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8 Abstract

9 The purpose of this study is to estimate the in-situ emission factors of several pollutants 

10 (particle number [PN], black carbon [BC] and several volatile and semi-volatile organic 

11 compounds [VOCs and SVOCs]) in an urban area of Nantes, France, with real-world traffic 

12 conditions and characterization of the fleet composition. The fleet composition and driving 

13 conditions are characterized by the number of vehicles, their speeds and their types 

14 (passenger cars [PCs], light commercial vehicles [LCVs], heavy-duty vehicles [HDVs]) as well 

15 as their characteristics (make, model, fuel, engine, EURO emission standard, etc.). The 

16 number of vehicles passing on the boulevard is around 20,000 per day with about 44% of 

17 Euro 5 and Euro 6 vehicles. The impacts of fleet composition on emission were analyzed by 

18 ANOVA. The results show that the fleet composition has a significant impact on emissions for 

19 different pollutants. Higher percentage of gasoline PCs between Euro 4 to Euro 6 and Euro 4 

20 diesel PCs induces more BC emission. Higher percentage of old gasoline and diesel vehicles 

21 (≤ Euro 3) induces higher emission of toluene, ethylbenzene and m+p- and o-xylene. 

22 Furthermore, emission factors estimated in this work were compared to those calculated in 

23 other in-situ studies that show a good agreement. For the chassis bench comparison, the in-

24 situ PN and BC emission factors are in the same range as those measured for diesel vehicles 
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25 without particle filter and gasoline vehicles with direct injection system. These EFs are also 

26 comparable with old heavy duty vehicles without particle filter (5x1013-2x1014 #/km). 

27 Keywords

28 In-situ emission factors; Unregulated pollutants; Fleet composition 
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31 1. Introduction

32 On-road vehicle emissions are the main cause of atmospheric pollution in urban areas. 

33 Road transport induces particles, black carbon (BC) and of several VOCs and SVOCs (Volatile 

34 and Semi-Volatile Organic Compounds) emissions, such as carbonyl compounds 

35 (formaldehyde, hexanal), and BTEX (benzene, toluene, ethylbenzene, xylene) as well as 

36 various alkanes and alkenes. These VOCs and SVOCs are non-regulated compounds that 

37 could serve as secondary particle precursors and have serious negative impacts on human 

38 health (Sydbom et al., 2001; Lewtas et al., 2007) and air quality in cities. 

39 The European Union is imposing emission limits for regulated pollutants in order to 

40 reduce road-traffic emissions. Facing on these vehicle emission standards, emission factors 

41 are derived from dynamometer bench test (Alves et al., 2015; Yang et al., 2015; Louis et al., 

42 2016; Martinet et al., 2017) or from on-board emissions measurements (O’Driscoll et al., 

43 2016; Ntziachristos et al., 2016). These emission factors constituted an input database with 

44 different vehicle categories using by emission models (e.g., COPERT, HBEFA, PHEM and 

45 MOVES) for air quality studies. However, for these emission models, the emission factors 

46 inventories for recent Euro 5 and Euro 6 vehicles are quite poor (Rexeis et al., 2013). Only 

47 eighty Euro 5 vehicles and twenty Euro 6 vehicles (with 13 different vehicle models, and only 

48 one Euro 6 gasoline car) were added to HBEFA Version 3.2 for regulated compounds, which 

49 may not be representative of the entire fleet composition. The emissions of non-regulated 

50 pollutants are rarely measured and integrated in emission models. As consequence, their 

51 emission factors for an entire fleet could not be estimated correctly actually due to this 

52 deficiency of database, and their impact on air quality and human health could not be 

53 investigated accurately. 
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54 Emission factors could be estimated in-situ for a part or an entire fleet using various 

55 methods. The first is the chasing method, where pollutant concentrations are measured 

56 by driving a mobile measurement platform behind either a single vehicle (Karjalainen et 

57 al., 2014; Ježek et al., 2015) or part of the fleet present on the road (Yli-Tuomi et al., 

58 2005; Wang et al., 2009; Westerdahl et al., 2009; Kam et al., 2012; Ning et al., 2012; 

59 Hudda et al., 2013). In the second method, traffic pollutant concentrations are collected 

60 by a fixed measurement platform placed on the roadside. This method makes it possible 

61 to measure emissions for an entire fleet driving near the measurement site (Ketzel et al., 

62 2003; Imhof et al., 2005; Rose et al., 2005; Jones et al., 2006; Bukowiecki et al., 2010). 

63 For most of these studies, the number of LDVs, HDVs and buses are counted and the 

64 traffic speeds are measured in some cases. However, the fleet compositions with vehicle 

65 engine, capacity, combustion, age and Euro emission standard were not fully 

66 characterized. As consequence, the impacts of fleet composition on non-regulated 

67 pollutant emissions are hardly investigated. Furthermore, the on-road emission factors in 

68 these cited studies were mainly calculated for particles and BC. Very few on-road 

69 emission factors studies were focused on secondary particle precursors (carbonyl 

70 compounds, BTEX and alkanes…). Ning et al. (2012) determined on-road emission factors 

71 for butane, but only for an HDV/bus fleet. 

72 In this paper, the emission factors of particle number (PN), BC, and several aliphatic, 

73 aromatic and carbonyl compounds were estimated using the different concentrations of NOX 

74 and a pollutant between a background measurement site and a traffic measurement site 

75 with the fleet composition observed during the measurements campaign. Furthermore, the 

76 fleet composition was characterized based on the vehicle type, make, model, fuel, engine, 

77 age, Euro emission standard, as well as the traffic conditions, traffic speed, and congestion. 
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78 ANOVA statistical analyses were performed to characterize the impact of fleet composition 

79 on emissions. Furthermore, the emission factors estimated in this study were compared to 

80 other emission factors calculated in previous in-situ studies and those measured on a 

81 dynamometer bench. 

82 2. Experimental Method

83 2.1 Measurement Sites

84 The measurements were conducted at two sites in the city of Nantes, France, between 

85 April 19 and 30, 2017. The first site was an urban background (47°13'20.3"N 1°32'15.2"W) 

86 site to measure urban background pollutant concentrations over a period of four days. The 

87 second site was a traffic site in the city center (47°12'16.0"N 1°33'10.9"W). It is an urban 

88 boulevard with two lanes of traffic in each direction, a speed limit of 30 km/h, and traffic 

89 lights (Fig. 1). The number of vehicles passing on the boulevard is around 20,000 per day. 

90 Trucks and buses pass on the boulevard but with a low frequency. Measurements were 

91 conducted over a period of seven days.

