial order o′ is generated.
For the present study, we use local changes, i.e. an exchange of the order of two nodes with
respect to the current ordering o(t). The trial ordering is accepted, i.e. o(t + 1) = o′ with the
probability

pacc = min{1, exp[#max(o
′)− #max(o(t))]} . (8)

Otherwise, the trial ordering is not accepted and the current ordering kept for the next time
step, i.e. o(t + 1) = o(t). Note that for all simulations we performed (see below for details),
the empirical acceptance rate of these locally generated trial orderings was below 0.5. The
value of 0.5 is considered as a good choice by rule of thumb, balancing a desired high rate of
changeing with a desired high acceptance rate. Therefore it would not make sense to consider
trial orderings which differ from the current ordering by more than two exchanged positions,
since this would increase the fluctuations and therefore decrease the acceptance rate even more.

This type of sampling guarantees, in principle, if the Markov chain is long enough, that
the orderings are sampled according the desired posterior distribution. Note that for the
computation of the change #max(o′) − #max(o(t)) of the log-likelihood one has to recalculate
the log-likelihood for the trial ordering o′ from scratch. Thus, each MCMC Metropolis step
takes O(p6) running time.

By starting with a random ordering o(0), performing a “long enough” MCMC sampling
and by discarding the “initial” part (allowing for equilibration), a sample set S of orderings is
obtained, which can be used to calculate averaged estimated parameters, see Section 2.4.

2.4. Calculation of Averaged Estimates
The aim is to study expectation values in ensembles defined by probabilities or likelihoods P (o).
Here we are interested in the true likelihoods P (o) ∼ e"max(o). Thus, for any measured quantity
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A(o), where the estimate depends on the assumed ordering o, the expectation value is given by

〈A〉 ≡
∑

o

A(o)P (o). (9)

Note that the measured quantities of interest are usually estimates which are obtained from the
maximum-likelihood calculation, e.g. the estimates of the weights obtained from (5) or estimates
of the variances (7), or any other derived value.

If only a finite set S of samples is given, averages can be obtained, approximating the
expectation values:

Â ≡
∑

o∈S A(o)P (o)∑
o∈S P (o)

(10)

These estimates are most accurate if the process used to generate the sample set follows the
desired sampling P (o) ∼ e"max(o) as close as possible. Thus, the sample set S could be generated
by a MCMC sampling according to the true probabilities e"max , as outlined in the previous
section. In this way automatically orderings with high contributions to (10) are preferentially
generated. Note that since S is actually a mathematical set, there will be no multiple occurrences
of orderings in S. If one allowed for multiple occurrence, then one would have to take simple
arithmetic averages instead of weighted ones as in (10).

Anyway, here we work with sampling sets. The reason is that, alternatively, these sets can be
obtained by sampling according to different probabilities, which only aim at approximating the
true probabilities but which are computationally much cheaper to calculate. (This also means,
we accept a sampling error, which would only disappear if the sampling set approaches the set
of all possible configurations). One the other hand, if the size of the set is suitably restricted,
we used always |S| = 100, the computationally expensive O(p6) full likelihood calculations have
to be performed only for a small number of (here) 100 samples.

The approximate probabilities we have used are introduced in the following section.

2.5. Pair and Triplet Probabilities
Instead of sampling the full posterior distribution, in Ref. [11] it was proposed to perform an
MCMC sampling from a different distribution, the Babington-Smith (BS) ordering distribution
[16, 17]. It is based on pair preferences πi,j (1 ≤ i &= j ≤ p) with πi,j ∈ [0, 1] and
πi,j + πj,i = 1. The meaning is that within the desired ordering distribution in any random
ordering element i appears before j with this probability πi,j . The pair preferences can be
estimated from the experimental data with interventions by considering all possible two-node
graphs Gi,j ≡ ({i, j}, {(i, j)}) with the nodes i and j and with exactly one directed edge (i, j).
As above, for brevity of notation, we omit the dependence of the pair preferences and any derived
quantities on the data here. Only the data values for the two nodes are considered. Note that
in case of multiple interventions, we observed in tests, which are not contributing to the results
shown here, that the overall performance of the sampling according pair preferences is somehow
better if data points with interventions on other nodes than i, j are not included in the data set
for the pair i, j, respectively. For each of the p(p−1) directed two-node graphs the log-likelihood

#(2)max(i, j) is obtained. The pair preferences are then given by

πi,j =
exp(#(2)max(i, j))

exp(#(2)max(i, j)) + exp(#(2)max(j, i))
. (11)

From the pair preferences, the BS probability of a full ordering o is obtained by

P (o|π) ∼
∏

i<j

πoi,oj (12)
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with a suitable normalisation. The normalisation is not needed here, since, first, we only compare
the (relative) values of (12) for different orderings. The corresponding log-likelihoods are denoted
as

