

A simple and reliable method reducing sulfate to sulfide for multiple sulfur isotope analysis

Lei A Geng, Joel Savarino, Clara A Savarino, Nicolas Caillon, Pierre Cartigny,

Shohei Hattori, Sakiko Ishino, Naohiro Yoshida

▶ To cite this version:

Lei A Geng, Joel Savarino, Clara A Savarino, Nicolas Caillon, Pierre Cartigny, et al.. A simple and reliable method reducing sulfate to sulfide for multiple sulfur isotope analysis. Rapid Communications in Mass Spectrometry, 2018, 32 (4), pp.333-341. 10.1002/rcm.8048 . hal-02350379

HAL Id: hal-02350379 https://hal.science/hal-02350379

Submitted on 25 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A simple and reliable method reducing sulfate to sulfide for multiple sulfur isotope

2

analysis

- 3 **Authors:** Lei Geng^{1,a,*}, Joel Savarino^{1,*}, Clara Savarino^{1,2}, Nicolas Caillon¹, Pierre
- 4 Cartigny³, Shohei Hattori⁴, Sakiko Ishino⁴, Naohiro Yoshida^{4,5}
- 5
- ¹Univ. Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l'Environnement, IGE,
 F-38000 Grenoble, France
- ⁸ ²School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- ⁹ ³ Laboratoire de Géochimie des Isotopes Stables, Institut de Physique du Globe de Paris,
- 10 Sorbonne Paris Cité, Univ. Paris Diderot, UMR 7154 CNRS, 75005 Paris, France
- ⁴School of Materials and Chemical Technology, Tokyo Institute of Technology, 226-
- 12 8502 Yokohama, Japan
- ¹³ ⁵Earth-Life Science Institute, Tokyo Institute of Technology, 152-8551 Tokyo, Japan
- 14

¹⁵ ^aNow at Anhui Province Key Laboratory of Polar Environment and Global Change,

- 16 School of Earth and Space Sciences, University of Science and Technology of China,
- 17 Hefei, Anhui 230026, China
- 18
- 19 *Correspondence to: Joel Savarino, Email: joel.savarino@cnrs.fr ; and/or Lei Geng,
- 20 Email: genglei@ustc.edu.cn
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28

RATIONALE: Precise analysis of four sulfur isotopes of sulfate in geological and environmental samples provides the means to extract unique information in wide geological contexts. Reduction of sulfate to sulfide is the first step to access such information. The conventional reduction method suffers from a cumbersome distillation apparatus system, long reaction time and large volume of the reducing solution. We present a new and simple method enabling the process of multiple samples at a time with a much reduced volume of reducing solution.

METHODS: 1 mL reducing solution made of HI and NaH₂PO₂ was added to a septum glass tube with dry sulfate. The tube was heated at 124 °C and the produced H₂S was purged with inert gas (He or N₂) to go through gas-washing tubes and then collected by NaOH solution. The collected H₂S was converted to Ag₂S by adding AgNO₃ solution and the co-precipitated Ag₂O was removed by adding a few drops of concentrated HNO₃.

RESULTS: Within 2-3 hours, a 100 % yield was observed for samples with 0.2 to 2.5 µmol Na₂SO₄. The reduction rate was much slower for BaSO₄ and a complete reduction was not observed. International sulfur reference materials, NBS-127, SO-5 and SO-6, were processed with this method, and that the measured against accepted δ^{34} S values yielded a linear regression line which had a slope of (0.99 ± 0.01) and a R^2 value of 0.998.

47 CONCLUSIONS: The new methodology is easy to handle and allows to process
48 multiple samples at a time, and was demonstrated with good reproducibility in terms of
49 H₂S yield and for further isotope analysis. It is thus a good alternative to the manual

conventional method, and especially when processing samples with limited amount ofsulfate available.

