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Moments of the Count of a Regular Expression in
a Heterogeneous Random Sequence

G. Nuel

February 12, 2019

Abstract

We focus here on the distribution of the random count N of a regular
expression in a multi-state random sequence generated by a heterogenous
Markov source. We first briefly recall how classical Markov chain embedding
techniques allow reducing the problem to the count of specific transitions in
a (heterogenous) order 1 Markov chain over a deterministic finite automaton
state space. From this result we derive the expression of both the mgf/pgf
of N as well as the factorial and non-factorial moments of N . We then intro-
duce the notion of evidence-based constraints in this context. Following the
classical forward/backward algorithm in hidden Markov models, we provide
explicit recursions allowing to compute the mgf/pgf of N under the evidence
constraint. All the results presented are illustrated with a toy example.

Keywords: probability generating function; moment generating function;
probabilistic graphical model, Bayesian network; sum-product algorithm;
forward/backward algorithms.

1 Introduction

Let R be a regular expression on the finite alphabet Σ. For any sequence X ∈ Σn

we define N as the number of occurrences of R in X. Our main purpose is
to study the distribution and moments of N under the assumption that X is
generated according to a heterogeneous Markovian source. The distribution of N
under various assumptions (ex: binary sequences, memory-less random sources,
homogeneous Markovian source, etc.) is known to have many applications in a
wide range of fields (reliability, linguistic, data compression, bioinformatics, etc.)
and as been extensively studied by the literature [30, 11, 43, 23, 46, 38, 3, 21].
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Most of this research mainly focus on homogeneous models because this as-
sumption usually allows to obtain simpler and computationally more efficient for-
mulas. Heterogenous models are nevertheless often encountered, either directly as
continuous process [9, 49] or, more often, as discrete process though hidden Markov
models – HMMs – [42, 15, 47]. In the context of HMMs the forward/backward al-
gorithm [4, 18] allows computing efficiently the posterior distribution of the hidden
states given the observations which is a heterogenous Markov model. The distri-
bution of N in such hidden sequences as been for example extensively studied in
[1, 27] and others like [20] explicitly consider the case of heterogenous Markov
models.

In the present work, we focus on the distribution and moments of N specif-
ically under the heterogeneous assumption. We start by recalling how classical
Markov chain embedding techniques allow reducing the problem to the count of
specific transitions in a (heterogenous) order 1 Markov chain over a deterministic
finite automaton state space. Next we recall how to obtain efficiently the factorial
moments of N through the derivatives of the probability generating function (pgf).

We then present two results: 1) we establish the non-factorial moments of N
by introducing a formal (partial) computation of the moment generating function
(mgf) of N ; 2) inspired by the probabilistic graphical models [14], we focus on the
constrained distribution of N given a generic evidence by introducing modified
Forward-Backward recursions both for the pgf and mgf of N . This last result is
clearly the most original and innovative part of the present work.

All results are illustrated through a simple example over a binary alphabet and
the complete R source code of the computations is provided as a supplementary
material.

2 Recalls and Notations

Let R be a regular expression on the finite alphabet Σ. For any random sequence
X ∈ Σn we define an occurrence of R in position i as the event {X1 . . . Xi ∈ Σ?R}
(i.e. R is a suffix of X1 . . . Xn). The random (overlapping1) count of R in X
is defined by N =

∑n
i=1 1{X1 . . . Xi ∈ Σ?R}. Our main interest is to study

the distribution of N when X is generated by a random Markov source (ex: i.i.d.
sequence, homogeneous or heterogeneous finite order Markov chain, variable length
Markov chain, etc.).

We call Markov chain embedding2 (MCE) of the problem any first-order Markov

1Non-overlapping counts – also called renewal counts – are sometimes considered instead.
For simplification purpose we consider here only overlapping counts but the extension to non-
overlapping counts is straightforward (see [34] for example).

2Also called finite Markov chain imbedding or auxiliary Markov chain by some authors.
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sequence Y ∈ Qn of the finite state space Q such as {X1 . . . Xi ∈ Σ?R} = {Yi ∈
F} ∀i ∈ {1, . . . , n} where F ⊂ Q is the subset of final states. For any p, q ∈
Q we denote by Ti(p, q) = P(Yi = q| Yi−1 = p) the transitions in position i
and we decompose the transition matrix into T i = P i + Qi where Pi(p, q) =
1q /∈FTi(p, q) are the non-counting transitions and Qi(p, q) = 1q∈FTi(p, q) are the
counting transitions.