#pair ≡ #pair(o) = log
∏

i<j

πoi,oj . (13)

Second, we performed MCMC sampling of orderings using the Metropolis algorithm according
to (12) where also only relative likelihoods are needed. This was done in an equivalent way as
above, only the true MLE is replaced by (13). Thus, starting again from a random ordering o(0),
we generated trial orderings o′ by exchanging the i-th and the j-th entry in the current ordering.
The new orderings are accepted with the corresponding Metropolis probability. Note that one
does not have to recalculate the BS probability from scratch, since the change in probability is
easier to obtain. The Metropolis acceptance probability is given by

ppairacc = min




1,
πoj ,oi
πoi,oj

∏

k|i<k<j

πoj ,okπok,oi
πoi,okπok,oj




 . (14)

This takes only O(p) steps compared to the O(p2) steps which are needed for the calculation
of the full probability. In particular it is much faster than computing the full likelihood which
takes O(p6) steps.

Naturally, when sampling according to (12) the observed set of orderings will be different but
somehow similar to when sampling according the true likelihood. The reason is that orderings
with a high full likelihood induces in principle large pairwise probabilities for those pairs which
are compatible with such an order. Nevertheless, the pairwise approximation cannot completely
cover collective effects which involve the ordering of more than two nodes. Thus, the final
estimates, like the weights, for the posterior distribution are obtained by keeping the nincl

samples with the highest probabilities (12) in the sample set S. For these orderings now the
true MLE (3) is evaluated and used. This means, (10) is applied for any kind of estimation or
averaging, i.e. these weights are now used in this final averaging step.

In [11] it was found that this sampling approach is in some case similar accurate as a full
MCMC sampling as described in Sec. 2.3, but there were notable differences. In particular when
the number p of nodes is growing, the orderings exhibiting the largest pair-based probabilities
turned out to be more and more different from the orderings exhibiting large full likelihoods.
This showed up in particular when calculating estimates of network parameters. Therefore it
was proposed to maybe consider triplets instead of pairs.

Thus, it is the purpose of the present work to study this higher level approximation of
the true posterior distribution. Similar to the above defined pair probabilities, we introduce
triplet probabilities ρi,j,k ∈ [0, 1] such that ρi,j,k + ρi,k,j + ρj,i,k + ρj,k,i + ρk,i,j + ρk,j,i = 1
(i < j < k). These probabilities can be estimated from the experimental data in a similar
way as above, by considering all possible sub graphs ({i, j, k}, {(i, j), (i, k), (j, k)}) with three
nodes and corresponding edges. For these sub graphs the corresponding MLE are obtained and
suitably normalised, equivalent to (11) to yield the triplet probabilities ρi,j,k. They can be used
to generalise the Babington-Smith probabilities of orderings to

P (o|ρ) ∼
∏

i<j<k

ρoi,oj ,ok . (15)

Again, the normalisation is not needed here. The corresponding log-likelihood is denoted as

#tripl = log
∏

i<j<k

ρoi,oj ,ok . (16)
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We perform an MCMC sampling of orderings according to these probabilities using the
Metropolis algorithm and trial ordering generated via swapping of pairs of elements. Like
for the case of sampling according the pair-based probabilities, these swapping pairs are chosen
unbiased, i.e. each pair is chosen with the same probability. To guarantee a sampling according
to (15), for the calculation of the acceptance probabilities only the change in probability of (15)
has to be considered, which now takes O(p2) steps for such a swap.

Again, for all evaluations and estimates, the nincl = 100 highest-probability samples with
respect to the triplet probability are kept. For these samples the true likelihood is obtained and
used for all averaging processes according to (10).

3. Results
We have performed simulations for scale-free random DAGs with p nodes. The graphs are
generated similarly to the Barab á si-Albert model [14] with iterated preferential attachment
of each node to m (m = 3 or m = 4 here) already existing nodes. Note that for the original
undirected model, the graph generation starts with a complete graph with m+1 nodes. Here, to
obtain a DAG, the initial graph consists of m+1 nodes such that node 1 is connected by directed
edges (1, j) to the other nodes j = 2, . . . ,m + 1. Then, iteratively the nodes j = m + 2, . . . , p
are added to the graph. Each new node j is connected to m randomly chosen nodes among the
already existing nodes k = 1, . . . , j − 1 by directed edges (k, j). The probability that the new
node is connected to an existing node by an edge is proportional to the degree (sum of in-degree
and out-degree) of the already existing node.

Each edge receives a weight which is drawn uniformly from the range [−1,−0.4] ∪ [0.4, 1].
Thus, these edges should be distinguishable very well from the absent edges which correspond
to weight 0. Finally, for each DAG instance, for each node j, mean values mj = 1/2 are used
and the variance values σj are drawn randomly uniformly in the interval [0.01, 0.1]. In Ref. [12]
we have shown that the choice of mj and σj does not play a crucial role. All simulations are
performed for 1000 (p = 20) and 300 (p = 50) DAG instances generated independently in this
way.

