
HAL Id: hal-02350390
https://hal.science/hal-02350390v1

Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster polynomial multiplication over finite fields using
cyclotomic coefficient rings
David Harvey, Joris van der Hoeven

To cite this version:
David Harvey, Joris van der Hoeven. Faster polynomial multiplication over finite fields using cy-
clotomic coefficient rings. Journal of Complexity, 2019, 54, pp.101404. �10.1016/j.jco.2019.03.004�.
�hal-02350390�

https://hal.science/hal-02350390v1
https://hal.archives-ouvertes.fr

Faster polynomial multiplication over finite fields using
cyclotomic coefficient rings

David Harvey

School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052,

Australia

Joris van der Hoeven

Laboratoire d’informatique, UMR 7161 CNRS, École polytechnique, 91128 Palaiseau Cedex,
France

Abstract

We prove that for a fixed prime p, polynomials in Fp[X] of degree n may be
multiplied in O(n log n 4log

∗ n) bit operations. Previously, the best known bound
was O(n log n 8log

∗ n).

1. Introduction

In this paper we present a new complexity bound for multiplying polynomi-
als over finite fields. Our focus is on theoretical bounds rather than practical
algorithms. We work in the deterministic multitape Turing model [1], in which
time complexity is defined by counting the number of steps, or equivalently, the
number of ‘bit operations’, executed by a Turing machine with a fixed, finite
number of tapes. The main results of the paper also hold in the Boolean circuit
model.

The following notation is used throughout. For x ∈ R, we denote by
log∗ x the iterated logarithm, that is, the least non-negative integer k such that
log◦k x 6 1, where log◦k x := log · · · log x (iterated k times). For a positive inte-
ger n, we define lg n := max(1, dlog2 ne); in particular, expressions like lg lg lg n
are defined and take positive values for all n > 1. We denote the n-th cyclo-
tomic polynomial by φn(X) ∈ Z[X], and the Euler totient function by ϕ(n),
i.e., ϕ(n) := |(Z/nZ)∗|.

All absolute constants in this paper are in principle effectively computable.
This includes the implied constants in all uses of O(·) notation.

Email addresses: d.harvey@unsw.edu.au (David Harvey),
vdhoeven@lix.polytechnique.fr (Joris van der Hoeven)

Preprint submitted to Journal of Complexity March 26, 2019

1.1. Statement of main result

Let M(n) denote the number of bit operations required to multiply two n-bit
integers. We assume that

M(n) = O(n lg nK log∗ n
Z) (1.1)

for some constant KZ > 1. The first bound of this type was proved by Fürer,
for some unspecified value of KZ [2, 3]. Currently the best known value for the
constant is KZ = 4 [4].

For a prime p, let Mp(n) denote the number of bit operations required to
multiply two polynomials in Fp[X] of degree less than n. Our main result is as
follows.

Theorem 1.1. There is a polynomial multiplication algorithm that achieves

Mp(n) = O(n lg p lg(n lg p) 4max(0,log∗ n−log∗ p)K log∗ p
Z), (1.2)

uniformly for all n > 1 and all primes p.

In particular, for fixed p, one can multiply polynomials in Fp[X] of degree n
in O(n lg n 4log

∗ n) bit operations.
Theorem 1.1 may be generalised in various ways. We briefly mention a

few possibilities along the lines of [5, §8] (no proofs will be given). First, we
may obtain analogous bit complexity bounds for multiplication in Fpa [X] and
(Z/paZ)[X] for a > 1, and in (Z/mZ)[X] for arbitrary m > 1 (see Theo-
rems 8.1–8.3 in [5]). We may also obtain complexity bounds for polynomial
multiplication in various algebraic complexity models. For example, we may
construct a straight-line program that multiplies two polynomials in A[X] of
degree less than n, for any Fp-algebra A, using O(n lg n 4log

∗ n) additions and
scalar multiplications and O(n 2log

∗ n) nonscalar multiplications (compare with
[5, Thm. 8.4]).

Remark 1.2. A previous version of this paper [6] used the algorithm underlying
Theorem 1.1 to construct an integer multiplication algorithm achieving KZ =
25/2 ≈ 5.66. This result was superseded by a subsequent paper that achieves
KZ = 4 using a completely different method [4].

1.2. Comparison with previous work

The optimal choice of algorithm for multiplication in Fp[x] depends very
much on the relative size of n and p. If n is not too large compared to p,
say lg n = O(lg p), then a reasonable choice is Kronecker substitution: one lifts
the polynomials to Z[X], packs the coefficients of each polynomial into a large
integer (i.e., evaluates at X = 2b for b := 2 lg p + lg n), multiplies these large
integers, unpacks the resulting coefficients to obtain the product in Z[X], and
finally reduces the output modulo p. This leads to the bound

Mp(n) = O(M(n lg p)) = O(n lg p lg(n lg p)K
log∗(n lg p)
Z). (1.3)

2

Note that (1.2) reduces to this bound in the region lg n = O(lg p). To the
authors’ knowledge, this is the best known asymptotic bound for Mp(n) in this
region.

When n is large compared to p, the situation is starkly different. The Kro-
necker substitution method leads to poor results, due to coefficient growth in
the lifted product: for example, when p is fixed, Kronecker substitution yields

Mp(n) = O(M(n lg n)) = O(n(lg n)2K log∗ n
Z).

For many years, the best known bound in this regime was that achieved by
the algebraic version of the Schönhage–Strassen algorithm [7, 8] (see also [9,
Sec. 2.2]), namely

Mp(n) = O(n lg n lg lg n lg p+ n lg nM(lg p)). (1.4)

The first term arises from performing O(n lg n lg lg n) additions in Fp, and the
second term from O(n lg n) multiplications in Fp. (In fact, this sort of bound
holds for polynomial multiplication over quite general rings [10].) For fixed p,
this is faster than the Kronecker substitution method by a factor of almost lg n.
The main reason for its superiority is that it exploits the modulo p structure
throughout the algorithm, whereas the Kronecker substitution method forgets
this structure in the very first step.

After the appearance of Fürer’s algorithm for integer multiplication, it was
natural to ask whether a Fürer-type bound could be proved for Mp(n), in the
case that n is large compared to p. This question was answered in the affirmative
by Harvey, van der Hoeven and Lecerf, who gave an algorithm that achieves

Mp(n) = O(n lg p lg(n lg p) 8log
∗(n lg p)),

uniformly for all n and p [5]. This is a very elegant bound; however, written in
this way, it obscures the fact that the constant 8 plays two quite different roles
in the complexity analysis. One source of the value 8 is the constant KZ = 8
arising from the best known integer multiplication algorithm at the time the
paper was written, but there is also a separate constant KF = 8 arising from
the polynomial part of the algorithm. There is no particular reason to expect
that KZ = KF, and it is somewhat of a coincidence that they have the same
numerical value in [5].

To clarify the situation, we mention that one may derive a complexity bound
for the algorithm of [5] under the assumption that one has available an integer
multiplication algorithm achieving (1.1) for some KZ > 1, where possibly KZ 6=
8. Namely, one finds that

Mp(n) = O(n lg p lg(n lg p)K
max(0,log∗ n−log∗ p)
F K log∗ p

Z) (1.5)

where KF = 8 (we omit the proof). Our Theorem 1.1 asserts that (1.5) holds
with KF = 4.

3

1.3. Overview of the new algorithm

To explain the new approach, let us first recall the idea behind the polyno-
mial multiplication algorithm of [5].

Consider a polynomial multiplication problem in Fp[X], where the degree n
is very large compared to p. By splitting the inputs into chunks, we convert this
to a bivariate multiplication problem in Fp[Y,Z]/(f(Y), Zm − 1), for a suitable
integer m and irreducible polynomial f ∈ Fp[Y]. This bivariate product is han-
dled by means of DFTs (discrete Fourier transforms) of length m over Fp[Y]/f .
The key innovation of [5] was to choose deg f so that pdeg f − 1 is divisible by
many small primes, so many, in fact, that their product is comparable to n,
even though deg f itself is exponentially smaller. This is possible thanks to a
number-theoretic result of Adleman, Pomerance and Rumely [11], building on
earlier work of Prachar [12]. Taking m to be a product of many of these primes,
we obtain m | pdeg f − 1, and hence Fp[Y]/f contains a root of unity of order
m. As m is highly composite, each DFT of length m may be converted to a
collection of much smaller DFTs via the Cooley–Tukey method. These in turn
are converted into multiplication problems using Bluestein’s algorithm. These
multiplications, corresponding to exponentially smaller values of n, are handled
recursively.

