
HAL Id: hal-02350422
https://hal.science/hal-02350422v1

Submitted on 8 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A sum-product algorithm with polynomials for
computing exact derivatives of the likelihood in

Bayesian networks
Alexandra Lefebvre, Grégory Nuel

To cite this version:
Alexandra Lefebvre, Grégory Nuel. A sum-product algorithm with polynomials for computing exact
derivatives of the likelihood in Bayesian networks. Proceedings of Machine Learning Research, 2018,
72, pp.201 - 212. �hal-02350422�

https://hal.science/hal-02350422v1
https://hal.archives-ouvertes.fr


A sum-product algorithm with polynomials for
computing exact derivatives of the likelihood in

Bayesian networks

Alexandra Lefebvre and Grégory Nuel
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Abstract

We consider a Bayesian network with a parameter θ. It is well known
that the probability of an evidence conditional on θ (the likelihood) can be
computed through a sum-product of potentials. In this work we propose a
polynomial version of the sum-product algorithm based on generating func-
tions for computing both the likelihood function and all its exact derivatives.
For a unidimensional parameter we obtain the derivatives up to order d with
a complexity O(C × d2) where C is the complexity for computing the likeli-
hood alone. For a parameter of p dimensions we obtain the likelihood, the
gradient and the Hessian with a complexity O(C × p2). These complexi-
ties are similar to the numerical method with the main advantage that it
computes exact derivatives instead of approximations.

1 Introduction

We consider a finite set of random variables XU = {X1, . . . , Xn} over a parametric
Bayesian network (BN) with parameter θ ∈ Rp (See Koller and Friedman (2009)
or Nielsen and Jensen (2009) for a detailed introduction to Bayesian networks).
Let pau be the subset (possibly empty) of U associated with the parents of Xu,
and for all u ∈ U , let Xu be the discrete or continuous set of values taken by Xu.
It is well known that the probability of an evidence ev = ∩nu=1{Xu ∈ X ∗u ⊂ Xu}
can be computed through the following sum-product expression:

P(ev|θ) =
∑
X1

. . .
∑
Xn

n∏
u=1

φu
(
Xu, Xpau |θ

)
(1)
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where φu
(
Xu, Xpau |θ

)
= 1Xu∈X ∗uP

(
Xu|Xpau ; θ

)
are the potentials of each variable.

From a statistical point of view, Ln(θ) = P(ev|θ) is the likelihood of θ given the
evidence. In statistics, computing the derivatives of the likelihood function is of
great interest, especially the first and second order derivatives, from which one
can derive the score and the observed Fisher information matrix. These quantities
can not only help maximizing the likelihood function (e.g. through Newton-based
algorithms) but also allow one to obtain confidence intervals on parameters as well
as performing hypothesis testing (Prum, 2010).

In probabilistic graphical models such as Bayesian networks, the sensitivity
analysis allows one to express L(θ) as a polynomial function of θ under the hy-
pothesis that all potentials can be expressed as polynomials in θ (see Nielsen and
Jensen, 2009, pp 184–185). But when the same parameter appears in many po-
tentials, the resulting polynomial is usually of high order, and its computational
cost prohibitive. As an extension to the sensitivity analysis Darwiche (2003) pro-
posed a method based on network polynomial with network parameters being the
potentials. He uses a multilinear function containing two types of variables (evi-
dence indicators and network parameters) and arithmetic circuits for an efficient
computation. This interesting method has however the same limitation than the
classical sensitivity analysis: it can only deal with simple parametrization (e.g. one
parameter for each probability table entry). Alternatively, in the particular con-
text of the hidden Markov models (HMMs), Cappé and Moulines (2005) suggest
to compute the expectation of any additive functional through smoothing recur-
sions. Taking advantage of the Fisher and Louis identities, they derive the first
and second derivatives of the log-likelihood using these smoothing recursions. This
approach is computationally effective, but its extension to higher order derivatives
is not trivial. On the other hand, several authors suggested to introduce poly-
nomial computations directly in the classical sum-product algorithms in order to
compute various quantities of interest: order k moment of any additive functional
in a Bayesian network (Cowel, 1992; Nilsson, 2001), moment/probability gener-
ating functions of the count of a regular expression in a Markov sequence (Nuel,
2008, 2010).