52

Stable sulfur isotopes have been widely used to trace a range of biogeochemical 53 processes ^[1]. Especially, in 2000, the discovery of the mass-independent isotopic 54 fractionations of sulfur isotopes (S-MIF) in sulfate and sulfide in Archean rocks ^[2] have 55 shown the potential of the S-MIF signals on tracking the oxygenation of the atmosphere 56 2.4 Gy ago ^[3], and the geochemical evolution of Mars ^[4]. The S-MIF signals in ice-core 57 sulfate have also been observed and demonstrated to be useful to track sulfur cycle in 58 today's stratosphere and serve as a unique proxy of large volcanic eruptions that inject 59 sulfur into the stratosphere and thus have global climate impacts ^[5-8]. Multiple sulfur 60 isotope compositions can also help to constrain the oceanic sulfur cycle (e.g., $^{[9, 10]}$). 61

To access the S-MIF signals, precise analysis of the four sulfur isotopes (32 S, 33 S, 34 S and 36 S) is necessary. The isotopic results are expressed as δ^{3x} S = 3x R_{sample}/ 3x R_{CDT}-1, where x = 3, 4, and 6, and the δ values are calculated using the CDT standard. The S-MIF values are then defined by:

66

$$\Delta^{33}S = \delta^{33}S - [(\delta^{34}S + 1)^{0.515} - 1]$$

$$\Delta^{36}S = \delta^{33}S - [(\delta^{34}S + 1)^{1.90} - 1]$$

The isotopic analysis is conventionally done by reducing sulfate $(SO_4^{2^-})$ to sulfide (H_2S) , converting H₂S to silver sulfide (Ag_2S) , and fluorinating Ag₂S to sulfur hexafluoride (SF₆) for isotopic composition analysis by isotope ratio mass spectrometry ^[2, 6, 11, 12]. In the literature, the reduction from $SO_4^{2^-}$ to H₂S is mainly achieved by two different reducing agents, Tin(II) (Sn²⁺) solutions and hydroiodic acid (HI) hypophosphorous acid (H₃PO₂) mixtures ^[13-15]. The Sn²⁺ solution is mainly applied for solid samples (e.g., minerals) with an optimum reaction temperature between 280-300 °C, and the HI acid reducing solution can be applied to aqueous samples at 100-125 °C ^[14]. Currently, the most applied reducing method used in sulfur isotope geochemistry follows the reducing agent recipe (500 mL concentrated HI, 816 mL concentrated HCl, and 245 mL 50 % H₃PO₂) of Thode et al. ^[16] and a distillation apparatus similar to that described in Forrest and Newman ^[17].

In the Thode et al. ^[16] reducing solution, high concentrations of HI seem to be the 79 most important component of the reducing agent for complete sulfate reduction, and the 80 81 presence of H₃PO₂ or NaH₂PO₂ fastens the reduction speed by maintaining a high hydroiodic acid to iodine ratio which is one of the factors favoring the reduction ^[14, 18]. 82 HCl acid is only of secondary importance and its presence is suggested to be used to 83 increase the acidity and volume, and reduce the use of relatively expensive HI^[13, 19]. 84 However, Gustafsson^[20] found the presence of water is detrimental for the reduction 85 because water tends to dilute and thus lower the concentration of HI, and at lower HI 86 concentration, side product (i.e., SO_2 and elemental S) will be formed ^[18]. In this regard, 87 mixing 50 % H_3PO_2 and concentrated HCl to concentrated HI may have draw backs for 88 89 the reduction efficiency, because both H_3PO_2 (50 %) and concentrated HCl (37 %) acids comprise more than half of water by weight. To avoid additional water in the reducing 90 solution, the H₃PO₂ acid can be replaced with dry NaH₂PO₂ salt, and HCl acid can be 91 omitted. Gustafsson^[20] and Davis and Lindstrom^[18] have used a reducing solution 92 containing only HI acid (57 %) and NaH₂PO₂ salt, and found good reduction yield. In 93 particular, Davis and Lindstrom^[18] found an optimum composition of reducing solution 94 95 for complete and fast sulfate reduction is 0.13 g NaH₂PO₂ in 1 mL HI (57 %). In these

studies, aqueous sulfate samples were processed and a cumbersome distillation apparatus
was used.