The recursion continues until n becomes comparable to p. The number of
recursion levels during this phase is log∗ n − log∗ p + O(1), and the constant
KF = 8 represents the “expansion factor” that occurs at each recursion level,
due to phenomena such as zero-padding. When n becomes comparable to p, the
algorithm switches strategy to Kronecker substitution combined with ordinary

integer multiplication. This phase contributes the K log∗ p
Z term.

It was pointed out in [13, §8] that the value of KF can be improved to
KF = 4 if one is willing to accept certain unproved number-theoretic conjectures,
including Artin’s conjecture on primitive roots. More precisely, under these
conjectures, one may find an irreducible f of the form f(Y) = Y α−1 + · · · +
Y + 1, where α is prime, so that Fp[Y, Z]/(f(Y), Zm − 1) is a direct summand
of Fp[Y,Z]/(Y α− 1, Zm− 1). This last ring is isomorphic to Fp[X]/(Xαm− 1),
and one may use this isomorphism to save a factor of two in zero-padding at
each recursion level. These savings lead directly to the improved value for KF.

To prove Theorem 1.1, we will pursue a variant of this idea. We will take f
to be a cyclotomic polynomial φα(Y) for a judiciously chosen integer α (not nec-
essarily prime). Since φα | Y α−1, we may use the above isomorphism to realise
the same economy in zero-padding as in the conjectural construction of [13, §8].
However, unlike [13], we do not require that f be irreducible in Fp[Y]. Thus
Fp[Y]/f is no longer in general a field, but a direct sum of fields. The situation
is reminiscent of Fürer’s algorithm, in which the coefficient ring C[Y]/(Y 2r + 1)
is not a field, but a direct sum of copies of C. The key technical contribution of
this paper is to show that we have enough control over the factorisation of φα in
Fp[Y] to ensure that Fp[Y]/φα contains suitable principal roots of unity. This
approach avoids Artin’s conjecture and other number-theoretic difficulties, and
enables us to reach KF = 4 unconditionally. The construction of α is the subject

4

of Section 3, and the main polynomial multiplication algorithm is presented in
Section 4.

2. Preliminaries

2.1. Logarithmically slow functions

Let x0 ∈ R, and let Φ : (x0,∞) → R be a smooth increasing function. We
recall from [14, §5] that Φ is said to be logarithmically slow if there exists an
integer ` > 0 such that

(log◦` ◦ Φ ◦ exp◦`)(x) = log x+O(1)

as x→∞. For example, the functions log(5x), 5 log x, (log x)5, and 2(log log x)5

are logarithmically slow, with ` = 0, 1, 2, 3 respectively.
We will always assume that x0 is chosen large enough to ensure that Φ(x) 6

x − 1 for all x > x0. According to [14, Lemma 2], this is possible for any
logarithmically slow function, and it implies that the iterator Φ∗(x) := min{k >
0 : Φ◦k(x) 6 x0} is well-defined on R. It is shown in [14, Lemma 3] that this
iterator satisfies

Φ∗(x) = log∗ x+O(1) (2.1)

as x → ∞. In other words, logarithmically slow functions are more or less
indistinguishable from log x, as far as iterators are concerned.

As in [14] and [5], we will use logarithmically slow functions to measure size
reduction in multiplication algorithms. The typical situation is that we have
a function T (n) measuring the (normalised) cost of a certain multiplication
algorithm for inputs of size n; we reduce the problem to a collection of problems
of size ni < Φ(n), leading to a bound for T (n) in terms of the various T (ni).
Applying the reduction recursively, we wish to convert these bounds into an
explicit asymptotic estimate for T (n). For this purpose we recall the following
‘master theorem’ [14, Prop. 8].

Proposition 2.1. Let K > 1, B > 0, and let ` > 0 be an integer. Let x0 >
exp◦`(1), and let Φ : (x0,∞) → R be a logarithmically slow function such that
Φ(x) 6 x− 1 for all x > x0. Then there exists a positive constant C (depending
on x0, Φ, K, B and `) with the following property.

Let σ > x0 and L > 0. Let S ⊆ R, and let T : S → R> be any function
satisfying the following recurrence. First, T (y) 6 L for all y ∈ S, y 6 σ.
Second, for all y ∈ S, y > σ, there exist y1, . . . , yd ∈ S with yi 6 Φ(y), and
weights γ1, . . . , γd > 0 with

∑
i γi = 1, such that

T (y) 6 K

(
1 +

B

log◦` y

) d∑
i=1

γiT (yi) + L.

Then for all y ∈ S, y > σ, we have

T (y) 6 CLK log∗ y−log∗ σ.

5

2.2. Discrete Fourier transforms
Let n > 1 and let R be a commutative ring in which n is invertible. A

principal n-th root of unity is an element ω ∈ R such that ωn = 1 and such that∑n−1
j=0 ω

ij = 0 for i = 1, 2, . . . , n− 1. If m is a divisor of n, then ωn/m is easily
seen to be a principal m-th root of unity.

Fix a principal n-th root of unity ω. The discrete Fourier transform (DFT) of
the sequence (a0, . . . , an−1) ∈ Rn with respect to ω is the sequence (â0, . . . , ân−1) ∈
Rn defined by âj :=

∑n−1
i=0 ω

ijai. Equivalently, âj = A(ωj) whereA =
∑n−1
i=0 aiX

i ∈
R[X]/(Xn − 1).

The inverse DFT recovers (a0, . . . , an−1) from (â0, . . . , ân−1). Computa-
tionally it corresponds to a DFT with respect to ω−1, followed by a division by
n, because

1

n

n−1∑
j=0

ω−kj âj =
1

n

n−1∑
i=0

n−1∑
j=0

ω(i−k)jai = ak, k = 0, . . . , n− 1.

DFTs may be used to implement cyclic convolutions. Suppose that we wish
to compute C := AB where A,B ∈ R[X]/(Xn − 1). We first perform DFTs
to compute A(ωi) and B(ωi) for i = 0, . . . , n − 1. We then compute C(ωi) =
A(ωi)B(ωi) for each i, and finally perform an inverse DFT to recover C ∈
R[X]/(Xn − 1).

This strategy may be generalised to handle a multidimensional cyclic con-
volution, that is, to compute C := AB for

A,B ∈ R[X1, . . . , Xd]/(X
n1
1 − 1, . . . , Xnd

d − 1).

For this, we require that each nk be invertible in R, and that R contain a prin-
cipal nk-th root of unity ωk for each k. Let n := n1 · · ·nd. We first perform
multidimensional DFTs to evaluate A and B at the n points {(ωj11 , . . . , ω

jd
d) :

0 6 jk < nk}. We then multiply pointwise, and finally recover C via a multidi-
mensional inverse DFT.

Each multidimensional DFT may be reduced to a collection of one-dimensional
DFTs as follows. We first compute A(X1, . . . , Xd−1, ω

j
d) ∈ R[X1, . . . , Xd−1] for

each j = 0, . . . , nd − 1; this involves n/nd DFTs of length nd. We then recur-

sively evaluate each of these polynomials at the n/nd points (ωj11 , . . . , ω
jd−1

d−1).
Altogether, this strategy involves computing n/nk DFTs of length nk for each
k = 1, . . . , d.