This notion, initially introduced by [12] has been extensively used by many
authors [16, 10, 8, 33, 26, 40, 3]. For many years, MCE was constructed in an ad
hoc manner for each considered problem (ex: runs, urn problems, scan statistics,
sparse-seed, etc.) until the connexion with the finite automaton theory [13] was
pointed out by several authors [30, 5, 17] and the notion of “optimal” MCE finally
emerged [19, 34, 22, 45, 25, 29, 28].

Theorem 1 ([34]). We can use Deterministic Finite Automata (DFA) to build
an optimal (in |Q|) Markov chain embedding of any problem. The probability
generating function (pgf) of N can therefore be written as:

G(z)
def
= E

[
zN
]

=
∞∑
k=0

P(N = k)zk = u

[
n∏

i=2

(P i + zQi)

]
v (1)

where u is a starting (row-)vector and v = (1 1 . . . 1)T .

It is therefore possible to use Eq. (1) to compute the pgf of N and hence the
full distribution of N with complexity O(n×Nmax× |Q|× |Σ|), where Nmax is the
maximum number of occurrences of N in a arbitrary sequence of length n. Note
that in the particular case where the transition of the MCE is homogeneous (i.e.
T i ≡ T ∀i), the computation of G(z) as a rational function can be done efficiently
using formal matrix inversions, the expression of G(z) then being used to obtain
distributions or moments using Taylor-Expansion techniques. For more details,
see [30, 44, 39]. These interesting approaches will not be further developed in this
article since they assume homogeneity and we do not want to restrict ourselves to
this particular case in the present work.

In Figure 1 we can see a toy example of MCE for a simple problem over the bi-
nary alphabet Σ = {A, B}. In Figure 2 we can see the result of the mgf computation
for this problem. Note that we deliberately decided to use a homogeneous model
in the illustrative example for the sake of simplicity. This choice might appear
to be in contradiction with the main purpose of the paper (to focus on heteroge-
neous models), but all the computations presented obviously remain valid in the
homogeneous case and, as we will see in Section 4, even homogeneous background
model like the one we consider here can generate heterogeneity when considering
constrained distributions. From now on, this example will be used to illustrate all
the results presented.
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P i + zQi =



A B AA AB AAA ABA

A 0 0 πi(A) πi(B) 0 0
B πi(A) πi(B) 0 0 0 0
AA 0 0 0 πi(B) zπi(A) 0
AB 0 πi(B) 0 0 0 zπi(A)
AAA 0 0 0 πi(B) zπi(A) 0
ABA 0 0 πi(A) πi(B) 0 0


Figure 1: Example of (optimal) MCE for R = A[AB]A over the binary alphabet Σ =
{A, B}, and where X generated by a possibly heterogeneous memory-less source.
Top: the DFA corresponding to the problem with Q = {A, B, AA, AB, AAA, ABA} and
F = {AAA, ABA}. Bottom: the transition Matrix and denote by πi(·) = P(Xi = ·)
where counting transitions are marked with the dummy variable z.
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G(z) = u(P + zQ)n−1v = 0.084z0 + 0.17z1 + 0.21z2 + 0.19z3

+ 0.15z4 + 0.093z5 + 0.052z6 + 0.026z7 + 0.012z8 + 0.0047z9

+ 0.0017z10 + 0.00058z11 + 0.00018z12 + 4.9× 10−5z13 + 1.2× 10−5z14

+ 2.6× 10−6z15 + 5.1× 10−7z16 + 6.6× 10−8z17 + 1.1× 10−8z18

Figure 2: Distribution of N assuming that πi(A) = 0.4, πi(B) = 0.6 for all i and
n = 20. Top: graphical representation of the distribution (mode indicated by the
dashed line). Bottom: the pgf of N .
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The reader interested by computations with heterogeneous sources might re-
fer to the supplementary material where we consider the present example both
with homogenous and heterogenous sources with a simple adaptation of the same
formulas.