92 2.2 Traffic Characterization

93 The fleet composition and traffic conditions on the traffic site were characterized by 

94 AlyceSofreco (a private company specialized in the field of traffic measurement). These data 

95 were recorded in both directions of traffic and over a period of seven days using two video 

96 cameras and pneumatic-tube automatic traffic counters. The counters determined the 

97 number of vehicles and the driving conditions (speed, traffic congestion, etc.) and the video 

98 cameras collected the license plate numbers of each vehicle. Using these license plate 
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99 numbers, AAAData (a private company) provided the characteristics of each vehicle, 

100 including its make, model, vehicle type, fuel, engine, date of entry into circulation and Euro 

101 emission standard according to the vehicle type (LDV and HDV).   

102 2.3 Sampling Devices

103 The sampling devices were installed in a truck that been specially fitted with an array of 

104 analyzers to sample the ambient air. The truck was placed along the edge of the road on the 

105 traffic site and the sampling was carried out around at a height about two meters and at a 

106 distance of 0.5 m of the road (Fig. 1). A Fast Mobility Particle Sizer (FMPS™; TSI) was used to 

107 measure the distribution and total particle number ranging from 5.6 to 560 nm with 1 scan/s 

108 at a flow rate of 8 L/min, with a concentration range from 0 to 107 particle/cm3. An 

109 Aethalometer® (AE-33-7, Magee Scientific) was used to measure the BC concentration. The 

110 data are collected once a second and at a flow rate of 5 L/min. The concentration ranges 

111 from 10 to 105 ng/m3 with a detection limit of 5 ng/m3 for 1 hour. The device measures the 

112 light attenuation for seven wavelengths from UV to IR (370, 470, 525, 590, 660, 880 and 940 

113 nm). The 880 nm wavelength corresponding to the maximum amount of BC was used for the 

114 quantification in this study.

115 VOCs and SVOCs were sampled on different cartridges with 1 sample per hour. DNPH 

116 and Tenax® cartridges were used to collect respectively carbonyl compounds and BTEX and 

117 five majority alkanes with a flow rate of 1 L/min and 0.1 L/min. A private laboratory, TERA 

118 Environnement, analyzed the cartridges (78 TENAX and 78 DNPH, including 28 for the 

119 background site, 49 for the traffic site and 1 for the transport blank for each type of 

120 cartridge) using standardized analytical methods (ISO-16000-6, ISO 16000-3, NIOSH 2549, 
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121 NIOSH 5506 and NF X 43-025). The complete list of compounds (six BTEX, five alkanes and 11 

122 carbonyl compounds) analyzed on the cartridges is given below.

123  BTEX: benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene.

124  Alkanes: nonane, decane, undecane, cyclopropane, ethyl, cyclohexane, ethyl.

125  Carbonyl compounds: formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, 

126 crotonaldehyde, methacrolein, butanal, benzaldehyde, pentanal, hexanal.

127

128 Fig. 1. Diagram of the traffic site used for the measurements.
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130 2.4 Emission Factors 

131 The variation of NOX and pollutant concentrations between the background site and the 

132 traffic site were used for estimating road-traffic emission factors (Imhof et al., 2005; Jones et 

133 al. 2006; Johansson et al., 2009; Krecl et al., 2017). This method is based on the assumption 

134 that the dilution of the pollutant between the exhaust outlets of vehicles and the sampler 

135 device inlets and the behavior in the atmosphere are comparable for NOX and the other 

136 pollutants (Lohmeyer et al., 2002; Amato et al., 2010; Bukowiecki et al., 2010; Gietl et al., 

137 2010). Using this assumption, it is considered that the dilution of other pollutants may be 

138 approximated by the dilution of NOX. The wind speed (Fig. 2) and directions during the 

139 campaign varied between 0 and 7.6 m/s, with principally the north direction and few times 

140 the south and west direction. The temperature varied between 0 and 19 °C with relative 

141 humidity at about 30-99%. The following equation is used to calculate the emission factor for 

142 a given pollutant: 

143         (1)  𝐸𝐹𝑃 = ∆𝑃 ×
𝐸𝐹𝑁𝑂𝑥

∆𝑁𝑂𝑥

144 where  and  are the emission factor for pollutant P and NOX, respectively, given in 𝐸𝐹𝑃 𝐸𝐹𝑁𝑂𝑥

145 mass or number of particles per vehicle per kilometer (#/veh/km or µg/veh/km).  and ∆𝑃

146  are the difference of concentrations between background and traffic sites for ∆𝑁𝑂𝑥

147 pollutant P and NOX respectively. The emission factors for NOX used in the equation (1) were 

148 obtained using COPERT 4 (COmputer Programme to calculate Emissions from Road 

149 Transport) for each time step (one-hour period) with the corresponding fleet composition 

150 characterized at the same time step. For urban driving conditions, COPERT 4 estimates a NOX 

151 emission that takes into account cold and hot emissions.
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152 For all cartridges, the sampling time is one hour to have enough material for chemical 

153 analysis. For PN and BC, the data resolution is 1 second. However, in order to be able to 

154 analyze the emission factors with the fleet for all measured pollutants, the PN and BC 

155 measurement were averaged in one-hour period, corresponding to the cartridge sampling 

156 time. In addition, the NOX concentrations used for ΔNOX in Equation 1 are given as a 15-

157 minute average concentration. It is therefore impossible to go below this 15-minute time 

158 step for calculating emission factors.
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160 Fig. 2. Time profiles of NOX concentration and wind speed on the measurement week.

161 2.5 ANOVA Analysis

162 The analysis of variance (ANOVA) is a statistical technique for assessing the differences 

163 between the dependent variables, which are the emissions, of a nominal variable with 

164 several categories (composition of the fleet). The null hypothesis (H0) for the analysis 

165 represents the fact that there is no significant difference between the groups. The 
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166 alternative hypothesis considers that there is at least one significant difference among the 

167 groups. For the ANOVA test, the F-ratio and associated probability value (p-value) are 

168 calculated. If the p-value associated with the F is smaller than 0.05, then the H0 is rejected 

169 and the alternative hypothesis (H1) is retained (Fanelli et al., 2018) and this implies that the 

170 groups have a significant impact on emissions (Wildt and Ahtola, 1978). It can be concluded 

171 that the means of all groups are not equal and we can determine which groups are different 

172 from others.

173 In this work, ANOVA was performed by SPAD (data analysis and data mining software) to 

174 determine impact of fleet composition on emission factors. The nominal-leval variables used 

175 are the number of HDVs, the percentage of diesel vehicles between pre-Euro and Euro 3, the 

176 percentage of Euro 4 diesel, the percentage of diesel between Euro 5 and Euro 6, the 

177 percentage of gasoline vehicles between pre-Euro and Euro 3 and the percentage of gasoline 

178 between Euro 4 and Euro 6.