Finally, we briefly recall Bluestein’s method [15] for reducing a (one-dimensional)
DFT to a convolution problem (see also [14, §2.5]). Let n > 1 be odd and let
ω ∈ R be a principal n-th root of unity. Set ξ := ω(n+1)/2, so that ξ2 = ω and
ξn = 1. Then computing the DFT of a given sequence (a0, . . . , an−1) ∈ Rn with
respect to ω reduces to computing the product of the polynomials

f(Z) :=

n−1∑
i=0

ξi
2

aiZ
i, g(Z) :=

n−1∑
i=0

ξ−i
2

Zi

in R[Z]/(Zn− 1), plus O(n) auxiliary multiplications in R. Notice that g(Z) is
fixed and does not depend on the input sequence.

6

2.3. Data layout

In this section we discuss several issues relating to the layout of data on the
Turing machine tapes.

Integers will always be stored in the standard binary representation. If n is
a positive integer, then elements of Z/nZ will always be stored as residues in
the range 0 6 x < n, occupying lgn bits of storage.

If R is a ring and f ∈ R[X] is a polynomial of degree n > 1, then an element
of R[X]/f(X) will always be represented as a sequence of n coefficients in the
standard monomial order. This convention is applied recursively, so for rings
of the type (R[Y]/f(Y))[X]/g(X), the coefficient of X0 is stored first, as an
element of R[Y]/f(Y), followed by the coefficient of X1, and so on.

A multidimensional array of size nd × · · · × n1, whose entries occupy b bits
each, will be stored as a linear array of bn1 · · ·nd bits. The entries are ordered
lexicographically in the order (0, . . . , 0, 0), (0, . . . , 0, 1), . . . , (nd − 1, . . . , n1 − 1).
In particular, an element of (· · · (R[X1]/f1(X1)) · · ·)[Xd]/fd(Xd) is represented
as an nd × · · · × n1 array of elements of R. We will generally prefer the more
compact notation R[X1, . . . , Xd]/(f1(X1), . . . , fd(Xd)).

There are many instances where an n × m array must be transposed so
that its entries can be accessed efficiently either ‘by columns’ or ‘by rows’.
Using the algorithm of [16, Lemma 18], such a transposition may be achieved in
O(bnm lg min(n,m)) bit operations, where b is the bit size of each entry. (The
idea of the algorithm is to split the array in half along the short dimension, and
transpose each half recursively.)

One important application is the following result, which estimates the data
rearrangement cost associated to the the Agarwal–Cooley method [17] for con-
verting between one-dimensional and multidimensional convolution problems
(this is closely related to the Good–Thomas DFT algorithm [18, 19]).

Lemma 2.2. Let n,m > 2 be relatively prime, and let R be a ring whose
elements are represented using b bits. There exists an isomorphism

R[X]/(Xnm − 1) ∼= R[Y,Z]/(Y n − 1, Zm − 1)

that may be evaluated in either direction in O(bnm lg min(n,m)) bit operations.

Proof. Let c := m−1 mod n, and let

β : R[X]/(Xnm − 1)→ R[Y,Z]/(Y n − 1, Zm − 1)

denote the homomorphism that maps X to Y cZ, and acts as the identity on
R. Suppose that we wish to compute β(F) for some input polynomial F =∑nm−1
k=0 FkX

k ∈ R[X]/(Xnm − 1). Interpreting the list (F0, . . . , Fnm−1) as an
n × m array, the (i, j)-th entry corresponds to Fim+j . After transposing the
array, which costs O(bnm lg min(n,m)) bit operations, we have an m×n array,
whose (j, i)-th entry is Fim+j . Now for each j, cyclically permute the j-th row
by (jc mod n) slots; altogether this uses only O(bnm) bit operations. The result
is an m× n array whose (j, i)-th entry is F(i−jc mod n)m+j , which is exactly the

7

coefficient of Y ((i−jc)m+j)cZ(i−jc)m+j = Y iZj in β(F). The inverse map β−1

may be computed by reversing this procedure.

Corollary 2.3. Let n1, . . . , nd > 2 be pairwise relatively prime, let n := n1 · · ·nd,
and let R be a ring whose elements are represented using b bits. There exists
an isomorphism

R[X]/(Xn − 1) ∼= R[X1, . . . , Xd]/(X
n1
1 − 1, . . . , Xnd

d − 1)

that may be evaluated in either direction in O(bn lg n) bit operations.

Proof. Using Lemma 2.2, we may construct a sequence of isomorphisms

R[X]/(Xn1···nd − 1) ∼= R[X1,W2]/(Xn1
1 − 1,Wn2···nd

2 − 1)
∼= R[X1, X2,W3]/(Xn1

1 − 1, Xn2
2 − 1,Wn3···nd

3 − 1)

· · ·
∼= R[X1, . . . , Xd]/(X

n1
1 − 1, . . . , Xnd

d − 1),

the i-th of which may be computed in O(bn lg ni) bit operations. The overall
cost is O(

∑
i bn lg ni) = O(bn lg n) bit operations.

3. Cyclotomic coefficient rings

The aim of this section is to construct certain coefficient rings that play a
central role in the multiplication algorithms described later. The basic idea is
as follows. Suppose that we want to multiply two polynomials in Fp[X], and
that the degree of the product is known to be at most n. If N is an integer
with N > n, then by appropriate zero-padding, we may embed the problem in
Fp[X]/(XN − 1). Furthermore, if we have some factorisation N = αm, where
α and m are relatively prime, then there is an isomorphism

Fp[X]/(XN − 1) ∼= Fp[Y,Z]/(Y α − 1, Zm − 1),

and the latter ring is closely related to

Fp[Y,Z]/(φα(Y), Zm − 1) ∼= (Fp[Y]/φα)[Z]/(Zm − 1)

(recall that φα(Y) denotes the α-th cyclotomic polynomial). In particular, com-
puting the product in (Fp[Y]/φα)[Z]/(Zm−1) recovers ‘most’ of the information
about the product in Fp[X]/(XN − 1).

In this section we show how to choose N , α and m with the following prop-
erties:

1. N is not much larger than n, so that not too much space is ‘wasted’ in
the initial zero-padding step;

2. ϕ(α) (= deg φα) is not much smaller than α, so that we do not lose much
information by working modulo φα(Y) instead of modulo Y α − 1 (this
missing information must be recovered by other means);

8

3. the coefficient ring Fp[Y]/φα contains a principal m-th root of unity, so
that we can multiply in (Fp[Y]/φα)[Z]/(Zm − 1) efficiently by means of
DFTs over Fp[Y]/φα;

4. m is a product of many integers that are exponentially smaller than n, so
that the DFTs of length m may be reduced to many small DFTs; and

5. α is itself exponentially smaller than n.

The last two items ensure that the small DFTs can be converted to multiplica-
tion problems of degree exponentially smaller than n, to allow the recursion to
proceed.

Definition 3.1. An admissible tuple is a sequence (q0, q1, . . . , qe) of distinct
primes (e > 1) satisfying the following conditions. First,

(lgN)3 < qi < 2(lg lgN)2 , i = 0, . . . , e, (3.1)

where N := q0 · · · qe. Second, qi − 1 is squarefree for i = 1, . . . , e, and

λ(q0, . . . , qe) := LCM(q1 − 1, . . . , qe − 1) < 2(lg lgN)2 . (3.2)

(Note that q0 − 1 need not be squarefree, and q0 does not participate in (3.2).)
An admissible length is a positive integer N of the form N = q0 · · · qe where

(q0, . . . , qe) is an admissible tuple.

If N is an admissible length, we treat (q0, . . . , qe) and λ(N) := λ(q0, . . . , qe)
as auxiliary data attached to N . For example, if an algorithm takes N as input,
we implicitly assume that this auxiliary data is also supplied as part of the
input.

Example 3.2. Let n = 10100000. There is an admissible length N , slightly
larger than n, given by

N = 1000000000000000000156121 . . . (99971 digits omitted) . . . 26353

= q0q1 · · · q6035

where

q0 = 206658761261792645783,

q1 = 36658226833235899 = 1 + 2 ·3 ·11 ·17 ·23 ·29 ·37 ·53 ·59 ·67 ·71 ·89,

q2 = 36658244723486119 = 1 + 2 ·3 ·17 ·29 ·47 ·59 ·67 ·73 ·83 ·101 ·109,

q3 = 36658319675739343 = 1 + 2 ·3 ·7 ·17 ·29 ·31 ·41 ·47 ·53 ·61 ·89 ·103,

q4 = 36658428883190467 = 1 + 2 ·3 ·11 ·31 ·43 ·61 ·71 ·73 ·107 ·109 ·113,

· · ·
q6035 = 37076481100386859 = 1 + 2 ·3 ·13 ·29 ·31 ·59 ·83 ·97 ·101 ·103 ·107

and

λ(N) = 2 ·3 ·5 · · · 113 = 31610054640417607788145206291543662493274686990.