Obviously, since the mgf provides the full distribution of N , it can therefore
be used to compute any moment of N . However, it is well known that various
moments (typically: the expectation and variance of N) can be obtained with a
dramatically lower computational cost usually under the homogeneous assumption
[6, 41]. In [37], all order lower than k factorial moments of N are established in the
heterogeneous case with complexityO(n×k×|Q|×|Σ|) using a simple modification
of Eq. (1):

Corollary 2 ([37]). For any k > 0 we have:

E [(N)k]
def
= E

[
N !

(N − k)!

]
= G(k)(1) = k!

[
u

[
n∏

i=2

(P i + Qi + zQi)

]
v

]
zk

(2)

where [·]zk denote the extraction of the z-polynomial coefficient of degree k.

We can see in Figure 3 the factorial moments computed for k = 1, 2, . . . , 5
in our example using both the complete distribution (pgf-based) and the faster
Eq. (2). Without surprise, the results are identical up to the machine precision.

3 Non-Factorial Moments

As explained in [37], factorial moments can be used to compute cumulants and/or
non-factorial moments using various polynomial relationships. But [38] pointed
out the limitations of such approach in floating-point arithmetic. In practice, high
order non-factorial moments (ex: k = 5, 6, 7, . . .) are not reliable using factorial
moments unless using arbitrary-precision computations or sophisticated modular
rational approaches [39]. It is therefore interesting to find an alternative way to
compute directly non-factorial moments.

For that purpose, we simply derive from Eq. (1) the general expression of the
moment-generating function (mgf) of N :

M(t)
def
= E

[
etN
]

= G(et) = u

[
n∏

i=2

(P i + etQi)

]
v. (3)

Interestingly, the value M(t) of the mgf for any real number t can be computed
at a modest computational cost ofO(n×|Q|×|Σ|). As pointed out in [38] it is hence
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k=5

u(P + Q + zQ)n−1v = 1z0 + 2.88z1 + 4.5312z2

+ 5.044224z3 + 4.38534144z4 + 3.1302746112z5 + . . .

E [(N)5] = 5!× 3.1302746112 = 375.632953344

=
18∑
k=0

k!

(k − 5)!
P(N = k)︸ ︷︷ ︸

reference (pgf)

= 375.632953344

Figure 3: Factorial moments of order 6 k = 5 for our illustrative example. Top:
comparison of the reference values (full pgf) to the efficient computation. Bottom:
details of the efficient computation.
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−12.66459 = logP(N > 15) 6 min
t
{logM(t)− 15× t} = −11.08537

Figure 4: Chernoff’s bound for our illustration example with n = 20 and a = 15.
Top: graphical representation of the bound logM(t) − at, the dashed line corre-
sponds to the exact value of logP(N > a). Bottom: the inequality corresponding
to the sharpest bound.

possible to compute numerically the cumulant-generating function Λ(t) = logM(t)
or N which can be used to obtain the following Chernoff’s bound [7]:

logP(N > a) 6 min
t
{Λ(t)− ta} (4)

for any (large) a > 0. In the homogeneous case, the results can be extended
to establish large deviation results like in [32], but the present bound has the
great interest to be valid for any finite n and without any homogeneity assump-
tion. Moreover, as explained in [38], the first two derivatives of Λ(t) can be easily
computed both allowing to speed up the numerical optimization of Eq. (4), and
providing precise-type large deviation approximation using Bahadur-Rao results
[2]. We can see in Figure 4 that the Chernoff’s bound can be surprisingly sharp
even with n = 20.

We are now ready to introduce our new result. Instead of using Eq. (3) for a
given t ∈ R, we can simply replace et by its generating function and we immediately
establish:

Theorem 3.

M(t) =
∞∑
k=0

E
[
Nk
] tk
k!

= u
n∏

i=2

(
P i +

∞∑
k=0

tk

k!
Qi

)
v
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u(P + etQ)n−1v = 1t0 + 2.88t1 + 5.9712t2 + 10.055424t3

+ 14.71487744t4 + 19.3630374912t5 + . . .