Next, for each DAG instance, a certain number of N measurements are performed, where the
measurement vectors xk (k = 1, . . . , N) are generated according to (1). Typically, for a DAG
of p nodes, we generated N = 10p measurement vectors. Note that the scheme exhibited in
Section 2.2 allows for multiple interventions. Nevertheless, since we are interested in comparing
different sampling approaches here, we present for simplicity just single interventions which are
systematically done during the first r (r ≤ N) experiments of each set of experiments. We
applied a systematic manner, such that for all nodes at least ,r/p- interventions are performed
while for r − p,r/p- nodes one intervention more, i.e. .r/p/ interventions are performed. This
sums up to r interventions. For each intervention on node j, we fix Xi = 0, respectively,
corresponding to a knockout. For the order in which the nodes are taken for interventions
(experiment by experiment), we studied three different variants:

• decreasing out-degree

• random order

• increasing out-degree

This means for decreasing order, in experiment 1, the node with the highest out-degree will be
set to zero, in experiment 2 the node with the second highest out-degree, and so on.

Thus, to measure the efficiency of an approach, we consider all edge weights wi,j , where wi,j

might be zero because it does not match the causal ordering, or because the causal interaction is
just absent. This is done in the following way: From each sampling, we obtain averaged estimated
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edge weights ŵi,j (i, j = 1, . . . , p) according to (10). Now, we count the “bad” estimates of the
edge weights by comparing with the true edge weight as follows:

δbad(i, j) =

{
Θ(|ŵi,j |− w0) if wi,j = 0

Θ
(∣∣∣wi,j−ŵi,j

ŵi,j

∣∣∣− w1

)
if wi,j &= 0

. (17)

Θ(x) denotes the threshold function which is Θ(x) = 0 for x ≤ 0 and Θ(x) = 1 for x > 0.
Thus, for a weight which is zero in the original DAG used to generate the data, the averaged
estimate is counted as bad if its absolute value exceeds a threshold value w0. For an edge
with nonzero weight of the original DAG the average estimate is counted as bad, if the relative
deviation of the average estimated weight and the original weight exceeds threshold value w1.
We used w0 = 0.1 and w1 = 0.5. In general, details of the results might depend on the actual
values of w0 and w1, but we verified that the principal trends, with respect to which sampling
approach performs better, remain the same [12]. Also when using the threshold-independent
area under the Receiver-Operator Characteristics (ROC), the principal nature of the results does
not change [12]. Thus, we concentrate here on estimating the “bad” edges by iterating over all
edges, i.e. we measured

nbad =
1

p(p− 1)

∑

i $=j

δbad(i, j) . (18)

3.1. Comparing Different approaches
First, we compare the performance of the four different approaches, i.e. when using the original
ordering, sampling orderings with MCMC based on the full likelihood, sampling with pair
probabilities and sampling with triplet probabilities.

 0
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Figure 1. Average fraction nbad of incorrectly estimated edge weights as a function of the number of
interventions r per node. The results are obtained using four different sampling approaches using the true
maximum likelihoods (full), the pair BS probabilities (pair), the triplet BS probabilities (triplet) and using just
the exact ordering of nodes of the DAGs. The running time for the sampling using the true maximum likelihoods
was restricted to two times the CPU time of the triplet sampling. (left) The data was generated for 1000 randomly
generated scale free DAGs (m = 3) of size p = 20 nodes. (right) Results for 200 scale free DAGs (m = 4) of size
p = 50.

In Fig 1 (left) the resulting average values for the fraction nbad of incorrectly estimated edge
weights is shown for scale-free graphs with p = 20 nodes as a function of the relative number
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r/p of single-node interventions. The order in which the nodes are fixed was random. One
can observe that with increasing number of interventions, the quality of the averaged weight
estimate increases. Similar to the case of complete graphs [12], due to the limited number of
MCMC steps performed, sampling using the true likelihoods is the worst approach, except for a
very small number of interventions, where the estimates are bad anyway. For scale-free graphs
the quality of the estimates is much better when using the triplet probabilities as compared
to the pair probabilities. Still, one cannot reach the quality of the estimate which we obtained
when using the single true ordering, which constitutes the lower limit of what is achievable using
any algorithm.