9

Definition 3.3. Let p be a prime. An admissible length N is called p-admissible
if N > p2 and p - N (i.e., p is distinct from q0, . . . , qe).

The following result explains how to choose a p-admissible length close to
any prescribed target.

Proposition 3.4. There is an absolute constant z1 > 0 with the following prop-
erty. Given as input a prime p and an integer n > max(z1, p

2), in 2O((lg lgn)2)

bit operations we may compute a p-admissible length N in the interval

n < N <

(
1 +

1

lg n

)
n. (3.3)

The key ingredient in the proof is the following number-theoretic result of
Adleman, Pomerance and Rumely.

Lemma 3.5 ([11, Prop. 10]). There is an absolute constant C1 > 0 with the
following property. For all x > 10, there exists a positive squarefree integer
λ0 < x2 such that ∑

q prime
q−1|λ0

1 > exp(C1 log x/ log log x).

Proof of Proposition 3.4. Let λmax := d2 2
9 (lg lgn)2e, and for λ > 1 define f(λ)

to be the number of primes q in the interval (lg n)4 < q 6 λmax + 1 such that
q − 1 | λ and q 6= p. We claim that, provided n is large enough, there exists
some squarefree λ0 ∈ {1, . . . , λmax} such that f(λ0) > lg n. To see this, apply

Lemma 3.5 with x := 2
1
9 (lg lgn)2 ; for large n we then have

C1 log x/ log log x > 15(log2 x)1/2 = 5 lg lg n,

so Lemma 3.5 implies that there exists a positive squarefree integer λ0 < x2 6
λmax for which ∑

q prime
q−1|λ0

1 > exp(5 lg lg n) > (lg n)5

and hence

f(λ0) =
∑

(lgn)4<q6λmax+1
q prime, q 6= p

q−1|λ0

1 > (lg n)5 − (lg n)4 − 1 > lg n.

We may locate one such λ0 by means of the following algorithm (adapted
from the proof of [5, Lemma 4.5]). First use a sieve to enumerate the primes q
in the interval (lg n)4 < q 6 λmax + 1, and to determine which λ = 1, . . . , λmax

are squarefree, in (λmax)1+o(1) bit operations. Now initialise an array of in-
tegers cλ := 0 for λ = 1, . . . , λmax. For each q 6= p, scan through the array,
incrementing those cλ for which λ is squarefree and divisible by q− 1, and stop

10

as soon as one of the cλ reaches lg n. We need only allocate O(lg lg n) bits per
array entry, so each pass through the array costs O(λmax lg lg n) bit operations.
The number of passes is O(λmax), so the total cost of finding a suitable λ0 is

O(λ2max lg lg n) = 2O((lg lgn)2) bit operations. Within the same time bound, we
may also easily recover a list of primes q1, q2, . . . , qlgn for which qi − 1 | λ0.

Next, compute the partial products q1, q1q2, . . . , q1q2 · · · qlgn, and determine

the smallest integer e > 1 for which q1 · · · qe > n/2
1
2 (lg lgn)2 . Such an e certainly

exists, as q1 · · · qlgn > 2lgn > n. Since each qi occupies O((lg lg n)2) bits, this
can all be done in (lg n)O(1) bit operations. Also, as

qe 6 λ0 + 1 6 2
2
9 (lg lgn)2 + 1 < 2

1
4 (lg lgn)2

and q1 · · · qe−1 6 n/2
1
2 (lg lgn)2 , we find that

2
1
4 (lg lgn)2 <

n

q1 · · · qe
< 2

1
2 (lg lgn)2

for large n.
Let q0 be the least prime that exceeds n/(q1 · · · qe) and that is distinct from p.

According to [20], the interval [x− x0.525, x] contains at least one prime for all
sufficiently large x; therefore

q0 <
n

q1 · · · qe
+

(
n

q1 · · · qe

)0.6

<
(

1 + (2
1
4 (lg lgn)2)−0.4

) n

q1 · · · qe
<

(
1 +

1

lg n

)
n

q1 · · · qe

for n sufficiently large. We may find q0 in 2O((lg lgn)2) bit operations, by using
trial division to test successive integers for primality.

Set N := q0q1 · · · qe. Then (3.3) holds, and certainly N > p2 and p - N .
Let us check that (q0, . . . , qe) is admissible, provided n is large enough. For
i = 1, . . . , e we have

(lgN)3 < (lg n)4 < qi 6 λ0 + 1 < 2
1
4 (lg lgn)2 < 2(lg lgN)2 ,

and also

(lgN)3 < 2
1
4 (lg lgn)2 < q0 <

(
1 +

1

lg n

)
2

1
2 (lg lgn)2 < 2(lg lgN)2 ;

this establishes (3.1). Also, as q0 > 2
1
4 (lg lgn)2 > qi for i = 1, . . . , e, we see that

q0 is distinct from q1, . . . , qe. Finally, (3.2) holds because

LCM(q1 − 1, . . . , qe − 1) | λ0 6 2
2
9 (lg lgn)2 < 2(lg lgN)2 .

This also shows that we may compute the auxiliary data λ(q0, . . . , qe) in 2O((lg lgn)2)

bit operations.

11

Remark 3.6. Example 3.2 was constructed by enumerating the smallest primes
q1, q2, . . . exceeding (lg n)3 for which qi−1 | 2·3·5 · · · 113, halting just before their
product reached n, and then choosing q0 to make N as close to n as possible.
The proof of Proposition 3.4 goes a different way: rather than choosing λ first,
the proof constructs q1, . . . , qe and λ simultaneously. In particular, one cannot
guarantee that λ will be a product of an initial segment of primes, as occurred
in the example. Indeed, the proof of [11, Prop. 10] (and of its predecessor [12])
yields very little information at all about the prime factorisation of λ. For
further discussion, see [11, Remark 6.2].

Definition 3.7. Let p be a prime and let N = q0 · · · qe be a p-admissible length.
A p-admissible divisor of N is a positive divisor α of N , with q0 | α, such that
the ring Fp[Y]/φα(Y) contains a principal (q1 · · · qe)-th root of unity, and such
that

lgN < α < 2(lg lgN)4 (3.4)

and

ϕ(α) >

(
1− 1

lgN

)
α. (3.5)

The next result shows how to construct a p-admissible divisor for any suf-
ficiently large p-admissible length N . The idea behind the construction is as
follows. Let ordn p denote the order of p in the multiplicative group of integers
modulo n. For any α > 1, not divisible by p, the ring Fp[Y]/φα(Y) is a direct
sum of fields of order pr, where r = ordα p [21, Lemma 14.50]. Our goal is to
ensure that pr − 1 is divisible by q1 · · · qe, so that Fp[Y]/φα(Y) contains the
desired principal root of unity. One way to force qi to divide pr − 1 is simply
to choose α divisible by qi, as this implies that ordqi p | r. The difficulty is that
we cannot do this for all qi, because then α would become too large, violating
(3.4). Fortunately, we can take advantage of the fact that the qi − 1 share a
small common multiple λ = λ(N); this enables us to take α to be a product of
a small subset of the qi, in such a way that still every one of q1, . . . , qe divides
pr − 1.

Proposition 3.8. There is an absolute constant z2 > 0 with the following
property. Given as input a prime p and a p-admissible length N > z2, we
may compute a p-admissible divisor α of N , together with the cyclotomic poly-
nomial φα ∈ Fp[Y] and a principal (q1 · · · qe)-th root of unity in Fp[Y]/φα, in

2O((lg lgN)4)p1+o(1) bit operations.