E
[
N5
]

= 5!× 19.3630374912 = 2323.564498944001

=
18∑
k=0

k5P(N = k)︸ ︷︷ ︸
reference (pgf)

= 2323.564498944001

E[(N)5] = 24E[N1]− 50E[N2] + 35E[N3]− 10E[N4] + E[N5]

E[N5] = E[(N)1] + 15E[(N)2] + 25E[(N)3] + 10E[(N)4] + E[(N)5]

Figure 5: Computation of the mgf of N for our illustration example up to the order
k = 5 terms. Explicit relationships between order k = 5 factorial and non-factorial
moments are also given.

and hence, for all k > 0 we have:

E
[
Nk
]

= k!M (k)(t) = k!

[
u

[
n∏

i=2

(
P i +

k∑
j=0

tj

j!
Qi

)]
v

]
tk

.

Proof. The result is simply obtained by interchanging the finite product with the
infinite summation. The polynomial terms of order > k are omitted since they
simply do not contribute of the terms of degree 6 k.

Using Theorem 3, it is possible to compute all order lower than k non-factorial
moments of N with complexity O(n× k2 × |Q| × |Σ|). Note that the complexity
in k is here quadratic while it was linear in k for the factorial moments. This is
due to the fact that each term of the product now requires multiplying two order
k polynomials (it was a degree k by degree 1 product for the factorial moments).
We can see in Figure 5 the application of Theorem 3 to obtain the order k = 5
moment of N in our example.
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4 Conditional Distributions

4.1 Notion of Evidence

The distribution of N under-constraints has been also studied [48, 35, 24]. The
most common constraint is of the form N = a. We want here to consider con-
straints of the form Yi ∈ Yi for all i, where Yi ⊂ Q is the subset of acceptable
values for Yi. Inspiring from the probabilistic graphical model theory [14] we call
evidence the event ev = ∪i{Yi ∈ Yi} and our purpose is now to establish the
distribution and moments of N conditionally to the evidence.

For example, in the particular case of our illustration example, if Yi = Q
(neutral evidence) for all i ∈ {1, . . . , n} but Y5 = Y15 = F and Y10 = Q \ F
we have the resulting evidence is: “R occurs in i = 5, 15 but not in i = 10”.
Obviously with such evidence, we know that we must have N > 2 (there is at least
two occurrences) and N 6 Nmax − 1 = 17.

For any I ⊂ {1, . . . , n} let evI = ∪i∈Ievi with evi = {Yi ∈ Yi}. Let ev<i =
ev{1,...,i−1}, ev6i = ev{1,...,i}, ev>i = ev{i+1,...,n}; hence we get ev = ev{1,...,n} =
ev<n+1 = ev6n = ev>0 = ev>1.

4.2 Forward and Backward

For any i ∈ {1, . . . , n} and for all q ∈ Q we introduce the following forward and
backward polynomials:

Fi(q) =
∑
Y<i

zNiP(Y<i, Yi = q, ev6i) Bi(q) =
∑
Y>i

zN−NiP(Y>i, ev>i|Yi = q) (5)

where Y<i = (Y1, . . . , Yi−1) (∅ for i = 1), Y>i = Yi+1, . . . , Yn (∅ for i = n), and with
Ni =

∑i
j=1 1Yj∈F (N0 = 0).

Theorem 4. For all i ∈ {1, . . . , n} and q ∈ Q we have :

Fi(q)Bi(q) =
∑
Y<i−1

∑
Y>i

zNP(Y<i, Yi = q, Y>i, ev) (6)

and for all i ∈ {2, . . . , n} and p, q ∈ Q we have

Fi−1(p)[Pi(p, q) + zQi(p, q)]1q∈YiBi(q) =∑
Y<i−1

∑
Y>i

zNP(Y<i−1, Yi−1 = p, Yi = q, Y>i, ev). (7)
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Proof. We only give here the proof of Eq. (6) since the proof of Eq. (7) is almost
identical. We take advantage of the Markov property, in particular the indepen-
dence of Y<i and Y>i conditionally to Yi = q. We get:

zNP(Y<i, Yi = q, Y>i, ev) = zNizN−NiP(Y<i, Yi = q, Y>i, ev≤i, ev>i)

= zNizN−NiP(Y<i, Y>i, ev≤i, ev>i|Yi = q)× P(Yi = q)

= zNizN−NiP(Y<i, ev≤i|Yi = q)× P(Y>i, ev>i|Yi = q)× P(Yi = q)

= zNiP(Y<i, Yi = q, ev≤i)× zN−NiP(Y>i, ev>i|Yi = q)

from which the summation over Y<i and Y>i immediately gives the results since
the only common term between the two sums is precisely the fixed Yi = q.