179 3. Results and Discussion

180 3.1 Fleet Composition

181 The number of vehicles was characterized during the measurement on the traffic site. A 

182 total of 140,076 vehicles drove along the boulevard during the seven-day measurement 

183 period. Many vehicles were registered twice or more times during the week. The number of 

184 unique vehicles after removing these duplicates is 57,220. The number of vehicles varied 

185 between 21,147 and 23,401 from Monday to Friday. On Saturday and Sunday, 18,763 

186 vehicles and 9,860 vehicles were counted, respectively. The number of vehicles per hour was 

187 between 600 and 1800 with an average number of 1400/h for all five weekdays and 
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188 between 200 and 1600 on the weekend with an average number of 900/h. The traffic speed 

189 was characterized for each 5 minutes. The average traffic speed for one hour was between 

190 16 and 34 km/h on all five weekdays and 21 and 38 km/h on the weekend ( 

191

192 Fig. 3. Weekdays (a) and weekend (b) characterization of the fleet composition during the measurement campaign. 2017 

193 composition of the French fleet (c).

194 Furthermore, the fleet composition characterized during the measurement campaign 

195 was composed of 87% passenger cars (PCs), 11% light commercial vehicles (LCVs), and 2% 

196 heavy-duty vehicles (HDVs) on weekdays. On the weekend, it consisted of 92% PCs, 7% LCVs, 

197 and 1% HDVs. The number of LCVs and HDVs decreased over the weekend, particularly on 

198 Sundays. According to André et al. (2014), the entire French fleet was composed of 82% PCs, 

199 16% LCVs, and 2% HDVs in 2017 (Fig. 3). The comparison between this study and the French 

200 fleet composition shows the slightly higher percentage of PCs and the slightly lower 

201 percentage of LCVs. These differences are explained by the fact that the measurements 

202 were conducted in an urban environment, where LCV and HDV traffic is generally lower.  
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203

204 Fig. 4. Distribution of the various Euro emission standards for PCs (a) during the measurement campaign and (b) for the 

205 2017 French fleet. 

206 The distribution of the various Euro emission standards for PCs during the measurements 

207 was 14% Euro 6, 30% Euro 5, 29% Euro 4, 17% Euro 3, 7% Euro 2, 2% Euro 1, and 1% pre-

208 Euro vehicles (Fig. 4a). This distribution is consistent with André et al. (2014), who estimated 

209 the PCs French fleet composed 17% Euro 6, 33% Euro 5, 26% Euro 4, 15% Euro 3, 6% Euro 2, 

210 2% Euro 1, and 1% pre-Euro in 2017 (Fig. 4b). As regards drive technology systems, the 

211 observed PC fleet was composed of 68% diesel vehicles, 30% gasoline vehicles, and 2% other 

212 such as gasoline or diesel hybrid vehicles, electric vehicles, gasoline/compressed natural gas 

213 and gasoline/liquefied petroleum gas vehicles. The LCV fleet was composed of 97% diesel 

214 vehicles. For the HDVs, all the trucks were powered by diesel engines and all the buses were 

215 natural gas combustion or other gaseous hydrocarbons.

216 3.2 Estimation of Global Fleet Emission Factors

217 The global fleet emission factors for PN, BC, carbonyl compounds, BTEX, alkanes, NOX 

218 concentrations, number of vehicles, and traffic speeds are presented in Fig. 5 as a function of 

219 the measurement time and day on the traffic site. The average emission factor of one 
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220 vehicle (equation (1)) has been multiplying by the vehicle number that gives us the pollutant 

221 emission factors for a global fleet, over the one-hour measurement period. This allows us to 

222 study the pollutant emissions in relation with the current traffic. 

223 The particle number emission factors varied between 2×1016 and 9.6×1017 #/km on five 

224 weekdays and between 2.3×1016 and 4.6×1017 #/km on the weekend. The BC emission 

225 factors varied between 2.4×109 and 2.4×1011 ng/km on weekdays and between 6.6×109 and 

226 1.2×1011 ng/km on the weekend. The emission factors for carbonyl compounds varied 

227 between 2×104 and 2.4×106 µg/km on weekdays and between 2.7×103 and 4.9×105 µg/km 

228 on the weekend. The hexanal emission factors ranged between 2.3×103 and 4.1×105 µg/km 

229 on weekdays and between 1.5×104 and 3.2×105 µg/km on the weekend. For the three 

230 alkanes, the emission factors were between 1.2×104 and 7.1×106 µg/km on weekdays and 

231 between 5.3×103 and 2×106 µg/km on the weekend. The BTEX emission factors ranged 

232 between 5.4×103 and 3.3×106 µg/km on weekdays and between 6.3×104 and 5.1×106 µg/km 

233 on the weekend. The missing points for VOCs are either pollutant quantities sampled on the 

234 cartridges below their quantification limit; or negative values by subtracting the background 

235 value. 

236 The urban background concentrations for the pollutants used in the equation (1) were 

237 measured on the urban background site used by the air quality association “Air Pays de la 

238 Loire”. This background site is not affected by road traffic emissions, the measured NOX, PN 

239 and BC concentrations vary little on the different measurement time (16h/day during 4 days) 

240 (between 3200 and 4800 #/cm3 for PN, between 400 and 700 ng/m3 for BC, and between 5 

241 and 50 µg/m3 for NOX) and provides a general background concentration with all different 

242 sources. The subtraction in the equation (1) allows removing only the general back ground 

243 levels but not the local background levels. This might induce a potential bias with an over 
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244 estimation of EF for PN and other pollutants if the local background levels are higher than 

245 general background levels. The local background levels could also be measured when there 

246 is no traffic. However, depending on the weather conditions, especially the wind speeds, the 

247 accumulation phenomena under no traffic condition might also induce a potential bias on 

248 our measurement. The first point in the morning (at around 6:00 a.m.) was taken as the 

249 background level at the traffic site. Using this local background levels, the emission factors of 

250 PN and BC are respectively between 5×1015 and 9×1017 #/km and 1.2×108 and 

251 2.3×1011 ng/km. The local background values induce an underestimation of 4 and 20 times 

252 for PN and BC comparing to the ‘Air Pays de la Loire’ background site, but only for low 

253 emission period. These background values do not induce a significant difference at high 

254 emission period for both PN and BC. Overall, if we use the local background value, it induced 

255 an average underestimation around 30% for all period of measurement.

256 In general, the highest emission factors were measured between 7:00 a.m. and 

257 10:00 a.m. and between 5:00 p.m. and 8:00 p.m. on all five weekdays. For the Saturday, the 

258 highest emission factors were measured between 10:00 a.m. and 1:00 p.m. and between 

259 5:00 p.m. and 8:00 p.m. For the Sunday, between 6:00 a.m. and 3:00 p.m., high emission 

260 factors were measured for carbonyl compounds, BTEX and alkanes. The higher emission 

261 factors measured in the morning can be explained by vehicle cold start, which emits large 

262 amounts of pollutants such as BC, PN, BTEX, and carbonyl compounds (Westerholm et al., 

263 1996; Joumard et al., 2000; Sluder et al., 2000; Caplain et al., 2006; Louis et al., 2016; 

264 Martinet et al., 2017). 
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265
266 Fig. 5. Global fleet emission factors for PN, BC, carbonyl compounds, BTEX, alkanes, NOX concentrations, number of 

267 vehicles, and traffic speeds as a function of the time and day of measurement on the traffic site.
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268 The PN and BC emission factors showed a good correlation, following the same tendency 

269 during the week of measurements (Fig. 5). Apart from Tuesday afternoon between 2:00 p.m. 