Proof. We are given as input an admissible tuple (q0, . . . , qe) with N = q0 · · · qe,
and the squarefree integer λ := λ(q0, . . . , qe). Let L be the set of primes divid-
ing λ. By (3.2) we have |L| 6 log2 λ < (lg lgN)2, and we may compute L in

λO(1) = 2O((lg lgN)2) bit operations.
We start by computing a table of values of ordqi p for i = 1, . . . , e; note

that p 6= qi by hypothesis, so ordqi p is well-defined. We have qi − 1 | λ and
hence ordqi p | λ for each i. To compute ordqi p, we first compute p mod qi in
O(lg qi lg p) bit operations, and then repeatedly multiply by p modulo qi until

12

reaching 1. Since ordqi p 6 λ, and there are e = O(lgN) primes qi, the total
cost to compute the table is

O((λ lg2 qi + lg qi lg p) lgN) = (2(lg lgN)2 lg p)O(1)

bit operations.
Using the above table, we construct a certain vector σ = (σ1, . . . , σe) ∈

{0, 1}e as follows. Initialise the vector as σ := (0, . . . , 0). For each ` ∈ L, search
for the smallest i = 1, . . . , e such that ` | ordqi p. If such an i is found, set σi := 1;
if no i is found, ignore this `. The cost of computing σ is O(|L|e(lg λ)2) =
(lgN)O(1) bit operations.

Set α := q0
∏
i:σi=1 qi. To establish (3.4), note that the number of i for

which σi = 1 is at most |L|, so (3.1) implies that

lgN < q0 6 α < (2(lg lgN)2)|L|+1 6 (2(lg lgN)2)(lg lgN)2 = 2(lg lgN)4 .

For (3.5), first observe that

ϕ(α)

α
=

(
1− 1

q0

) ∏
i:σi=1

(
1− 1

qi

)
>

(
1− 1

(lgN)3

)(lg lgN)2

.

Since − log(1− ε) < 2ε for any ε ∈ (0, 12), we obtain

− log
ϕ(α)

α
<

2(lg lgN)2

(lgN)3
<

1

lgN

and hence ϕ(α)/α > exp(−1/ lgN) > 1− 1/ lgN for sufficiently large N .
Now compute the cyclotomic polynomial φα ∈ Fp[Y] (i.e., the reduction

modulo p of φα(Y) ∈ Z[Y]). This can be done in (α lg p)O(1) bit operations,
using for example [21, Algorithm 14.48]. We may then determine the factori-
sation of φα into irreducibles in Fp[Y], say φα = f1 · · · fk, in αO(1)p1/2+o(1) bit
operations [22, Thm. 1]. Since p - α, the fj are distinct, and each fj has degree
r := ordα p [21, Lemma 14.50]. In other words, Fp[Y]/φα is isomorphic to a
direct sum of k copies of Fpr .

We claim that qh | pr − 1 for all h = 1, . . . , e. For this, it suffices to prove
that ordqh p | r for each h. Since λ is squarefree, it suffices in turn to show
that every prime ` dividing ordqh p also divides r. But for every such `, the
procedure for constructing σ must have succeeded in finding some i for which
` | ordqi p (since at least one value of i works, namely i = h). Then σi = 1 for
this i, so qi | α. This implies that ordqi p | ordα p = r, and hence that ` | r.

We conclude that q1 · · · qe | pr − 1, so each Fp[Y]/fj contains a primitive
root of unity of order q1 · · · qe. As the factorisation of q1 · · · qe is known, we may
locate one such primitive root in each Fp[Y]/fj in αO(1)p1+o(1) bit operations
[23] (see also [14, Lemma 3.3]). Combining these primitive roots via the Chinese
remainder theorem, we obtain the desired principal (q1 · · · qe)-th root of unity
in Fp[Y]/φα in another (α lg p)O(1) bit operations.

13

Remark 3.9. The p1+o(1) term in Proposition 3.8 arises from the best known
deterministic complexity bounds for factoring polynomials and finding primitive
roots. If we permit randomised algorithms, then p1+o(1) may be replaced by
(lg p)O(1). This has no effect on the main results of this paper.

Example 3.10. Continuing with Example 3.2, let us take p = 3. In the notation
of the proof of Proposition 3.8, we have L = {2, 3, 5, . . . , 113}. For each ` ∈ L,
let us write q(`) for the smallest qi for which ordqi 3 is divisible by `. Then we
have

q(2) = q1, q(3) = q1, q(5) = q5, q(7) = q9, q(11) = q1,

q(13) = q5, q(17) = q1, q(19) = q5, q(23) = q1, q(29) = q1,

q(31) = q3, q(37) = q1, q(41) = q3, q(43) = q4, q(47) = q2,

q(53) = q1, q(59) = q1, q(61) = q3, q(67) = q1, q(71) = q1,

q(73) = q2, q(79) = q6, q(83) = q2, q(89) = q1, q(97) = q5,

q(101) = q2, q(103) = q3, q(107) = q4, q(109) = q2, q(113) = q4.

Therefore σi = 1 for i = 1, 2, 3, 4, 5, 6, 9, and we have

α = q0q1q2q3q4q5q6q9

≈ 1.8385309928916569681× 10136,

ϕ(α) ≈ 1.8385309928916566171× 10136,

r = ordα 3 = 2 · 3 · 5 · · · 109 · 113 · 883 · 9041 · 327251 · 39551747.

The ring F3[Y]/φα is isomorphic to a direct sum of ϕ(α)/r copies of F3r . The
extraneous factors in r (namely 883, 9041, 327251 and 39551747) arise from the
auxiliary prime q0. Let

m := N/α = q7q8q10q11 · · · q6035 ≈ 5.439125× 1099863;

then since m | q1 · · · qe | 3r − 1, each copy of F3r contains a primitive m-th root
of unity, so F3[Y]/φα contains a principal m-th root of unity. Thus it is possible
to multiply in the ring F3[Y,Z]/(φα(Y), Zm−1) by using DFTs over F3[Y]/φα.

Remark 3.11. In Example 3.10, every ` ∈ L divides ordqi p for some i. It seems
likely that this always occurs (at least for large n), but we do not know how to
prove this. If it fails for some `, then r may turn out not to be divisible by `,
but the proof of Proposition 3.8 shows that we still have qh | pr − 1 for every
h = 1, . . . , e.

4. Faster polynomial multiplication

The goal of this section is to prove Theorem 1.1. We will describe a recursive
routine PolynomialMultiply, that takes as input integers r, t > 1, a prime p,
and polynomials U1, . . . , Ut, V ∈ Fp[X]/(Xr − 1), and computes the products

14

U1V, . . . , UtV . Its running time is denoted by Cpoly(t, r, p). Note that the input
polynomials U1, . . . , Ut, V are expected to be supplied consecutively on the input
tape (first U1, then U2, and so on), and the outputs U1V, . . . , UtV should also
be written consecutively to the output tape.

The role of the parameter t is to allow us to amortise the cost of transforming
the fixed operand V across t products. This optimisation (borrowed from [14]
and [5]) saves a constant factor in time at each recursion level of the main
algorithm. Altogether the algorithm will perform 2t + 1 transforms: t + 1
forward transforms for U1, . . . , Ut and V , followed by t inverse transforms to
recover the products U1V, . . . , UtV .

To simplify the analysis, it is convenient to introduce the normalisation

C?poly(r, p) := sup
t>1

Cpoly(t, r, p)

(2t+ 1)r lg p lg(r lg p)
.