Corollary 5. The forward polynomials can be computed recursively for i = 2, . . . , n
with

Fi(q) =
∑
p

Fi−1(p)[Pi(p, q) + zQi(p, q)]1q∈Yi (8)

with the initialization F1(q) = 1q∈Y1z
1q∈Fuq, and the backward polynomials can be

computed recursively for i = n, . . . , 2 with:

Bi−1(p) =
∑
q

[Pi(p, q) + zQi(p, q)]1q∈YiBi(q) (9)

and with the convention that Bn(·) ≡ 1.

Proof. We prove only Eq. (8) since the proof of Eq. (9) is almost identical. It is
clear that:∑

Y<i−1

∑
Y>i

zNP(Y<i, Yi = q, Y>i, ev)

=
∑
p∈Q

∑
Y<i−1

∑
Y>i

zNP(Y<i−1, Yi−1 = p, Yi = q, Y>i, ev)

by simply using Eq. (6) and Eq. (7) of Theorem 4 we hence get:

Fi(q)���Bi(q) =
∑
p∈Q

Fi−1(p)[Pi(p, q) + zQi(p, q)]1q∈Yi���Bi(q)

which gives Eq. (8).

Performing the complete forward/backward recursion hence results, like for
Theorem 1 in a complexity of O(n × Nmax × |Q| × |Σ|), where Nmax is the max-
imum number of occurrences of N in a arbitrary sequence of length n. Once the
forward/backward quantities available, it is possible to compute the forward and
backward quantities and we can easily derive from Theorem 4 quantities of interest:
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Figure 6: Distribution of N and position-specific probabilities of occurrence for
our illustration example with ev = “R occurs in i = 5, 15 but not in i = 10” and
under various constraints. Top-left: pgf with or without ev. Top-right: position-
specific occurrence probability with or without ev. Bottom-left: same thing with
ev and the additional constraint that N = 2. Bottom-right: same thing with
N = 3.

Corollary 6. By observing that P(Yi = q,N = k, ev) = [Fi(q)Bi(q)]zk for all i we
derive:

P(N = k, ev) =

[∑
q∈Q

Fi(q)Bi(q)

]
zk

P(ev) =

[∑
q∈Q

Fi(q)Bi(q)

]
z=1

(10)

P(N = k|ev) =
P(N = k, ev)

P(ev)
P(Yi = q|N = k, ev) =

[Fi(q)Bi(q)]zk

P(N = k, ev)
(11)

Proof. Immediate from Eq. (6).

Note that if the marginal computation of P(N = k, ev) or P(ev) can be done
using only the forward recursion (with i = n) or the backward recursion (with
i = 1), the position specific P(Yi = q|N = k, ev) does require the computation of
both Fi(q) (and hence F1, . . . , Fi−1) and Bi(q) (and hence Bi+1, . . . , Bn).

We can see in Figure 6 the distribution of N with various evidence. In the top-
left graph, we see since the evidence ev = “R occurs in i = 5, 15 but not in i = 10”
forces R to occur at least two times (in positions i = 5, 15), the distribution under

12



ev is logically shifted on the right by two units in comparison with the uncon-
strained distribution. In the top-right plot, the marginal occurrence of R with no
evidence is straightforward in our memory-less model: occurrence is impossible for
the first two positions (sinceR as a length of 3) and the marginal probability of oc-
currence is identical for the remaining positions. When adding the evidence, these
probabilities are dramatically altered: first, the marginal probability in positions
5, 10, 15 directly reflects the evidence but neighbor positions are also modified.
In the bottom-left plot, by adding “N = 2” to the evidence, the only possible
configuration of the system is exactly two occurrences of R in positions 5 and
15, and the marginal position-specific probability of occurrence perfectly reflects
this constraint. Finally, in the bottom-right plot, by adding “N = 3” to the ev-
idence, the resulting marginal distribution indicates the posterior position of the
only remaining occurrence of R which is not fixed by the constraint.