Summarized from the literature, it seems that the best composition of the reducing 98 solution would be a mixture of 0.13 g NaH₂PO₂ in 1 mL HI (57 %), and water should be 99 100 limited in the reduction experiment. The latter suggests dry sulfate samples are a better 101 choice as the starting material. Typically, barium sulfate $(BaSO_4)$ is the preferred sulfate form used for the four sulfur isotope analysis because it is the natural form found in 102 major geological samples or can be readily prepared from natural samples containing 103 104 soluble sulfate (e.g., sea water) by precipitation with excess $BaCl_2$ solution. $BaSO_4$ has very low solubility (≈ 0.02 mg/L at 20° C) and this may inhibit the reaction efficiency 105 and speed, especially when the volume of the reducing solution is small. Alternatively, 106 soluble sulfate in natural samples can also be extracted and purified by other methods 107 such as using an ion-exchange resin^[21] and which can lead to dry Na₂SO₄ by evaporating 108 the eluent. We thus conducted tests with both $BaSO_4$ and Na_2SO_4 to explore the reaction 109 efficiency of the reduction process with respect to different sulfate forms. In this study, 110 we present a series of experiment using a reducing solution comprising NaH₂PO₂ and HI 111 112 (57% by weight) to process dry sulfate samples (both Na_2SO_4 and $BaSO_4$). To avoid the cumbersome distillation apparatus, we tested a simple flow system with only sealed glass 113 tubes connected by PEEK tubes and explored the possibility to process multiple samples 114 115 at a time. The reproducibility for H_2S yield and for further sulfur isotope analysis is reported. 116

117 EXPERIMENTAL

118 Reagents

119	The new reducing solution was made of 100 mL concentrated hydriodic acid (HI, 57							
120	% by weight,) and 13 g sodium hypophosphite (NaH_2PO_2). The reducing solution should							
121	be made in a fume hood, where 100 mL HI and 13 g NaH_2PO_2 were added to a flask. The							
122	flask was placed on a hot plate magnetic stirrer and a magnetic stir bar was used to mix							
123	the liquid and the salt. Because HI is easily oxidized by O ₂ , helium (He) or another inert							
124	gas stream (e.g., N_2) was introduced by a PEEK tube to the flask to purge the mixture.							
125	While purging with He, the hot plate was turned on and the temperature was set at 130							
126	°C. The flask was heated at 130 °C for at least one hour to reduce any sulfur compounds							
127	into H_2S (that was flushed away from the reagents) and to reduce traces of I_2 (in the form							
128	of I_3^{-}) into I^{-} by NaH ₂ PO ₂ . The solution started with deep color (I_3^{-}) and became colorless							
129	with time. After heating for 1 hour, the solution was allowed to cool down under the He							
130	stream and then stored in a sealed brown bottle. The reducing solution may be oxidized							
131	overtime, which is indicated by light yellow color and the color may get deeper							
132	depending on the degree of oxidation.							
133	Different from what can be found in the literature, in this study, we used sodium							
134	hydroxide (NaOH, 0.1 M) as the trapping solution to collect the reducing product H_2S .							
135	Conventional trapping solution, cadmium (or zinc) acetate ($Cd(CH_3CO_2)_2$, 0.1 M) and/or							
136	silver nitrate (AgNO ₃ , 0.01 M) were also made and used, and the results were compared							
137	with that from the NaOH trapping solution. As detailed below, using NaOH as the							
138	trapping solution allows direct quantification of sulfur concentration by UV absorption							
139	spectroscopy, which, in terms of the yield quantification, is faster and more reliable than							
140	gravimetric techniques.							