We certainly have Mp(n) < Cpoly(1, 2n, p) +O(n lg p), so to prove Theorem 1.1
it is enough to show that

C?poly(r, p) = O(4max(0,log∗ r−log∗ p)K log∗ p
Z). (4.1)

The algorithms presented in this section perform many auxiliary multiplica-
tions and divisions involving ‘small’ integers and polynomials. We assume that
all auxiliary divisions are reduced to multiplication via Newton’s method [21,
Ch. 9], so that the cost of a division (by a monic divisor) is at most a constant
multiple of the cost of a multiplication of the same bit size. We also assume
that, unless otherwise specified, all auxiliary multiplications are handled using
the integer and polynomial variants of the Schönhage–Strassen algorithm. The
complexity in the integer case is given by

M(n) = O(n lg n lg lg n), (4.2)

and in the polynomial case by (1.4).
We first discuss a subroutine Transform that handles DFTs over rings

of the form Rp,α := Fp[Y]/φα(Y), where p is a prime and α > 1. It takes
as input p and α, positive integers t and n such that n is odd and relatively
prime to α, a principal n-th root of unity ω ∈ Rp,α, and t input sequences
(as,0, . . . , as,n−1) ∈ Rnp,α for s = 1, . . . , t. Its output is the sequence of trans-
forms (âs,0, . . . , âs,n−1) ∈ Rnp,α with respect to ω, for s = 1, . . . , t. Just like
PolynomialMultiply, the input and output sequences are stored consecu-
tively on the tape.

Let T(t, n, α, p) denote the running time of Transform. The following
result shows how to reduce the DFT problem to an instance of Polynomial-
Multiply.

Proposition 4.1. We have

T(t, n, α, p) < Cpoly(t, nα, p) +O(tnα lgα lg lgα lg p lg lg p lg lg lg p).

15

Proof. Let R := Rp,α. We use Bluestein’s method to reduce each DFT to the
problem of computing a certain product fs(Z)g(Z) in R[Z]/(Zn−1), plus O(n)
multiplications in R, where fs(Z) and g(Z) are defined as in Section 2.2. By
(4.2) and (1.4), each multiplication in R costs

O((α lgα lg lgα)(lg p lg lg p lg lg lg p)) (4.3)

bit operations. To handle the products fs(Z)g(Z), we first lift the polynomials
from Fp[Y,Z]/(φα(Y), Zn − 1) to Fp[Y, Z]/(Y α − 1, Zn − 1) (for example, by
zero-padding in Y up to degree α). We then compute their images under the
isomorphism

Fp[Y,Z]/(Y α − 1, Zn − 1) ∼= Fp[X]/(Xnα − 1)

provided by Lemma 2.2; this costs altogether O(tnα lgα lg p) bit operations.
We call PolynomialMultiply to compute the products in Fp[X]/(Xnα − 1),
at a cost of Cpoly(t, nα, p) bit operations. We evaluate the inverse of the above
isomorphism to bring the products back to Fp[Y, Z]/(Y α − 1, Zn − 1). Finally,
we reduce modulo φα(Y) to obtain the desired products in R[Z]/(Zn − 1); the
cost of each of these divisions is given by (4.3).

We now return to multiplication in Fp[X]/(Xr − 1). Our implementation of
PolynomialMultiply chooses one of two algorithms, depending on the size
of r relative to p. For r 6 p2 it uses the straightforward Kronecker substitution
method described in Section 1. By (1.3) this yields the bound

Cpoly(t, r, p) = O(tM(r lg p)) = O(tr lg p lg(r lg p)K
log∗(r lg p)
Z)

and hence

C?poly(r, p) = O(K
log∗(p2 lg p)
Z) = O(K log∗ p

Z), r 6 p2. (4.4)

Therefore (4.1) holds in this case.
For r > p2, most of the work will be delegated to a subroutine Admissi-

bleMultiply, which is defined as follows. It takes as input an integer t > 1, a
prime p, a p-admissible lengthN , and polynomials U1, . . . , Ut, V ∈ Fp[X]/(XN−
1), and computes the products U1V, . . . , UtV . In other words, it has the same in-
terface as as PolynomialMultiply, but it only works for p-admissible lengths.
We denote its running time by Cad(t,N, p). As above we also define the nor-
malisation

C?ad(N, p) := sup
t>1

Cad(t,N, p)

(2t+ 1)N lg p lg(N lg p)
.

The reduction from PolynomialMultiply to AdmissibleMultiply in the
case r > p2 is given by the following proposition.

Proposition 4.2. There is an absolute constant z3 > 0 with the following
property. For any prime p and any integer r > max(z3, p

2), there exists a
p-admissible length N in the interval

2r < N <

(
1 +

1

lg r

)
2r (4.5)

16

such that

C?poly(r, p) <

(
2 +

O(1)

lg r

)
C?ad(N, p) +O(1). (4.6)

Proof. Given as input U1, . . . , Ut, V ∈ Fp[X]/(Xr − 1), our goal is to compute
the products U1V, . . . , UtV . For sufficiently large r we may apply Proposition
3.4 with n := 2r to find a p-admissible length N such that (4.5) holds. Since
N > 2r, we may simply zero-pad to reduce each problem to multiplication in
Fp[X]/(XN − 1). This yields

Cpoly(t, r, p) < Cad(t,N, p) +O(tr lg p) + 2O((lg lg r)2),

where the tr lg p term arises from the reduction modulo Xr−1, and the last term
from Proposition 3.4. Dividing by (2t + 1)r lg p lg(r lg p) and taking suprema
over t > 1, we find that

C?poly(r, p) <
N lg(N lg p)

r lg(r lg p)
C?ad(N, p) +O(1).

Finally, since lg(N lg p) 6 lg(r lg p) + 2 we obtain

N lg(N lg p)

r lg(r lg p)
< 2

(
1 +

1

lg r

)(
1 +

2

lg(r lg p)

)
< 2 +

O(1)

lg r
.

The motivation for defining admissible lengths is the following result, which
shows how to implement AdmissibleMultiply in terms of a large collection of
exponentially smaller instances of PolynomialMultiply.

Proposition 4.3. There is an absolute constant z4 > 0 with the following
property. Let p be a prime and let N > z4 be a p-admissible length. Then there
exist integers r1, . . . , rd in the interval

2(lg lgN)6 < ri < 2(lg lgN)7 , (4.7)

and weights γ1, . . . , γd > 0 with
∑
i γi = 1, such that

C?ad(N, p) <

(
2 +

O(1)

lg lgN

) d∑
i=1

γi C
?
poly(ri, p) +O(1). (4.8)

Proof. We are given as input a prime p, a p-admissible length N = q0 · · · qe
and polynomials U1, . . . , Ut, V ∈ Fp[X]/(XN − 1). Our goal is to compute the
products U1V, . . . , UtV . We will describe a series of reductions that converts
this problem to a collection of exponentially smaller multiplication problems,
plus overhead of O(tN lgN lg p) bit operations incurred during the reductions.

Step 1 — reduce to products over cyclotomic coefficient ring. Invoking
Proposition 3.8, we compute a p-admissible divisor α of N , the cyclotomic poly-
nomial φα ∈ Fp[Y], and a principal (q1 · · · qe)-th root of unity ω ∈ Fp[Y]/φα. As

p2 < N , this requires at most 2O((lg lgN)4)p1+o(1) < N1/2+o(1) bit operations.

17

Set ψα := (Y α − 1)/φα ∈ Fp[Y]. Since Y α − 1 has no repeated factors in
Fp[Y], we have (φα, ψα) = 1. Using the Euclidean algorithm, compute polyno-
mials χ1, χ2 ∈ Fp[Y] of degree at most α such that χ1φα +χ2ψα = 1; this costs
at most (α lg p)O(1) < No(1) bit operations.

Let m := N/α. As m and α are coprime, Lemma 2.2 provides an isomor-
phism

Fp[X]/(XN − 1) ∼= Fp[Y, Z]/(Y α − 1, Zm − 1)

that may be evaluated in either direction in O(mα lgα lg p) bit operations.
By (3.4) this simplifies to O(N(lg lgN)4 lg p) = O(N lgN lg p) bit operations.
Next, since (φα, ψα) = 1, there is an isomorphism

Fp[Y]/(Y α − 1) ∼= (Fp[Y]/φα)⊕ (Fp[Y]/ψα).