270 and 8:00 p.m., the PN emission factors did not follow the same tendency as the BC emission 

271 factors. The emission factor values for BC decreased while those for PN increased sharply. 

272 This could imply that the particle number emissions measured during this afternoon were 

273 not due to road traffic (See Section below).

274 3.3 PN Concentration and Size Distribution Time Profiles 

275 The number of vehicles, BC, NOX and PN for three size ranges ([0-50] nm, [50-100] nm, 

276 and [100-500] nm) concentrations were followed from Monday (April 24th) to Sunday (April 

277 30th), which show the similar results in general for the five weekdays, except for Tuesday 

278 afternoon. Fig. 6 shows the time profiles of NOX, BC, PN concentrations and vehicles number 

279 on Monday, Tuesday and Wednesday. Concentration peaks of BC, PN and NOX was observed 

280 over a short period between 7:00 a.m. and 9:00 a.m. on weekdays corresponding to morning 

281 rush-hour traffic (See Section 3.2). 

282 Moreover, Fig. 6 shows a large peak for PN with size range [0-50] nm between 2:00 p.m. 

283 and 8:00 p.m. on Tuesday that is not correlated with BC, NOX and PN size ranges [50-100] nm 

284 and [100-500] nm. Since NOX and BC are considered as traffic tracers (Pant et al., 2013), 

285 which might indicates that the [0-50] nm PN on Tuesday afternoon is not generated by the 

286 road traffic. 

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944



17
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288 Fig. 6. Time profiles of NOX concentration and number of vehicles and PN and BC concentrations on Monday, Tuesday and 

289 Wednesday.

290 3.4 ANOVA Analysis of Global Fleet Emission Factors

291 The pollutant emission factors for a global fleet, over the one-hour measurement period, 

292 have been analyzed by ANOVA statistical analysis to investigate impact of fleet composition 

293 on measured pollutant emissions (Table 1). The emission factors were analyzed with 6 

294 categories: number of HDVs (0 to 43 with groups of every 10 HDVs), percentage of diesel PCs 

295 between pre-Euro to Euro 3 (5 to 25% with 5% interval), percentage of Euro 4 diesel PCs (10 

296 to 30% with 5% interval), percentage of diesel PCs Euro 5 and Euro 6 (15 to 35% with 5% 

297 interval), percentage of gasoline PCs between pre-Euro and Euro 3 standard (5 to 15% with 
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298 5% interval) and percentage of gasoline PCs between Euro 4 and Euro 6 (5 to 25% with 5% 

299 interval). The groups of variables for passenger cars have been made according to the 

300 implementation of new after-treatment or engine technologies. For diesel vehicles, the 

301 diesel particle filter (DPF), which significantly reduces PN and BC emissions, is considered as 

302 variables. Thus, the first category includes the percentage of pre-Euro to Euro 3 diesel 

303 vehicles that are not equipped with DPF; the second category includes the percentage of 

304 Euro 4 diesel vehicles that are partially equipped with DPF; and the last category includes the 

305 percentage of Euro 5 and Euro 6 diesel vehicles that are all equipped with DPF. For gasoline 

306 vehicles, the first category therefore includes the percentage of gasoline vehicles from pre-

307 Euro to Euro 3 standards, all of which have indirect injection engines; and the second 

308 category includes the percentage of gasoline vehicles from Euro 4 to Euro 6 standards, as the 

309 introduction of direct injection engines has begun on Euro 4 standard vehicles. Moreover, 

310 for ANOVA analysis, the fleet composition has been classed by groups (different gaps of 

311 vehicle number or percentage) to investigate their impact on emissions. Each group has to 

312 contain enough samples to be significant and not too large to have a good sensibility. 

313 Tuesday afternoon PN data have not been taken into account because of its strange 

314 behavior show in section 3.3. 

315 For a result of the ANOVA analysis to be significant, the p-value must be ≤ 0.05, which is 

316 called a "significant result" in Table 1. However, to increase the power of the ANOVA 

317 analysis, it is possible to consider that a result with a p-value between 0.05 and 0.1 are 

318 significant, which is called "result considered as significant" in Table 1, but with a great 

319 uncertainty. This analysis should be read with a special attention because they might also 

320 indicate that the impacts of the analyzed group on emission could be significant but not 

321 clearly significant. 
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322 Table 1

323 Results of the ANOVA analysis for the effect of the fleet composition on the emission factors 

Groups having a significant impactFleet 

composition
Pollutants Unit p-value

Negative impact Positive impact

PN #/km 0.6 -- --

BC ng/km 0.2 -- --

Formaldehyde µg/km 0.2 -- --

Hexanal µg/km 0.6 -- --

Benzene µg/km 0.6 -- --

Toluene µg/km 0.004* 20-30; 30-40 10-20

Ethylbenzene µg/km 0.04* 30-40 0-10; 10-20

m+p-Xylene µg/km 0.2 -- --

o-Xylene µg/km 0.1 -- --

Nonane µg/km 0.5 -- --

Decane µg/km 0.4 -- --

Number of 

HDVs

Undecane µg/km 0.7 -- --

PN #/km 0.08** 15-20% 10-15%

BC ng/km 0.6 -- --

Formaldehyde µg/km 0.3 -- --

Hexanal µg/km 0.2 -- --

Benzene µg/km 0.6 -- --

Toluene µg/km 0.02* 10-15% 15-20%

Ethylbenzene µg/km 0.07** 10-15% 15-20%

m+p-Xylene µg/km 0.02* 10-15% 15-20%

Percentage 

of diesel PCs 

between 

pre-Euro to 

Euro 3 

standard

o-Xylene µg/km 0.02* 10-15% 15-20%
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Nonane µg/km 0.1 -- --