In the present work, we want to follow the same idea by introducing a sum-
product algorithm over polynomials for computing the derivatives of the likelihood
of any BN. This new method is both an extension of the work of Cappé and
Moulines (2005) from HMMs to BNs, and an extension of the work of Cowel
(1992); Nilsson (2001); Nuel (2008, 2010) to the computation of derivatives.

This paper is organized as follows: in Section 2, we will first introduce the def-
initions, notations and necessary tools to implement our method before explaining
in detail its computation. In Section 3, we illustrate our method with two prac-
tical examples. The first one is a toy example with a simple binary BN. The
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second example is taken from the two-point linkage analysis model used in genet-
ics for locating a targeted gene on the genome. Finally, in Section 4, we propose
a discussion to expose further perspectives.

2 Method

2.1 Definitions and notations

Definition 1 (derivative generating function). Let f be a function of class Cd
(d ∈ N) of θ ∈ R, we define the derivative generating function of f the generating
function associated with the sequence of its derivatives:

Ddf(θ) =
d∑

k=0

f (k)(θ)zk

where z is a dummy variable.

Remark: We generalize the derivative generating function to a multidimensional
parameter with the sequence of partial derivatives. Let f be a function of class Cd
of θ = {θ1, . . . , θp} ∈ Rp,

Ddf(θ) =
∑

k1+...+kp≤d

∂(k1+...+kp)f(θ)

∂θ1
k1 . . . ∂θp

kp
z1
k1 . . . zp

kp

where z1, . . . , zp are p dummy variables.

Our aim: We propose in this work a sum-product algorithm based on polyno-
mials to compute DdL(θ) =

∑d
k=0 L

(k)(θ)zk up to an arbitrary order d.
For the sake of simplicity, we will focus on the unidimensional case and briefly

extend the notions to the multidimensional case at the end of the section.

Definition 2 (Leibniz’s product). Let P =
∑d

k=0 akz
k and Q =

∑d
k=0 bkz

k be two
polynomials in z, we define the Leibniz product of P and Q as

P ? Q =
d∑

k=0

k∑
i=0

(
k

i

)
ak−ibiz

k

where
(
k
i

)
is the binomial coefficient. Note that we deliberately drop all coefficients

of degree greater than d.
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2.2 Computation

In this section we detail the tools of the computation.

Proposition 1. Let f and g be two functions of class Cd of θ ∈ R,

Ddf(θ) ? Ddg(θ) = Dd(fg)(θ).

Proof. Let f and g be two functions of class Cd of θ ∈ R. Let P = Ddf(θ) =∑d
k=0 f

(k)(θ)zk and Q = Ddg(θ) =
∑d

k=0 g
(k)(θ)zk, then

P ? Q =
d∑

k=0

k∑
i=0

(
k

i

)
f (k−i)(θ)g(i)(θ)zk.

We recognize the Leibniz’s rule for computing the derivatives of the product of
two functions which concludes the proof.

It is well known that a BN is decomposable into a factorized graphical structure
called a Junction tree (JT) composed of a set of cliques and a set of edges and
following the Junction tree properties (see Chapter 4 in Cowell et al. (1999) or
Koller and Friedman (2009) for details). Let I be the number of cliques and
edges of the JT. For i ∈ 1, . . . I, we denote by Ci ⊂ U (resp. Si ⊂ U) the set
of labels of the variables in the i-th clique (resp. i-th separator) of the JT. Let
Ci = {Xu, u ∈ Ci} and Si = {Xu, u ∈ Si}. We denote by ofu the choice of a unique
i ∈ {1, . . . , I} such that {Xu, Xpau} ⊂ Ci. Then the polynomial potentials of the
cliques for an arbitrary order d are defined as:

Φd
i (Ci|θ) = Fu∈Ci∗D

dφu(Xu|Xpau ; θ) (2)

with Ci∗ = {u ∈ U , ofu = i}. For all i ∈ {1, . . . , I}, let toi ∈ {i + 1, . . . , I} be
the label of the subsequent clique of Ci. We also define fromi = {j, toj = i}. For
all i ∈ {1, . . . , I}, we recursively define Vi = {i} ∪j∈fromi Vj and Vi = {Cj}j∈Vi .
Then the polynomial forward messages for all i ∈ {1, . . . , I} are the quantities
recursively defined as follows:

F d
i (Si|θ) =

∑
Vi\Si

F
u∈Vi∗

Ddφu(Xu|Xpau ; θ)

where Vi∗ = {u ∈ U ,∃j ∈ Vi, ofu = j}. Note that VI = XVI∗ = XU and SI = ∅
and we get in particular:

F d
I(∅|θ) =

∑
XU

F
U
Ddφu(Xu|Xpau ; θ) = Dd

(∑
XU

∏
U

φu(Xu|Xpau ; θ)

)
= DdL(θ).

Applying the message passing algorithm with our polynomial potentials results
in the following proposition for computing recursively the forward messages :
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Proposition 2. ∀i ∈ {1, . . . , I},

F d
i (Si|θ) =

∑
Ci\Si

(
F

j∈fromi
F d
j (Sj|θ)

)
?Φd

i (Ci|θ).

Proof. The proof is straightforward with the belief propagation in JT over which
potentials loaded are polynomial potentials, the additive law is the conventional
additive law (+) and the multiplicative law is the Leibniz’s product (F). Some
details of the proof are given below: For all i ∈ {1, . . . I},

F d
i (Si|θ) =

∑
Vi\Si

F
u∈Vi∗

Ddφu(Xu|Xpau ; θ) =
∑
Vj\Sj
j∈fromi

∑
Ci\Si

F
u∈Vi∗

Ddφu(Xu|Xpau ; θ).

Recalling the JT properties we have, for all i ∈ {1, . . . , I}, Vi \ Si = tj∈fromiVj \
Sj tCi \Si and Vi∗ = tj∈fromiVj∗tCi∗ where t is the disjoint union, and therefore

F d
i (Si|θ) =

∑
Ci\Si

 F
j∈fromi

∑
Vj\Sj

(
F

u∈Vj∗
Ddφu(Xu|Xpau ; θ)

)
︸ ︷︷ ︸

F dj (Sj |θ)

 F
u∈Ci∗

Ddφu(Xu|Xpau ; θ)

which concludes the proof by induction.

Remark: We make the choice here to focus on forward messages as we are
only interested in the likelihood and its derivatives but the extension to backward
messages to compute joint probabilities and their derivatives is straightforward.

The extension of our method to a BN with a multidimensional parameter θ ∈
Rp, θ = θ1, . . . , θp, implies mutlivariate polynomials with as many dummy variables
as dimensions of the parameter. The “Leibniz’s product” of two multivariate
polynomials is defined as:

P ? Q =
∑

k1+...+kp≤d

k1∑
i1=0

. . .

kp∑
ip=0

(
k1
i1

)
. . .

(
kp
ip

)
ak1−i1,...,kp−ipbi1,...,ipz1

k1 . . . zp
kp

where f is a function of class Cd of θ ∈ Rp and P and Q are two polynomials of
degree at most d in p dummy variables. The generalization of Proposition 2 to a
multidimensional parameter gives:

F d
I(∅|θ) =

∑
k1+...+kp≤d

∂(k1+...+kp)L(θ)

∂θ1
k1 . . . ∂θp

kp
z1
k1 . . . zp

kp = DdL(θ).
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3 Results

In this section we illustrate the implementation and results with our method with
two examples. We first present an illustrative toy-example with a BN over binary
variables and in the second part we will illustrate our method with the two-point
linkage analysis which aims to locate a targeted gene on the genome.

For the sake of simplicity, we will only consider here a degree d = 2 and
unidimensional parameters but our method is valid for any arbitrary degree and
multidimensional parameters.