Using the precomputed polynomials χ1 and χ2, we may evaluate the above
isomorphism in either direction in

O((α lgα lg lgα)(lg p lg lg p lg lg lg p)) = O(α(lg lgN)5(lg lg lgN)2 lg p)

= O(α lgN lg p)

bit operations (here we have again used (3.4) and the fact that p2 < N). This
isomorphism induces another isomorphism

Fp[Y]/(Y α − 1, Zm − 1) ∼= (Fp[Y]/φα)[Z]/(Zm − 1)⊕ (Fp[Y]/ψα)[Z]/(Zm − 1)

by acting on the coefficient of each Zi separately; it may be evaluated in either
direction in O(mα lgN lg p) = O(N lgN lg p) bit operations. Chaining these
isomorphisms together, we obtain an isomorphism

Fp[X]/(XN − 1) ∼= (Fp[Y]/φα)[Z]/(Zm − 1)⊕ (Fp[Y]/ψα)[Z]/(Zm − 1)

that may be evaluated in either direction in O(N lgN lg p) bit operations.
We now use the following algorithm. First, at a cost of O(tN lgN lg p)

bit operations, apply the above isomorphism to U1, . . . , Ut and V to obtain
polynomials

U ′1, . . . , U
′
t , V

′ ∈ (Fp[Y]/φα)[Z]/(Zm − 1),

Ũ ′1, . . . , Ũ
′
t , Ṽ

′ ∈ (Fp[Y]/ψα)[Z]/(Zm − 1).

Second, compute the products Ũ ′1Ṽ
′, . . . , Ũ ′tṼ

′: since degψα < α/ lgN by (3.5),
each of these products may be converted, via Kronecker substitution, to a prod-
uct of univariate polynomials in Fp[X] of degree O(mα/ lgN) = O(N/ lgN)
(i.e., map Y to X and Z to X2 degψα). The cost of these multiplications is

O(t((N/ lgN) lgN lg lgN)(lg p lg lg p lg lg lg p)) = O(tN lgN lg p)

bit operations. Third, compute the products U ′1V
′, . . . , U ′tV

′, using the method
explained in Step 2 below. Finally, at a cost of O(tN lgN lg p) bit operations,

18

apply the inverse isomorphism to the pairs (U ′sV
′, Ũ ′sṼ

′) to obtain the desired
products U1V, . . . , UtV .

Step 2 — convert to multidimensional convolutions. Let R := Fp[Y]/φα. In
this step our goal is to compute the products U ′1V

′, . . . , U ′tV
′, where U ′1, . . . , U

′
t , V

′ ∈
R[Z]/(Zm − 1). We do this by converting each problem to a multidimensional
convolution of size md × · · · ×m1, for a suitable decomposition m = m1 · · ·md.
For the subsequent complexity analysis, it is important that the mi are chosen
to be somewhat larger than the coefficient size. To achieve this we proceed as
follows.

Let m = `1 · · · `u be the prime factorisation of m. The `j form a subset of
{q1, . . . , qe}, so by (3.1) we have

(lgN)3 < `j < 2(lg lgN)2 (4.9)

for each j. Let w := b 25 (lg lgN)5c. We certainly have u > w for large enough
N , as (4.9) and (3.4) imply that

u >
log2m

(lg lgN)2
=

log2N − log2 α

(lg lgN)2
>

log2N − (lg lgN)4

(lg lgN)2
� (lg lgN)5.

Therefore we may take

m1 := `1 · · · `w,
m2 := `w+1 · · · `2w,
· · ·

md−1 := `(d−2)w+1 · · · `(d−1)w,
md := `(d−1)w+1 · · · `dw`dw+1 · · · `u,

where d := bu/wc > 1. Each mi is a product of exactly w primes, except
possibly md, which is a product of at least w and at most 2w − 1 primes. For
large N we have

mi < (2(lg lgN)2)2w 6 2
4
5 (lg lgN)7 (4.10)

and
mi > ((lgN)3)w > (2lg lgN−1)3w > 2(lg lgN)6 (4.11)

for all i, and hence

d 6
log2m

(lg lgN)6
6

lgN

(lg lgN)6
. (4.12)

Computing the decomposition m = m1 · · ·md requires no more than (lgN)O(1)

bit operations.
As the mi are pairwise relatively prime, Corollary 2.3 furnishes an isomor-

phism
R[Z]/(Zm − 1) ∼= R[Z1, . . . , Zd]/(Z

m1
1 − 1, . . . , Zmdd − 1)

19

that may be computed in either direction inO((m lgm)(α lg p)) = O(N lgN lg p)
bit operations. Therefore we may use the following algorithm. First, at a cost
of O(tN lgN lg p) bit operations, compute the images

U ′′1 , . . . , U
′′
t , V

′′ ∈ R[Z1, . . . , Zd]/(Z
m1
1 − 1, . . . , Zmdd − 1)

of U ′1, . . . , U
′
t , V

′ under the above isomorphism. Next, as explained in Step 3 be-
low, compute the products U ′′1 V

′′, . . . , U ′′t V
′′. Finally, apply the inverse isomor-

phism to recover the products U ′1V
′, . . . , U ′tV

′; again this costs O(tN lgN lg p)
bit operations.

Step 3 — reduce to DFTs over R. In this step our goal is to compute
the products U ′′1 V

′′, . . . , U ′′t V
′′, where U ′′1 , . . . , U

′′
t and V ′′ are as above. Let

ωi := ωq1···qe/mi for i = 1, . . . , d, where ω is the principal (q1 · · · qe)-th root
of unity in R computed in Step 1. According to the discussion in Section
2.2, the desired multidimensional convolutions may be computed by perform-
ing t+ 1 multidimensional m-point DFTs with respect to the evaluation points
(ωj11 , . . . , ω

jd
d), followed by tm pointwise multiplications in R, and then t mul-

tidimensional m-point inverse DFTs and tm divisions by m. The total cost of
the pointwise multiplications and divisions is

O(tm(α lgα lg lgα)(lg p lg lg p lg lg lg p)) = O(tN lgN lg p)

bit operations.
Each of the 2t+ 1 multidimensional DFTs may be converted to a collection

of one-dimensional DFTs of lengths m1, . . . ,md by the method explained in
Section 2.2. Note that the inputs must be rearranged so that the data to
transform along each dimension may be accessed sequentially. Let 1 6 i 6 d,
and consider the transforms of length mi. Treating each input vector as a
sequence of mi+1 · · ·md arrays of size mi × (m1 · · ·mi−1), we must transpose
each array into an array of size (m1 · · ·mi−1) × mi, perform m/mi DFTs of
length mi, and then transpose back to the original ordering. The total cost of
all these transpositions is

O(tmα lg p
∑
i lgmi) = O(tN lg p lgm) = O(tN lgN lg p)

bit operations.
The one-dimensional DFTs over R are handled by the Transform subrou-

tine. Combining the contributions from Steps 1, 2 and 3 shows that

Cad(t,N, p) < (2t+ 1)

d∑
i=1

T
(m
mi

,mi, α, p
)

+O(tN lgN lg p).

This concludes the description of the algorithm; it remains to establish the
overall complexity claim. First, Proposition 4.1 yields

d∑
i=1

T
(m
mi

,mi, α, p
)
<

d∑
i=1

Cpoly

(m
mi

,miα, p
)

+O(dmα lgα lg lgα lg p lg lg p lg lg lg p).

20

By (4.12), the last term lies in

O(dN(lg lgN)5(lg lg lgN)2 lg p) = O(N lgN lg p).

Setting ri := miα for i = 1, . . . , d, we obtain

Cad(t,N, p) < (2t+ 1)

d∑
i=1

Cpoly

(N
ri
, ri, p

)
+O(tN lgN lg p).

Notice that (4.7) follows immediately from (4.10), (4.11) and (3.4) (for large
N). For the normalised quantities, we have

C?ad(N, p) <
d∑
i=1

Cpoly

(
N
ri
, ri, p

)
N lg p lg(N lg p)

+O(1)

<

d∑
i=1

(2N

ri
+ 1
) ri lg(ri lg p)

N lg(N lg p)
C?poly(ri, p) +O(1).

Now observe that

lg(ri lg p)

lg(N lg p)
<

log2mi + log2 α+ lg lg p+O(1)

log2N
<

log2mi +O((lg lgN)4)

log2m
.