4.3 Moments

By replacing z by et in the definition of the forward and backward quantities, we
obtain the mgf versions Fmgf

i and Bmgf
i of these quantities.

Theorem 7. The mgf-forward/backward quantities can be computed recursively
for i = 2, . . . , n with

Fmgf
i (q) =

∑
q∈Q

Fmgf
i−1 (p)

[
Pi(p, q) +

∑
k>0

tk

k!
Qi(p, q)

]
1q∈Yi (12)

and for i = n, . . . , 2 with:

Bmgf
i−1(p) =

∑
q∈Q

[
Pi(p, q) +

∑
k>0

tk

k!
Qi(p, q)

]
1q∈YiB

mgf
i (q) (13)

and we derive from these quantities the following expressions:

P(ev) =

[∑
q∈Q

Fmgf
i (q)Bmgf

i (q)

]
t0

E
[
Nk
∣∣ev
]

=
k!

P(ev)

[∑
q∈Q

Fmgf
i (q)Bmgf

i (q)

]
tk

.

(14)

Proof. Simply replacing z by et in Corollary 5 immediately allows to establish
Eq. (12) and Eq. (13). From the analog of Theorem 4 with the same substitution
we easily get:∑

q∈Q

Fmgf
i (q)Bmgf

i (q) = E
[
etN1ev

]
=
∞∑
k=0

tk

k!
E
[
Nk1ev

]
.
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k = 1 k = 2 k = 3 k = 4 k = 5
E[Nk] 2.88 11.94 60.33 353.16 2323.56

E[(N + 2)k] 4.88 27.46 174.55 1230.60 9486.23
E[Nk|ev] 5.27 31.17 203.55 1446.37 11060.46

Table 1: Various moments of N in our illustration example.

The Theorem 7 hence provide an efficient way to compute all order 6 k mo-
ments of N conditionally to the evidence with complexity O(n × k2 × |Q| × |Σ|)
which is exactly the complexity we had without any evidence.

In Table 1 we can see various moments of N for our illustration example.
Without surprise, the moments of N are dramatically changed by adding the
evidence ev = “R occurs in i = 5, 15 but not in i = 10”.

5 Conclusion

The main contribution of this paper are the explicit computation of the pgf and of
the mgf of the random count N of a regular expression R in a multi-state sequence
generated by a heterogenous Markovian source conditionally to an evidence. The
complexity for computing all terms of degree 6 k is linear in k for the pgf (The-
orem 4) and quadratic for the mgf (Theorem 7)3. These results allow to compute
the marginal distribution of the occurrence conditionally to the evidence and/or
constraints of the form {N = a}, as well as conditional non-factorial moments of
any order.

We considered here an evidence based on constrained values of Yi (i.e. MCE
state in position i). Since, like in [27] our approach is based on the sum-product
algorithm (also called forward/backward for Markovian models), we can obviously
easily extend our evidence to constraints on the sequence itself (i.e. Xi) and/or
on the counting process (i.e. on Ni, the number of occurrences up to position
i). This should allow for example to consider occurrences of regular expressions
in degenerated sequences like in [36, 31], or to consider subtle constraints like
ev = {N500 > 10, N1000 6 20}.

As explained in Section 4.1, here we only consider evidence of the form ev =
∪i{Yi ∈ Yi}. Of course, more complex evidence can be considered. For example,
one might condition as well on the number of occurrences in a sliding window.
However, more sophisticated constraints like the simultaneous occurence or non-
occurrence in two given position would turn the Markov model in a true Bayesian

3The base complexity – i.e. for k = 1 – for both approaches is O(n × |Q| × |Σ|) where n is
the sequence length, |Σ| the alphabet size, and |Q| the number of states of the MCE.
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network. In that case, the methods presented here can certainly be generalized by
considering sum-product computations in junction tree (see [14] for more details)
with various extensions in perspective: Markov-trees (ex: phylogeny), Markovian
sequences structural constraints (ex: X1 = Xn for a circular sequence, stem-loop
constraints for structured RNA), Markov random fields (social networks or image
segmentation), etc. t

these evidence should always be expressed as a weighted distribution of the
support of a Markovian random variable
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