3.1 Toy-example: A binary BN

Let us consider the BN over n variables XU = {Xu}u=1,...,n represented in the
Directed Acyclic Graph (DAG) Figure 1 where n = 7 and XU ∈ {0, 1}n. For all
u ∈ {1, . . . , n} we assume that

P(Xu = 1|Xpau ; θ) =
exp

(
µ+ θ

∑
v∈pau

Xv

)
1 + exp

(
µ+ θ

∑
v∈pau

Xv

)
where µ = −0.5 is assumed to be known.

The junction tree JT1 of Figure 1 has been obtained from this DAG. For all
i ∈ {1, . . . , I = 4}, Ci∗ is the set of labels of the stared variables in Ci.

Let

Pk = fk(θ) + f ′k(θ)z + f ′′k (θ)z2 with fk(θ) =
eµ+kθ

1 + eµ+kθ
.

Note that the properties of the derivatives give 1 − fk(θ) + (1 − fk)′(θ)z + (1 −
fk)
′′(θ)z2 = 1 − Pk and, for all u ∈ {1, . . . n}, the polynomial potential of Xu is

given by the expression:

D2φu

Xu

∣∣∣∣∣∣
∑
v∈pau

Xv = k; θ

 =

{
Pk if Xu = 1
1− Pk if Xu = 0

.

We now consider the evidence ev = {X1 = 0, X7 = 1} which leads to D2φ1(X1 =
1) = D2φ7(X7 = 0|X5 +X6; θ) = 0, the null polynomial. For all i ∈ {1, . . . , 4}, the
polynomial potentials Φ2

i (Ci|θ) are computed with Equation 2 and the polynomial
forward messages F 2

i (Si|θ) recursively with Proposition 2. For example, if we
drop θ in the notations and we assume that Φ2

1(X1, X2), Φ2
2(X3, X4), F

2
1(X2) and

F 2
2(X3) are computed, the quantities Φ2

3(X2, X3, X5) and F 2
3(X5) are given by the

equations:
Φ2

3(X2, X3, X5) = D2φ3(X3|X2) ? D
2φ5(X5|X2, X3)
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X1 X2

X3 X4

X5

X6

X7

C1 = {X∗
1 , X

∗
2 }

C2 = {X3, X
∗
4 }

C3 = {X2, X
∗
3 , X

∗
5 } C4 = {X5, X

∗
6 , X

∗
7 }

F1(X2|θ)

F2(X3|θ)

F3(X5|θ) Dd
L(θ)

Figure 1: DAG of the toy-example and a corresponding JT containing four cliques.
For all i ∈ {1, . . . , I = 4}, Ci∗ is the set of labels of the stared variables in Ci.
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Φ2
2(X3 = 0, X4 = 0) 0.622459331201855

Φ2
2(X3 = 0, X4 = 1) 0.377540668798145

Φ2
2(X3 = 1, X4 = 0) 0.3775407− 0.2350037z + 0.05755679z2

Φ2
2(X3 = 1, X4 = 1) 0.6224593 + 0.2350037z − 0.05755679z2

F 2
2(X3 = 0) 1

F 2
2(X3 = 1) 1

F 2
3(X5 = 0) 0.2655306− 0.1096367z + 0.06460333z2

F 2
3(X5 = 1) 0.3569288 + 0.1096367z − 0.06460333z2

F 2
4(∅) = D2L(θ) 0.3903244 + 0.1678956z − 0.05803046z2

Table 1: A sample of chosen clique potentials and forward messages in JT1.

and
F 2

3(X5) =
∑
X2,X3

F 2
1(X2) ? F

2
2(X3) ?Φ2

3(X2, X3, X5).

Note that building JT1 and computing all polynomial clique potentials and
forward messages is strictly equivalent to performing a variable eliminiation with
the following elimination order: X1, X4, {X3, X2}, {X5, X6, X7} (see Koller and
Friedman, 2009).

Table 1 gives the expression of a few chosen polynomial clique potentials and
polynomial forward messages for θ = 1 and ev = {X1 = 0, X7 = 1}.