Decane µg/km 0.9 -- --

Undecane µg/km 0.7 -- --

PN #/km 0.1 -- --

BC ng/km 0.001* 10-15%; 15-20% 20-25%; 25-30%

Formaldehyde µg/km 0* 20-25%; 25-30% 10-15%; 15-20%

Hexanal µg/km 0.7 -- --

Benzene µg/km 0.3 -- --

Toluene µg/km 0.1 -- --

Ethylbenzene µg/km 0.02* 15-20% 20-25%

m+p-Xylene µg/km 0.04* 15-20% 20-25%

o-Xylene µg/km 0.02* 15-20% 20-25%

Nonane µg/km 0.3 -- --

Decane µg/km 0.9 -- --

Percentage 

of diesel PCs 

Euro 4 

standard

Undecane µg/km 0.6 -- --

PN #/km 0.006* 30-35% 20-25%

BC ng/km 0.2 -- --

Formaldehyde µg/km 0.06** 15-20% 30-35%

Hexanal µg/km 0.3 -- --

Benzene µg/km 0.07** 15-20% 30-35%

Toluene µg/km 0.2 -- --

Ethylbenzene µg/km 0.2 -- --

m+p-Xylene µg/km 0.1 -- --

o-Xylene µg/km 0.06** 15-20% 30-35%

Percentage 

of diesel PCs 

between 

Euro 5 to 

Euro 6 

standard

Nonane µg/km 0.2 -- --

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
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Decane µg/km 0.6 -- --

Undecane µg/km 0.007* 15-20% 30-35%

PN #/km 0.5 -- --

BC ng/km 0.7 -- --

Formaldehyde µg/km 0.9 -- --

Hexanal µg/km 0.07 -- --

Benzene µg/km 0.4 -- --

Toluene µg/km 0.07** 5-10% 10-15%

Ethylbenzene µg/km 0.004* 5-10% 10-15%

m+p-Xylene µg/km 0.007* 5-10% 10-15%

o-Xylene µg/km 0.02* 5-10% 10-15%

Nonane µg/km 0.2 -- --

Decane µg/km 0.9 -- --

Percentage 

of gasoline 

PCs 

between 

pre-Euro to 

Euro 3 

standard

Undecane µg/km 0.7 -- --

PN #/km 0.004* 5-10% 20-25%

BC ng/km 0* 5-10%; 10-15% 20-25%

Formaldehyde µg/km 0.5 -- --

Hexanal µg/km 0.6 -- --

Benzene µg/km 0.4 -- --

Toluene µg/km 0.3 -- --

Ethylbenzene µg/km 0.1 -- --

m+p-Xylene µg/km 0.1 -- --

o-Xylene µg/km 0.1 -- --

Nonane µg/km 0.3 -- --

Percentage 

of gasoline 

PCs 

between 

Euro 4 to 

Euro 6 

standard

Decane µg/km 0.5 -- --

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
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Undecane µg/km 0.07** 5-10%; 10-15% 20-25%

324 * Significant results

325 ** Results considered as significant

326 -- No results

327 For BC, the groups of “20-25%” and “25-30%” Euro 4 diesel PCs and “20-25%” gasoline 

328 PCs between Euro 4 to Euro 6 have a significant positive impact on the emissions. This 

329 observation indicates that higher percentage of these two categories present in the fleet 

330 induces more BC emission. For the gasoline PCs between Euro 4 to Euro 6, the group “20-

331 25%” has also a significant positive impact on the PN emissions. The positive impact of 

332 gasoline PCs between Euro 4 and Euro 6 on the PN and BC emissions can be explained by the 

333 introduction of direct injection technology on certain gasoline vehicles, which induces more 

334 PN and BC emissions than multipoint injection gasoline vehicles. These emissions could 

335 reach the level of some diesel vehicles without a particulate filter (Liang et al., 2013, 

336 Martinet et al., 2017). 

337 The percentage of diesel and gasoline PCs between pre-Euro and Euro 3 has a significant 

338 positive impact on toluene, ethylbenzene and m+p- and o-xylene emission factors, more 

339 particular the groups “15-20%” and “10-15%” respectively. Comparing to the average 

340 emission factors (1.4×106  µg/km for toluene, 3.4×105 µg/km for ethylbenzene, 9×105 µg/km 

341 for m+p-xylene and 4.2×105 µg/km for o-xylene), the group “15-20%” of Pre-Euro to Euro 3 

342 diesel induces 1.5, 1.4, 1.6 and 1.6 times higher emission respectively for toluene, 

343 ethylbenzene, m+p-xylene and o-xylene. The group “10-15%” of Pre-Euro to Euro 3 gasoline 

344 induces 1.2, 1.4, 1.3 and 1.3 times higher emission respectively for toluene, ethylbenzene, 

345 m+p-xylene and o-xylene. Moreover, the group “20-25%” of diesel Euro 4 PCs has also a 

346 positive impact on ethylbenzene and m+p- and o-xylene emission factors, 1.4, 1.4 and 1.5 
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347 times higher respectively comparing to the average emission factors. For the analyses on the 

348 number of HDVs, emission factors estimated in the weekend have not been taken into 

349 account because of the HDV driving ban. The Table 1 showed that the impact of the number 

350 of HDVs on pollutant emission does not show a significant positive impact. This observation 

351 might be explained on one side by the small percentage of HDVs in the fleet (0 to 43 HDVs 

352 per hour); and on the other side by the low HDVs emission since 80% of these HDVs are 

353 recent vehicles (≥ Euro 4).  

354 3.5 Emission Factors Per Vehicle and Comparison with Other Studies

355 In this section, the average emission factors calculated by equation (1) were used (# or 

356 mass/veh/km) in order to compare with other studies. Fig. 7 shows the box-and-whisker plot 

357 for these average emission factors per vehicle for carbonyl compounds, BTEX, alkanes, PN, 

358 and BC. In these plots, the boxes contain 50% of the emission factors around the median 

359 (black line in the box). The upper and lower halves of the boxes represent respectively the 

360 75th and 25th percentiles and the whiskers represent the 90th and 10th percentiles. The 

361 emission factors that are above or below the whiskers are considered to be atypical values. 

362 Fig. 7 shows the average emission factors per vehicle for PN and BC, which are between 

363 1.2×1013 and 8.7×1014 #/km/veh and between 1.7×106 and 2.16×108 ng/km/veh, 

364 respectively. For both emission factors, the median is in the middle of the box, which 

365 indicates a symmetric distribution. Half the emission factors are between 9.1×1013 and 

366 1.87×1014 #/km/veh for PN and between 1.1×107 and 3.8×107 ng/km/veh for BC. In addition, 

367 the boxes are comparatively short, suggesting that the PN emission factors  have a high level 

368 of agreement between them, and the BC emission factors have also a high level of 

369 agreement between them. Fig. 7 shows also the average emission factors per vehicle for the 
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370 measured VOCs and SVOCs. For all these compounds, the median is in the lower half of the 

371 box, which assumes an asymmetric distribution toward the low values. Their emission 

372 factors varied between 14 and 2.1×104 µg/veh/km.

373   For each compound, the atypical values are presented by black dots. Here, only the 

374 atypical values above the upper whisker limit are further analyzed with the corresponding 

375 fleet composition. The emission factors above the upper whisker for PN and BC are, 

376 respectively, 2.3 to 6.6 times higher and 2.7 to 9.6 times higher compared to the median. 