Put γi := log2mi/ log2m, so that
∑
i γi = 1. Then (4.11) implies that

lg(ri lg p)

lg(N lg p)
<

(
1 +

O((lg lgN)4)

log2mi

)
γi <

(
1 +

O(1)

lg lgN

)
γi.

Moreover, from (4.7) we certainly have(2N

ri
+ 1
) ri
N

= 2 +
ri
N

< 2 +
O(1)

lg lgN
.

The desired bound (4.8) follows immediately.

Combining Proposition 4.2 and Proposition 4.3, we obtain the following
recurrence inequality for C?poly(r, p). (This is identical to Theorem 7.1 of [5],
but with the constant 8 replaced by 4.)

Proposition 4.4. There are absolute constants z5, C2, C3 > 0 and a logarithmi-
cally slow function Φ : (z5,∞)→ R with the following property. For any prime p
and any integer r > max(z5, p

2), there exist positive integers r1, . . . , rd < Φ(r),
and weights γ1, . . . , γd > 0 with

∑
i γi = 1, such that

C?poly(r, p) <

(
4 +

C2

lg lg r

) d∑
i=1

γi C
?
poly(ri, p) + C3. (4.13)

21

Proof. We first apply Proposition 4.2 to construct a p-admissible length N such
that (4.5) and (4.6) both hold; then we apply Proposition 4.3 to construct
integers r1, . . . , rd and weights γ1, . . . , γd satisfying (4.7) and (4.8). Define

Φ(x) := 2(log log x)8 ; then certainly ri < 2(lg lg 3r)7 < Φ(r) for large r. The
bound (4.13) follows immediately by substituting (4.8) into (4.6).

Now we may prove our main result for multiplication in Fp[X]. The proof is
very similar to that of [5, Thm. 1.1].

Proof of Theorem 1.1. We have already noted that C?poly(r, p) = O(K log∗ p
Z) in

the region r 6 p2 (see (4.4)). To handle the case r > p2, let z5, C2, C3 and
Φ(x) be as in Proposition 4.4. Increasing z5 if necessary, we may assume that
z5 > exp(exp(1)) and that Φ(x) 6 x − 1 for all x > z5. For each prime p, set
σp := max(z5, p

2) and

Lp := max(C3, max
26r6σp

C?poly(r, p)) = O(K log∗ p
Z).

Now apply Proposition 2.1 with K = 4, B = C2/4, S = {1, 2, . . .}, ` = 2,
x0 = z5, σ = σp, L = Lp, and T (r) = C?poly(r, p).

The first part of the recurrence for T (y) is satisfied due to the definition of
Lp, and the second part due to Proposition 4.4. We conclude that C?poly(r, p) =

O(Lp 4log
∗ r−log∗ σp) for r > p2. Since log∗ σp = log∗ p + O(1) and Lp =

O(K log∗ p
Z), we obtain the desired bound C?poly(r, p) = O(4log

∗ r−log∗ pK log∗ p
Z)

for r > p2.

Acknowledgments

The authors thank Grégoire Lecerf for his comments on a draft of this
paper. The first author was supported by the Australian Research Council
(DP150101689 and FT160100219).

[1] C. H. Papadimitriou, Computational complexity, Addison-Wesley Publish-
ing Company, Reading, MA, 1994.

[2] M. Fürer, Faster integer multiplication, in: STOC’07—Proceedings of the
39th Annual ACM Symposium on Theory of Computing, ACM, New York,
2007, pp. 57–66. doi:10.1145/1250790.1250800.
URL http://dx.doi.org/10.1145/1250790.1250800

[3] M. Fürer, Faster integer multiplication, SIAM J. Comput. 39 (3) (2009)
979–1005. doi:10.1137/070711761.
URL http://dx.doi.org/10.1137/070711761

[4] D. Harvey, J. v. d. Hoeven, Faster integer multiplication using short lat-
tice vectors, in: R. Scheidler, J. Sorenson (Eds.), Proceedings of the
Thirteenth Algorithmic Number Theory Symposium, Open Book Se-
ries 2, Mathematical Sciences Publishers, Berkeley, 2019, pp. 293–310.
doi:10.2140/obs.2019.2.293.

22

[5] D. Harvey, J. van der Hoeven, G. Lecerf, Faster polynomial multiplication
over finite fields, J. ACM 63 (6) (2017) 52:1–52:23. doi:10.1145/3005344.
URL http://doi.acm.org/10.1145/3005344

[6] D. Harvey, J. van der Hoeven, Faster integer and polynomial multiplication
using cyclotomic coefficient rings, https://arxiv.org/abs/1712.03693v1
(2017).

[7] A. Schönhage, V. Strassen, Schnelle Multiplikation grosser Zahlen, Com-
puting (Arch. Elektron. Rechnen) 7 (1971) 281–292.

[8] A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der
Charakteristik 2, Acta Informat. 7 (4) (1976/77) 395–398.

[9] P. Bürgisser, M. Clausen, M. A. Shokrollahi, Algebraic complexity theory,
Vol. 315 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1997, with
the collaboration of Thomas Lickteig.

[10] D. G. Cantor, E. Kaltofen, On fast multiplication of polynomi-
als over arbitrary algebras, Acta Inform. 28 (7) (1991) 693–701.
doi:10.1007/BF01178683.
URL http://dx.doi.org/10.1007/BF01178683

[11] L. M. Adleman, C. Pomerance, R. S. Rumely, On distinguishing prime
numbers from composite numbers, Ann. of Math. (2) 117 (1) (1983) 173–
206. doi:10.2307/2006975.
URL http://dx.doi.org/10.2307/2006975

[12] K. Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die
Form p− 1 haben, Monatsh. Math. 59 (1955) 91–97.

[13] D. Harvey, J. van der Hoeven, G. Lecerf, Faster polynomial multiplica-
tion over finite fields, technical report, http://arxiv.org/abs/1407.3361
(2014).

[14] D. Harvey, J. van der Hoeven, G. Lecerf, Even faster integer multiplication,
J. Complexity 36 (2016) 1–30. doi:10.1016/j.jco.2016.03.001.
URL http://dx.doi.org/10.1016/j.jco.2016.03.001

[15] L. I. Bluestein, A linear filtering approach to the computation of discrete
Fourier transform, IEEE Transactions on Audio and Electroacoustics 18 (4)
(1970) 451–455.

[16] A. Bostan, P. Gaudry, É. Schost, Linear recurrences with polyno-
mial coefficients and application to integer factorization and Cartier-
Manin operator, SIAM J. Comput. 36 (6) (2007) 1777–1806.
doi:10.1137/S0097539704443793.
URL http://dx.doi.org/10.1137/S0097539704443793

23

[17] R. Agarwal, J. Cooley, New algorithms for digital convolution, IEEE Trans-
actions on Acoustics, Speech, and Signal Processing 25 (5) (1977) 392–410.

[18] I. J. Good, The interaction algorithm and practical Fourier analysis, J.
Roy. Statist. Soc. Ser. B 20 (1958) 361–372.

[19] L. H. Thomas, Using computers to solve problems in physics, Applications
of digital computers 458 (1963) 42–57.

[20] R. C. Baker, G. Harman, J. Pintz, The difference between consecu-
tive primes. II, Proc. London Math. Soc. (3) 83 (3) (2001) 532–562.
doi:10.1112/plms/83.3.532.
URL http://dx.doi.org/10.1112/plms/83.3.532

[21] J. von zur Gathen, J. Gerhard, Modern computer algebra,
3rd Edition, Cambridge University Press, Cambridge, 2013.
doi:10.1017/CBO9781139856065.
URL http://dx.doi.org/10.1017/CBO9781139856065

[22] V. Shoup, On the deterministic complexity of factoring polynomials over
finite fields, Inform. Process. Lett. 33 (5) (1990) 261–267. doi:10.1016/0020-
0190(90)90195-4.
URL http://dx.doi.org/10.1016/0020-0190(90)90195-4

[23] V. Shoup, Searching for primitive roots in finite fields, Math. Comp.
58 (197) (1992) 369–380. doi:10.2307/2153041.
URL http://dx.doi.org/10.2307/2153041

24