141 Apparatus

142	The reduction train is sketched in Figure 1. The main parts of the apparatus are four
143	15 mL glass tubes each with nitrile/PTFE septum and a block heater. The reaction tube
144	'a', two gas washing tube 'b1' and 'b2' and the collection tube 'c' were connected with
145	PEEK tubes (1/16" ID) directly through the septum. Alternatively, a drying cartridge
146	filled with potassium perchlorate (KClO ₄) and a cryogenic trap (which its internal
147	temperature can be controlled between -200 °C and -80 °C) could be placed between the
148	b2 trap and the collection tube to test the possibility of using pure H_2S as the working gas
149	for isotope analysis. The aim of the drying cartridge and the cryogenic trap is to purify
150	H ₂ S without any loss. Dry sulfate sample (i.e. Na ₂ SO ₄) and 1 mL reducing solution were
151	introduced in glass tube 'a', which was placed on a block heater and purged with He flow
152	for 20 minutes before turning on the heater to a temperature set at 124 °C. The purge
153	before the heating is necessary to remove trace I_2 , especially when the reducing solution
154	has a light yellow appearance overtime due to slight oxidation.
155	A He tank supplied the He gas. In practice, we had a home-made flow distributor to
156	distribute the He flow to eight flows, as shown in Figure 2. Each flow was then guided to
157	an individual reduction train, and the flow rate (~ $2 mL/min$) of each reduction train was
158	controlled by a micro-flow meter (ref: P-446, IDEX Health & Science, Sainte-Foy-La-
159	Grande, France). In this way, multiple samples can be processed simultaneously.
160	Testing samples
161	We used the above-mentioned reducing solution and apparatus to process dry
162	sulfate samples in the forms of barium sulfate (BaSO ₄) and sodium sulfate (Na ₂ SO ₄).
163	Na ₂ SO ₄ samples were made from 1 mM Na ₂ SO ₄ solution (0.142 g Na ₂ SO ₄ in 1 L Milli-Q
164	water, Millipore SAS, Molsheim 67120, France), and then a desired volume of the

Na₂SO₄ solution (e.g., 0.2 or 0.5 mL, equivalent to 0.2 or 0.5 μ mol SO₄²⁻) was added to a pre-cleaned reaction tube. The reaction tube was allowed to completely dry in a 100 °C oven, and the sample was then stored for later use.

In order to make $BaSO_4$ samples, a desired volume (e.g., 0.2 or 0.5 mL) of the 1 168 mM Na_2SO_4 solution was added to the reaction tube, and then a drop of 1 M HCl solution 169 170 was added to the same tube to remove any carbonate in the solution. After overnight, a drop of 0.1 M BaCl₂ solution was added to the reaction tube to precipitate BaSO₄. After 171 $BaSO_4$ precipitates, the sample was processed differently. For one set of $BaSO_4$ samples, 172 they were just dried completely in an over at 100 °C, so the dry samples contain BaSO₄, 173 BaCl₂ and NaCl. We termed this set of samples BaSO₄-EB (BaSO₄ with excess BaCl₂). 174 For the other set of BaSO₄ samples, they were centrifuged and the supernatant was 175 removed. The remained solids were rinsed with Milli-Q water and then separated from 176 the rinsing water by centrifuge. This step was repeated three times before the sample was 177 placed in the oven to dry. This set of samples was termed $P-BaSO_4$ (pure $BaSO_4$). 178 In addition, international reference materials (in the form of BaSO₄), IAEA-SO-5 179 $(\delta^{34}S = (0.5 \pm 0.2) \%)$, IAEA-SO-6 $(\delta^{34}S = (-34.1 \pm 0.2) \%)$ and NBS-127 $(\delta^{34}S = (20.3 \pm 0.2) \%)$ 180

181 \pm 0.4) ‰) were prepared by weighing ~ 0.5 mg of the BaSO₄ standards to reaction tubes.

After reduction, these samples were further converted to SF_6 for isotope analysis. We note the reference materials were not weighed precisely because of the capability of our balance (0.1 mg precision). However, the purpose of processing these samples is to test potential sulfur isotope fractionation during the reduction, rather than assessing the

reduction yield (which can be assessed from the samples made from drying Na_2SO_4

solution with accurate measurement of sulfur content or precipitating $BaSO_4$ from the same Na_2SO_4 solution).