Note that X4 having only X3 as a parent, the potentials Φ2
2(X3 = 0, X4) for

X4 ∈ {0, 1} are of degree 0. We also can notice that F 2
2(X3 = 0) = F 2

2(X3 = 1) =
1. Indeed F 2

2(X3 = 0) = (1−P0) +P0 and F 2
2(X3 = 1) = (1−P1) +P1. All other

potentials in this table are of degree greater than 0. In particular F 2
4(∅) which has

been verified numerically (data not shown) is a polynomial in z containing L(θ)
and its derivatives up to order 2 in its coefficients.

Table 2 gives the values obtained for the log-likelihood of θ = 1 and its deriva-
tives up to order 2 for different simulations of N values for {X1, . . . , X7} with
θ = 1. Let evab denote the observation {X1 = a,X7 = b} and Nab the number of
observations of the evidence evab among N . Let us recall that the true θ under
simulation is θ∗ = 1. We can see as expected that `′(1)/`(1) tends towards 0 with
an increasing N as L′(θ∗ = 1) tends toward 0. We can also see that −`′′(1) is
small for N=1 leading to a large variance which was expected in the case of the
observation of a unique couple {X1, X7}. On the other hand, −`′′(1) increases
linearly with an increasing N as expected as 1/(−`′′(θ)) (the Cramer-Rao bound
for the variance of β) decreases linearly with N .
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N N00 N01 N10 N11 `(1) `′(1) `′(1)/`(1) `′′(1)

1 1 0 0 0 −1.460 −7.233× 10−1 4.952× 10−1 −2.731× 10−1

1 0 1 0 0 −9.408× 10−1 4.301× 10−1 −4.572× 10−1 −3.337× 10−1

1 0 0 1 0 −2.012 −8.981× 10−1 4.466× 10−1 −6.914× 10−1

1 0 0 0 1 −1.412 4.933× 10−1 −3.494× 10−1 −3.067× 10−1

50 4 20 8 18 −6.616× 101 7.405 −1.119× 10−1 −1.882× 101

500 136 187 71 106 −6.670× 102 −2.940× 101 4.408× 10−2 −1.811× 102

5000 1198 1868 753 1181 −6.689× 103 −1.566× 102 2.341× 10−2 −1.833× 103

50,000 11592 19470 6681 12257 −6.599× 104 3.754× 101 −5.690× 10−4 −1.804× 104

Table 2: Log-likelihood and its derivatives up to order 2 computed with our algo-
rithm for different simulations of N values for {X1, . . . , X7} leading to Nab observed
couples {X1 = a,X7 = b}.

3.2 Two-point linkage in genetics

3.2.1 Introduction to the two-point linkage in genetics

The two-point linkage analysis is a statistical analysis in genetic epidemiology
aiming at locating a targeted gene on the genome. A detailed explanation of
basics in genetics and genetic linkage is given in Lauritzen and Sheehan (2003)
Section 2.2 and we recommend those not familiar with genetic data to read this
reference. We give below some brief recalls:

Most of the human cells are diploid (containing pairs of chromosomes) with
one paternal chromosome and one maternal chromosome. In the gonads, a diploid
cell with double-stranded chromosomes split into four haploid cells with single-
stranded chromosomes called gametes, dedicated to be transmitted to the offspring.
During meiosis, two chromosomes of the same pair can exchange genetic material
and produce recombinant gametes. This phenomenon is called a crossover. Fig-
ure 2 represents a simplified meiosis with only one pair of chromosomes. The
closest two genes are on the chromosome the less chances their alleles to be sep-
arated during meiosis. The two-point linkage analysis uses this phenomenon, the
results of genetic tests for a marker whose location on the genome is known, the
penetrance of the targeted gene (probability of the trait (or phenotype) conditional
on the genotype) and the allele frequencies previously estimated with segregation
analysis, in order to estimate the distance between the targeted gene (whose al-
leles are here denoted X) and the marker (whose alleles are here denoted M) as
a function of the fraction of recombinant gametes θ = #R/(#R + #NR). Fig-
ure 3 is a DAG of the variables commonly used in genetic linkage where the names
of the variables are the same as in Figure 2 with the addition of the traits Y
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Paternal 
Chromosome