We have repeated the same study for larger graphs of p = 50 nodes, here for m = 4. Again
we have measured the fraction nbad of incorrectly estimated edge weights. In Fig. 1 (right) the
corresponding results are shown. The results for the triplet-based approach are better than for
the pair-based method, and much better than the full MCMC sampling restricted to at most
twice the numerical resources of the triplet-based simulation. Note that the difference between
pair-based approach and triple-based approach is now larger than for the p = 20, m = 3 case.
For p = 50, m = 3 (not shown) the differences are smaller than for p = 50, m = 4. This goes
along with the previous results [12] that the difference between pair-based and triplet-based
approaches grows with the edge-density of the graphs.

3.2. Influence of node degree
It is a natural assumption that the effect of an intervention on a node is larger for higher
number of outgoing edges. For this reason, we have performed simulations for varying order
(increasing/random/decreasing degree) of the nodes. Still, for each experiment exactly (at
most) one node is fixed to zero. This means in particular that after p experiments, each node
has been fixed for exactly one experiment, here the order should have no large influence.

 0

 0.1

 0.2

 0.3

 0  0.5  1  1.5  2

n b
ad

r/p

p=20 nodes
scale free graphs
N=200 experiments

increasing
random

decreasing

Figure 2. Average fraction nbad of incorrectly estimated edge weights as a function of the number of
interventions r per node. The data was generated for 1000 randomly generated scale free DAGs of size p = 20
nodes. The results are obtained using the triplet BS probabilities for different orderings of nodes: with increasing
out-degree, random, and decreasing out-degree.

The results are shown in Fig. 2. For fixing the nodes with decreasing out-degree, the results
for the number nbad of incorrectly estimated edges are best, they are below the results for the
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two other approaches. When using the increasing out-degree order, the results are worst. This
appears natural, because when fixing nodes with higher degree earlier, one learns the causal
structure of a network quicker. Nevertheless for r/p = 1 the results agree within error bars
for the three different orders. Also, for r/p > 1 the results are basically indistinguishable.
The reason is that each node has been fixed already exactly or at least once. Therefore, the
additional information one obtains from fixing a node again is small anyway. This means, the
order does not play so much of a role. Note that for r/p = 1 the results should be statistically
indistinguishable anyway, because here each node has been fixed exactly for one experiment.
Furthermore, the differences between the three approaches are also not very big for r/p < 1. In
particular the regime where nbad decreases strongly seems to extend for all three cases up to
r/p = 1. This means in particular, that fixing the nodes in a random order, which corresponds
to real situations where the node degrees are not known beforehand, is no real drawback when
determining causal structures.

4. Summary and Discussion
To summarise, we studied the estimation of causal orderings and corresponding parameters
in sampled data using interventions. In particular, we compared pairwise Babington-Smith
sampling, which was discussed before [11] with triplet-based sampling for scale-free graphs. This
ensemble is more realistic for real data applications in comparison to Erdős-R é nyi random
graphs for which these approaches have been compared in a previously published work [12].
All results show a better performance for the triplet sampling approach. When limiting the
numerical effort to about two times the running time of the triplet sampling, a sampling using
the full maximum likelihood turned out to be much worse than both pair- and triplet-based
sampling. Nevertheless, for very sparse graphs, the performance of pair- and triplet-based
sampling is more similar.

Therefore, the triplet-based approach and, to some extent, the pair-based approach appear to
be well-balanced: They are computationally efficient enough such that long MCMC chains can
be generated easily for systems large enough for practical applications. This would be impossible
when using a sampling based on the full likelihood, except for very small systems. On the other
hand, in combination with the final computation of the true maximum-likelihood estimators
for a comparable small subset of “best” configurations, the triplet approach allows for accurate
results, in some cases much — in other cases slightly — better than the pair-based approach.

For future work it will be interesting to extend the approaches to very large networks. There
exist other approaches for the estimation of the causal structure of actually very large networks
of thousands of nodes using ad hoc heuristic algorithms [18, 19] which are based, among others,
on clustering approaches and work often on a coarse-grained level. Although the approaches
presented here are based on generative models, allowing for probabilistic interpretations and
allowing for detailed reconstruction of the underlying networks, they can be extended to much
larger systems as well. This can be achieved for a given large set of nodes by considering
many different subsystems (subgraphs) of medium size and treating them with the correct joint
likelihoods. The resulting sub networks can be assembled to one large consensus network. Here,
e.g. the “Iterative Sub-Network Component Analysis” approach [20] or similar approaches can
be applied.

Furthermore, it could be interesting to study more thoroughly the point r = p where most
results exhibit a notable change of characteristics: For r < p the progress when adding further
interventions is much faster compared to r > p. It could be interesting whether this change
corresponds to a kind of information-driven “learning” phase transition, similar to Hopfield
neural networks where the memory does not work well beyond a certain number of patterns to
be stored.

Finally, it would be beneficial to try other intervention strategies, e.g interventions of more
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than one node per experiment. Also adaptive schemes could be useful, where the choice of the
next intervention node depends on the outcome of the previous interventions.
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