377 The highest emission factor for both corresponds to the same fleet composition with 69% of 

378 LDVs diesel and 58% of PCs ≤ Euro 4 (composition 8 in the Fig. 7) for the Wednesday 

379 between 8:00 p.m. and 9:00 p.m. The second highest emission factor for BC and the third 

380 highest for PN (composition 7 in the Fig. 7) correspond to the Sunday between 8:00 a.m. and 

381 9:00 a.m. 
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382

383 Fig. 7. Box-and-whisker plot of the average vehicle emission factors for PN, BC, carbonyl compounds, BTEX and alkanes. 

384 Fleet composition of 1: Monday 2:00 – 3:00 p.m.; 2: Sunday 6:00 - 7:00 a.m.; 3: Wednesday 11:00 - 12:00 a.m.; 4: Sunday 

385 11:00 - 12:00 a.m.; 5: Monday 11:00 - 12:00 a.m.; 6: Monday 8:00 – 9:00 p.m.; 7: Sunday 8:00 - 9:00 a.m.; 8: Wednesday 

386 8:00 - 9:00 p.m.

387 The emission factors for carbonyl compounds above the upper whisker are 5 to 11 times 

388 higher and 6 to 17 times higher than the median for formaldehyde and hexanal, respectively. 

389 For the three alkanes, the emission factors above the upper whisker are 3 to 18 times higher 
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390 compared to their median. The BTEX emission factors above the upper whisker are 1.4 to 8 

391 times higher compared to their median. The highest emission factor for hexanal, benzene, 

392 toluene, ethylbenzene and nonane correspond to the same fleet composition (composition 2 

393 in the Fig. 7) for the Sunday between 6:00 a.m. and 7:00 a.m. We remark that, in this time 

394 interval, the fleet composition composed relatively high percentage of LDVs diesel (80%), 

395 PCs ≤ Euro 4 (65%) and HDVs (3%), which have been showed by the ANOVA analysis to have 

396 significant impacts on emission of these compounds (Table 3). For m+p and o xylene 

397 compounds, the highest emission factor corresponds to the fleet composition of the Sunday 

398 between 11:00 a.m. and 12:00 a.m. (composition 4 in the Fig. 7), with relatively high 

399 percentage of PCs ≤ Euro 4. For formaldehyde, the highest emission factor corresponds to 

400 the Monday between 11:00 a.m. and 12:00 a.m. (composition 5) with 3% of HDVs.

401 Fig. 8 shows the comparison of PN, BC, formaldehyde and BTEX emission factors 

402 estimated in this study and with those estimated during lab bench measurements with 

403 Artemis urban driving cycles that is not exactly the same driving condition but might 

404 represent the most similar driving condition (average speed from 8.7 to 31.8 km/h from 

405 congestion to fluid situations) comparing to our traffic site (hourly average speed between 

406 16 and 34 km/h). The detail of bench measurement of Euro 1 to Euro 6 gasoline and diesel 

407 PCs were presented in our previous works (Rehn 2013; Louis et al., 2016; Martinet et al., 

408 2017). Moreover, the PN and BC emission factors estimated in this study were also 

409 compared with other in-situ studies with similar site characteristics (Ketzel et al., 2003; 

410 Gratmonev et al., 2004; Rose et al., 2005; Imhof et al., 2005; Jones et al. 2006; Westerdahl et 

411 al., 2009; Krecl et al., 2018). 

412 The emission factors estimated by other in-situ studies are between 5.8×1013 and 

413 9.3×1014 #/veh/km for PN; and between 1.7×107 and 3.5×107 ng/veh/km for BC, which are in 
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414 the same range as those estimated in this paper (Fig. 8), even fleet compositions are 

415 different in different countries and different years. 

416

417 Fig. 8. Comparison of PN, BC, formaldehyde and BTEX emission factors per vehicle in this work with emission factors 

418 estimated by bench measurements (Rehn 2013; Louis et al., 2016; Martinet et al., 2017) or by other in-situ studies (Ketzel 

419 et al., 2003; Gratmonev et al., 2004; Rose et al., 2005; Imhof et al., 2005; Jones et al., 2006; Westerdahl et al., 2009; Krecl et 

420 al., 2018).

421 The PCs emission factors in this work are also compared to the bench measurement 

422 (previous work). The bench emission factors of PN and BC obtained from diesel vehicles 
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423 without particle filter and gasoline vehicles with direct injection system are in the same 

424 range as the box plot. The impact of gasoline with direct injection system and Euro 4 diesel 

425 vehicles on PN and BC emission has been observed with ANOVA analysis. However, for the 

426 pre-Euro to Euro 3 old diesel vehicles, even they induce a high BC and PN emission with 

427 individual vehicle measurement, their impact on BC and PN emission could be considered 

428 either as significant but with a great uncertainty or not significant because they are 

429 omnipresent in each one-hour period with very closed percentage in the fleet (10 to 20%). 

430 These in-situ emission factors are also comparable with old HDVs without particle filter (PN 

431 emission factors between 5×1013 and 2×1014 #/veh/km) (Giechaskiel et al., 2012), contrary to 

432 recent HDVs equipped with DPF that induce lower PN emissions (between 5×1010 and 2×1012 

433 #/veh/km) (Giechaskiel et al., 2018). For fomaldehyde, the emission factors of Euro 3 and 

434 Euro 4 diesel and gasoline vehicles are in the same range as the emission factors estimated 

435 in this work. More recent Euro 5 and Euro 6 PCs seem to contribute less emission. For BTEX, 

436 the Euro 5 gasoline DI vehicle is located above the box that might indicate its high impact on 

437 BTEX emission. However, we want to attract special attention here, because only one Euro 5 

438 gasoline DI vehicle data from bench has been provided (Louis et al., 2016). More vehicles for 

439 each category should be tested on the chassis bench under similar experimental conditions 

440 to confirm this observation.  

441 4. Conclusion

442 This paper aimed to estimate the emission factors of PN, BC, and several aliphatic, 

443 aromatic and carbonyl compounds with a real fleet present on the measurement site. The 

444 fleet composition characterized during the measurement campaign was comparable with 
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445 the 2017 French fleet. A total of 140,076 vehicles were counted for seven days with about 

446 21,000 to 23,000 vehicles in the weekdays and 10,000 to 18,000 in the weekend. 

447 The highest emissions were measured during the morning between 7:00 a.m. - 10:00 

448 a.m. and during the end of afternoon between 5:00 p.m. - 8:00 p.m. for the weekdays, and 

449 between 10:00 a.m. - 1:00 p.m. and between 5:00 p.m. - 8:00 p.m. for the Saturday. These 

450 periods correspond to traffic peaks. The higher emission measured in the morning can be 

451 explained by vehicle cold start, which emits large amounts of pollutants such as BC, PN, 

452 BTEX, and carbonyl compounds. PN and BC emission factors show a good correlation, except 

453 the Tuesday afternoon between 2:00 p.m. - 8:00 p.m. The emission factor values for BC 

454 decreased while those for PN increased sharply. This could imply that the particle number 

455 emissions, especially the PN size between [0-50] nm, measured during this afternoon were 

456 not due to road traffic. 