Maternal 
Chromosome

SX=pat SM=pat

SX=mat

SX=pat

SM=pat

SM=mat

SM=mat

SX=mat

Xpat Mpat

Xmat Mmat

NR

R

R

NR

SX=pat SM=pat

SX=mat

SX=pat

SM=pat

SM=mat

SM=mat

SX=mat

Xpat Mpat

Xpat Mmat

Xmat Mpat

Xmat Mmat

Figure 2: Simplified meiosis with only one pair of chromosomes between which a
crossover happens. Mpat (resp. Mmat) stands for the paternal (resp. maternal)
allele of the marker, Xpat (resp. Xmat) stands for the paternal (resp. maternal)
allele of the targeted gene and SX ∈ {pat,mat} (resp. SM ∈ {pat,mat}) stands
for the selector for X (resp. M). R (resp. NR) denotes a recombinant (resp.
non-recombinant) gamete.

coded by the targeted gene and the genetic tests for the marker G. Each allele
M and X are labeled pat or mat according to their origin. SM ∈ {pat,mat}
(resp. SX ∈ {pat,mat}) denotes the selector (the origin) of the marker (resp. the
targeted gene) for the offspring.

3.2.2 Polynomials associated with the variables

In this section and for the sake of simplicity we will expose our method with a very
simple trio composed of one father, one mother and one child and we will again
be interested in computing derivatives up the degree d = 2. Figure 3 represents
a DAG of the variables involved where the labels pat and mat for the selectors
denote the origin (paternal or maternal) of the transmitted allele M and X.

Let WU = {Wu}u=1,...n the set of variables in Figure 3. We are now interested
in the implementation of the functions D2P(Wu|Wpau ; θ). Note that, for all Wu ∈
WU \ {SMpat3 , SMmat3} we have D2P(Wu|Wpau ; θ) = P(Wu|Wpau) are all 0 degree
polynomials.

As an example we will consider the contraol2a example given in Mendel pack-
age Lange et al. (2013) using PGM1 as the marker and RADIN as the targeted
gene. PGM1 has 4 alleles ({1+, 1-, 2+, 2-}) with given allele frequencies and given
conditional probabilities of the results of the genetic test conditional on the geno-
type. RADIN is biallelic ({+, -}) with given allele frequencies and given pene-
trance.

Constant polynomials. We assume a Mendelian transmission of the alleles
such that DdP(SXpat3 = s) = DdP(SXmat3 = s) = 0.5 with s ∈ {pat,mat}. For
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Y1

Xpat1

Xmat1

Xpat3

SMpat3SXpat3

SMmat3SXmat3

Θ

Θ

Y2

Xpat2

Xmat2

Xmat3 G2

Mpat2

Mmat2

Mmat3

G1

Mpat1

Mmat1

Mpat3

G3Y3

Figure 3: DAG of the variables commonly used in genetic linkage analysis in a
simple trio with one father labeled 1, one mother labeled 2 and one child labeled
3. Y stands for the trait and G for the genetic test for the marker.

all Wu ∈ WU \{SMpat3 , SMmat3 , SXpat3 , SXmat3}, DdP(Wu|Wpau ; θ) = P(Wu|Wpau)
are straightforward assuming Hardy-Weinberg equilibrium for the founders (con-
stant allele and genotype frequencies from generation to generation) and using
allele frequencies, conditional probabilities of the genetic tests and penetrance of
the targeted gene.

Polynomials of strictly positive degree. As P(SMpat3|SXpat3 ; θ) and P(SMmat3|SXmat3 ; θ)
depend on θ, their polynomials are of degree strictly positive and we have

D2P(SMpat3 = SXpat3|SXpat3 ; θ) = D2P(SMmat3 = SXmat3 |SXmat3 ; θ) = (1−θ)−z
and

D2P(SMpat3 6= SXpat3|SXpat3 ; θ) = D2P(SMmat3 6= SXmat3|SXmat3 ; θ) = θ + z

In practice, as θ is constrained, we use the logit transformation θ = eβ/(1 + eβ)
and therefore:

D2P(SMpat3 = SXpat3|SXpat3 ; β) =
1

1 + eβ
− eβ

(1 + eβ)2
z − eβ(1− eβ)