457 The impacts of the fleet composition on the pollutant emissions were studied by ANOVA 

458 analyses. These analyses show the positive impact of the higher percentage of gasoline PCs 

459 between Euro 4 and Euro 6 and Euro 4 diesel PCs on the BC emissions and the higher 

460 percentage of diesel and gasoline PCs between pre-Euro and Euro 3 on toluene, 

461 ethylbenzene, m+p-xylene and o-xylene emissions. The higher percentage of Euro 4 diesel 

462 PCs induces higher emission of ethylbenzene, m+p-xylene and o-xylene. And the number of 

463 HDVs present in the weekdays does not induce a significant impact on measured pollutant 

464 emissions since 80% of HDVs in the fleet is recent HDVs (≥ Euro 4).

465 The emission factors per vehicle were studied with boxplots and compared to other 

466 emission factors calculated in previous in-situ studies and with bench measurement. PN and 

467 BC emission factors assume a symmetric distribution contrary to the BTEX, alkanes and 

468 carbonyl compounds emission factors. For PN and BC, the highest emission factors 

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711



30

469 correspond to the same fleet composition with high percentage of diesel PCs. The highest 

470 emission factors for hexanal, benzene, toluene, ethylbenzene and nonane correspond to a 

471 fleet composition with high percentage of diesel PCs (85%) and old PCs (65%), and for m+p 

472 and o Xylene, they correspond to high percentage of old PCs (61%). These results have also 

473 been observed by the ANOVA analyses for toluene, ethylbenzene, m+p-xylene and o-xylene. 

474 The PN and BC emission factors estimated by other in-situ studies are in the same range as 

475 the emission factors estimated in this work. For the chassis bench comparison, the PN and 

476 BC emission factors estimated in this work are in the same range as those measured for 

477 diesels PCs without particle filter, gasoline PCs with direct injection system and old HDVs. For 

478 BTEX, bench emission factors are in the same range as in-situ emission factors estimated in 

479 this work.   
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496 Appendices

497 Table A.1

498 Analytical methods for BTEX, carbonyl compounds, and PAH samples in the gas and particulate phases with quantification 

499 limit and uncertainty

Compound family
Cartridge 

type

Analytical 

technique

Standardized 

method

Quantification 

limit

Analytical 

uncertainty

BTEX

Benzene 10 ng/cartridge

Toluene

Ethylbenzene

m-p,Xylene

o-Xylene

Tenax ATD-GC/MS* ISO 16000-6
1 ng/cartridge

20%

Alkanes

Nonane

Decane

Undecane

Cyclopropane, Ethyl

Cyclohexane, Ethyl

Tenax ATD-GC/MS* ISO 16000-6 1 ng/cartridge 20%

Carbonyl

Formaldehyde

Acetaldehyde

Acetone

Acrolein

Propionaldehyde

Crotonaldehyde

Methacrolein

Butanal

DNPH HPLC/UV# ISO 16000-3 30 ng/cartridge 20%
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Benzaldehyde

Pentanal

Hexanal

500 * ATD-GC-MS: Automated Thermal Desorption – Gas Chromatograph – Mass Spectrometer

501 # HPCL/UV: High Performance Liquid Chromatography/Ultra Violet Detector

502

503

504 Table A.2  

505 Vehicle emission factors per hour for PN, BC, carbonyl compounds, BTEX and alkanes. 

Pollutants Emission factors (Min-Max) Mean
Standard 

deviation

Weekdays 1.2 × 1013 – 8.7 × 1014 2 × 1014 1.9 × 1014PN 

(#/veh/km) Weekend 6.1 × 1013 – 5.3 × 1014 1.7 × 1014 1 × 1014

Weekdays 1.7 × 106 – 2.2 × 108 2.4 × 107 2.8 × 107BC 

(ng/veh/km) Weekend 9 × 106 – 9.3 × 107 4.7 × 107 2.1 × 107

Weekdays 1.6 × 10-1 – 18 3 3.9Formaldehyde 

(mg/veh/km) Weekend 6 × 10-2 – 13 3.2 3.1

Weekdays 1.4 × 10-2 – 2.8 7.1 × 10-1  8.8 × 10-1   Hexanal 

(mg/veh/km) Weekend 2.1 × 10-1 – 7.8 1.8 1.8

Weekdays 9.1 × 10-2 – 7.4 1.2 1.5Benzene 

(mg/veh/km) Weekend 2.3 × 10-1 – 13.4 2.4 3.5

Weekdays 3.4 × 10-2 – 11 3 2.6Toluene 

(mg/veh/km) Weekend 3.3 – 20.5 9.6 4.7

Weekdays 1.3 × 10-2 – 2.6 8.5 × 10-1 7 × 10-1Ethylbenzene 

(mg/veh/km) Weekend 7 × 10-1 – 5 2.6 1.2
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Weekdays 1.8 × 10-1 – 6.8 1.6 1.5m+p Xylene 

(mg/veh/km) Weekend 1.4 – 10.4 6.4 2.8

Weekdays 7 × 10-2 – 2.9 7.1 × 10-1 6.4 × 10-1o Xylene 

(mg/veh/km) Weekend 6.1 × 10-1 – 5.9 3.2 1.6

Weekdays 3.5 × 10-2 – 3.3 8 × 10-1 7.5 × 10-1Nonane 

(mg/veh/km) Weekend 3.3 × 10-1 – 4.9 2 1.1

Weekdays 1.5 × 10-1 – 15.2 1.5 3.1Decane 

(mg/veh/km) Weekend 4.1 × 10-2 – 4.5 1.7 1.3

Weekdays 5.5 × 10-2 – 4.8 5.3 × 10-1 8..9 × 10-1Undecane 

(mg/veh/km) Weekend 3.5 × 10-2 – 2.1 1.1 7 × 10-1

506

507

508 Table A.3

509 Example of COPERT input data for calculating NOX emission factors

Category Fuel Segment Euro 
Standard

Stock 
[n]

Mean 
Activity 

[km/year]

Urban 
Speed 
[km/h]

Passenger Cars Gasoline Small PRE ECE 0 0 25

Passenger Cars Gasoline Small Euro 1 1 4077 25

Passenger Cars Gasoline Small Euro 2 2 5055 25

Passenger Cars Gasoline Small Euro 3 1 6820 25

Passenger Cars Gasoline Small Euro 4 2 8508 25

Passenger Cars Gasoline Small Euro 5 1 11007 25

Passenger Cars Gasoline Small Euro 6 5 13309 25

Passenger Cars Gasoline Medium PRE ECE 0 0 25

Passenger Cars Gasoline Medium Euro 1 2 5398 25

Passenger Cars Gasoline Medium Euro 2 4 6672 25

Passenger Cars Gasoline Medium Euro 3 5 8995 25

Passenger Cars Gasoline Medium Euro 4 0 11319 25
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Passenger Cars Gasoline Medium Euro 5 2 14555 25