(1 + eβ)3
z2

and

D2P(SMpat3 6= SXpat3 |SXpat3 ; β) =
eβ

1 + eβ
+

eβ

(1 + eβ)2
z +

eβ
(
1− eβ

)
(1 + eβ)3

z2

and respectively for the maternal selector SMmat3 . Note that preprocessing first the
polynomials related to the marker and the polynomials related to the targeted gene
before moralizing the graph is crucial in the context of genetic analysis as explained
in Lauritzen and Sheehan (2003) Section 3.3 in order to remove unnecessary links.
The following results have been obtained after preprocessing potentials.
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θ̂ IC 95% LR (p-value) W (p-value) S (p-value)
KUS(n=22) 0.059 [0.008, 0.320] 14.574 (1.3× 10−4) 7.264 (7.0× 10−3) 32.010 (1.5× 10−8)
ALL (n=93) 0.193 [0.106, 0.326] 17.010 (3.7× 10−5) 15.821 (7× 10−5) 12.900 (3.3× 10−4)

Table 3: Confidence intervals on θ and statistics of the likelihood ration test (LR),
Wald test (W) and Score test (S) along with the p-values.

3.2.3 Results

In this section we give some results of the implementation of our method over
the two-point linkage analysis for the KUS family (22 individuals) and the whole
controle2a (93 individuals) set of pedigrees in Mendel package (Lange et al.,
2013). We suggest the readers not familiar with genetic linkage notions the fol-
lowing reference for the basics in quantities used such as the LOD score: section
4.1 Lauritzen and Sheehan (2003).

In genetic linkage analysis, the null hypothesis θ̂ = θ0 = 0.5 is tested against
θ̂ < 0.5 with the estimation of a quantity named the LOD score, LOD(θ) =
log10 (L(θ)/L(0.5)) .Defining Z(β) = log10

(
L
(
eβ/(1 + eβ)

)
/L(0.5)

)
, we computed

values of Z(β) for various β and obtained the same values as computed with
the Mendel package for the corresponding LOD(θ). The computed derivatives
of L̃(β) = L

(
eβ/(1 + eβ)

)
allow to calculate confidence intervals on θ and to per-

form likelihood ratio test, Wald test and score test whose results are compared
in Table 3 for both the KUS family and the whole set of families in control2a.
As expected, the confidence intervals are shrinking with an increasing number of
individuals. The likelihood ratio test is the one commonly done in genetic linkage
through the LOD score. We can see Table 3 that the three tests are not equivalent
though all p-values are significant. One further extension of this work could be a
comparison of the power of these tests in genetic linkage in different pedigrees.

4 Discussion

We proposed in this work an algorithm on polynomials to compute L(θ) and its
exact derivatives in a single belief propagation up to an arbitrary order d with a
complexity of O(C × d2) for a unidimensional parameter and O(C × p2) if d = 2
for a parameter of dimension p where C is the complexity to compute L(θ) alone
with a classical belief propagation algorithm. These complexities are similar to
the one needed in the classical empirical method (numerical derivation) and to the
approach of Cappé and Moulines (2005) with some advantages. Its main advantage
over the empirical method is that it provides exact value in a single computation
with no need to iteratively converge to the solution. Its main advantage over Cappé
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and Moulines (2005) is its ability to deal with any BN rather than only HMMs as
well as its straightforward formulation and implementation for any degree.

We have considered an application in the two-point linkage analysis and we
obtained confidence intervals on the parameter. The derivatives of the likelihood
also allowed us to perform other tests than the LR test commonly used in link-
age analysis to compare their performances. Our method is extendable to any
parametric BN and more generally in sum-product computations in probabilistic
graphical models.

As we focused in this work on the likelihood and its derivatives only, we re-
stricted our explanation to the forward quantities but of course backward quan-
tities can be computed if needed. It could be interesting to study the quanti-
ties DdP(Xv, ev|Xpav ; θ) with v ⊂ U . These quantities could be used to obtain
DdP(Xv|ev; θ) for an arbitrary d and therefore help studies about variations of the
derivatives of marginal probabilities.
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