Passenger Cars Gasoline Medium Euro 6 3 17592 25

Passenger Cars Gasoline Large-SUV-Executive PRE ECE 0 0 25

Passenger Cars Gasoline Large-SUV-Executive Euro 1 0 5610 25

Passenger Cars Gasoline Large-SUV-Executive Euro 2 0 7069 25

Passenger Cars Gasoline Large-SUV-Executive Euro 3 0 9523 25

Passenger Cars Gasoline Large-SUV-Executive Euro 4 1 12000 25

Passenger Cars Gasoline Large-SUV-Executive Euro 5 0 15454 25

Passenger Cars Gasoline Large-SUV-Executive Euro 6 3 18619 25

Passenger Cars Diesel Mini Euro 4 10 15608 25

Passenger Cars Diesel Mini Euro 5 5 17572 25

Passenger Cars Diesel Mini Euro 6 5 19 25

Passenger Cars Diesel Small Euro 1 1 10957 25

Passenger Cars Diesel Small Euro 2 3 12152 25

Passenger Cars Diesel Small Euro 3 7 13560 25

Passenger Cars Diesel Small Euro 4 16 15236 25

Passenger Cars Diesel Small Euro 5 12 17146 25

Passenger Cars Diesel Small Euro 6 17 18122 25

Passenger Cars Diesel Large-SUV-Executive Euro 1 0 11376 25

Passenger Cars Diesel Large-SUV-Executive Euro 2 1 12489 25

Passenger Cars Diesel Large-SUV-Executive Euro 3 2 14286 25

Passenger Cars Diesel Large-SUV-Executive Euro 4 2 15807 25

Passenger Cars Diesel Large-SUV-Executive Euro 5 2 17770 25

Passenger Cars Diesel Large-SUV-Executive Euro 6 2 18788 25

Light Commercial 
Vehicles Diesel N1-II Conventional 0 2313 25

Light Commercial 
Vehicles Diesel N1-II Euro 1 0 5012 25

Light Commercial 
Vehicles Diesel N1-II Euro 2 0 7490 25

Light Commercial 
Vehicles Diesel N1-II Euro 3 2 10979 25

Light Commercial 
Vehicles Diesel N1-II Euro 4 9 15840 25

Light Commercial 
Vehicles Diesel N1-II Euro 5 13 21249 25

Light Commercial 
Vehicles Diesel N1-II Euro 6 23 25636 25

Heavy Duty Trucks Diesel Rigid <=7,5 t Euro I 0 846 25

Heavy Duty Trucks Diesel Rigid <=7,5 t Euro II 0 4475 25
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Heavy Duty Trucks Diesel Rigid <=7,5 t Euro III 0 11207 25

Heavy Duty Trucks Diesel Rigid <=7,5 t Euro IV 0 19789 25

Heavy Duty Trucks Diesel Rigid <=7,5 t Euro V 0 32935 25

Heavy Duty Trucks Diesel Rigid <=7,5 t Euro VI 0 50409 25

Heavy Duty Trucks Diesel Rigid 7,5 - 12 t Euro I 0 903 25

Heavy Duty Trucks Diesel Rigid 7,5 - 12 t Euro II 0 4404 25

Heavy Duty Trucks Diesel Rigid 7,5 - 12 t Euro III 0 11191 25

Heavy Duty Trucks Diesel Rigid 7,5 - 12 t Euro IV 1 19733 25

Heavy Duty Trucks Diesel Rigid 7,5 - 12 t Euro V 1 33797 25

Heavy Duty Trucks Diesel Rigid 7,5 - 12 t Euro VI 0 53438 25

Heavy Duty Trucks Diesel Rigid 14 - 20 t Euro I 0 952 25

Heavy Duty Trucks Diesel Rigid 14 - 20 t Euro II 0 4598 25

Heavy Duty Trucks Diesel Rigid 14 - 20 t Euro III 0 11195 25

Heavy Duty Trucks Diesel Rigid 14 - 20 t Euro IV 0 19669 25

Heavy Duty Trucks Diesel Rigid 14 - 20 t Euro V 0 33306 25

Heavy Duty Trucks Diesel Rigid 14 - 20 t Euro VI 1 50609 25

Heavy Duty Trucks Diesel Rigid 20 - 26 t Euro I 0 983 25

Heavy Duty Trucks Diesel Rigid 20 - 26 t Euro II 0 4800 25

Heavy Duty Trucks Diesel Rigid 20 - 26 t Euro III 0 11470 25

Heavy Duty Trucks Diesel Rigid 20 - 26 t Euro IV 0 19795 25

Heavy Duty Trucks Diesel Rigid 20 - 26 t Euro V 0 33762 25

Heavy Duty Trucks Diesel Rigid 20 - 26 t Euro VI 0 50832 25

Heavy Duty Trucks Diesel Rigid 26 - 28 t Conventional 0 0 25

Heavy Duty Trucks Diesel Rigid 26 - 28 t Euro I 0 995 25

Heavy Duty Trucks Diesel Rigid 26 - 28 t Euro II 0 4999 25

Heavy Duty Trucks Diesel Rigid 26 - 28 t Euro III 0 11940 25

Heavy Duty Trucks Diesel Rigid 26 - 28 t Euro IV 0 19884 25

Heavy Duty Trucks Diesel Rigid 26 - 28 t Euro V 2 34084 25

Heavy Duty Trucks Diesel Rigid 26 - 28 t Euro VI 0 50947 25

Buses Diesel Urban Buses Midi 
<=15 t Euro IV 0 27800 25

Buses Diesel Urban Buses Midi 
<=15 t Euro V 0 38074 25

Buses Diesel Urban Buses Midi 
<=15 t Euro VI 0 45582 25

Buses Diesel Urban Buses 
Articulated  >18 t Conventional 0 2000 25

Buses Diesel Urban Buses 
Articulated  >18 t Euro I 0 5823 25
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Buses Diesel Urban Buses 
Articulated  >18 t Euro II 0 11357 25

Buses Diesel Urban Buses 
Articulated  >18 t Euro III 0 19120 25

Buses Diesel Urban Buses 
Articulated  >18 t Euro IV 1 27763 25

Buses Diesel Urban Buses 
Articulated  >18 t Euro V 1 37992 25

Buses Diesel Urban Buses 
Articulated  >18 t Euro VI 0 45633 25
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511

512 Fig. A.1. Time profiles of PN, BC and NOX concentrations on the traffic site and the background site From Wednesday to 

513 Sunday.
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515 Fig. A.2. Time profiles of the percentages of the diesel PCs, the percentages of gasoline PCs and the numbers of HDVs on 

516 the measurement week.
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