189 **Quantification**

The yield of the reduction from sulfate (SO_4^{2-}) to sulfide (S^{2-}) can be directly 190 assessed by determining the quantity of H₂S collected in the NaOH trapping solution. 191 192 Hydrogen sulfide (H_2S) solution is known to absorb ultraviolet light with a peak absorbance at 230 nm^[22, 23]. Guenther et al.^[22] have shown that in alkaline solutions with 193 pH > 8, H_2S is present nearly 100 % in the form of bisulfide ion (HS⁻), and found that at 194 $pH \sim 8$, ultraviolet determination of HS⁻ yields are accurate because precise estimates of 195 total sulfide concentration in the solution can be achieved. Thus, with NaOH as the 196 trapping solution, the yield of the reduction can be directly assessed by measuring HS⁻ in 197 the solution with optical methods. In comparison, the conventional trapping solution 198 (cadmium acetate or silver nitrate) collects H₂S as a precipitate, which makes it difficult 199 to directly quantify the reduction yield. 200 In this study, we used an ultraviolet spectrophotometer (model 6850, Jenway, 201 Staffordshire, UK) to determine the concentration of H_2S in the NaOH trapping solution. 202 203 The calibration standards were made from mixing sodium sulfide nonahydrate (Na₂S·9H₂O, > 99.99% purity, Sigma-Aldrich, St. Louis, MO, U.S.A.) with 0.1 M NaOH 204 solution. Few Na₂S·9H₂O crystals were quickly rinsed on kimwipes® disposable wipers 205 to remove surface oxidation products, dried and weighed directly. A stock solution of 206 0.01 M HS^{-} was made by mixing 0.0125 g of pre-cleaned Na₂S·9H₂O in 5 mL 0.1 M 207 208 NaOH solution. A set of working standards, 0.0 μ M, 20 μ M, 50 μ M and 100 μ M were then made by diluting 0, 0.02, 0.05 and 0.1 mL of the stock solution into the adequate 209

volume of 0.1 M NaOH to reach 10 mL standard solution. The stock solution should be stored in a sealed brown bottle and flushed with He before storage, since sulfide is easily oxidized by O_2 once in contact with air. Even flushed before storage, we noticed significant loss of sulfide from the stock solution after two to three days. Guenther et al.^[22] made the stock solution in a glass aspirator bottle purged with N₂, and stated the solution should be stable for about 1-2 weeks. In practice, we made fresh stock solution once every two days, and working standards every day.

217 **Procedure**

Prior to the reduction, all glassware, caps, septum and PEEK tubes were cleaned with Milli-Q water. The PEEK tubes have to be flushed to make sure there is no water left inside of them, otherwise the water will block the flow of the carrier gas in the reduction line.

In a fume hood, 1 mL reducing solution was added to a pre-prepared reaction tube 222 with known amount of dry sulfate. In the reaction tube, the reducing solution was purged 223 with He for 20 minutes at room temperature to remove any I_2 and O_2 . The gas washing 224 tubes (b1 and b2 in Figure 1), and the collection tube (c in Figure 1) were prepared by 225 226 adding 12 mL Milli-Q water and 12 mL 0.1 M NaOH, respectively. After the reducing solution was purged for 20 minutes, the reduction train was assembled (Figure 1) and the 227 reaction tube was placed in the block heater and heated at 124 °C. At lower temperatures 228 the reduction speed will be slow, while if the temperature is too high, excessive amount 229 of phosphine (PH₃) will be produced from the decomposition of NaH_2PO_2 ^[14]. For the 230 231 alternate set up, the drying agent was in-line with the cryogenic system, the latter was set 232 at -200° C to trap the products of the reaction. When the reaction was over, the

temperature of the cryogenic trap was raised to -120° C from which the produced H₂S was released and trapped in the collection tube.

The collection tube was removed from the reduction train after the reaction was 235 done. The concentration of H_2S in the trapping solution was firstly measured by the 236 ultraviolet spectrophotometer as described in section 2.4, in order to assess the yield. 237 238 After that, 1 mL 0.01 M AgNO₃ was added to the collection solution to precipitate Ag_2S and Ag₂O. After gently shaking, a few drops of concentrated HNO₃ (68 %) were added to 239 the suspension. With thoroughly shaking, Ag₂O was dissolved and only Ag₂S remains in 240 241 the solid phase. The tube was allowed to settle down, and a plastic laboratory dropper was used to remove the supernatant. The solid was then rinsed with Milli-Q water for 242 three times, transferred to an aluminum boat and dried for fluorination. 243

244 Isotope analysis

To explore potential sulfur isotope fractionation during the reduction, we processed
international sulfate reference materials, IAEA-SO-5, IAEA-SO-6 and NBS-127,

following the above-mentioned procedure in section 2.5. The reference materials were
weighed approximately 0.5 mg and added to the reaction tube. The reaction was stopped
after ~ 5 hours.

After converting to Ag_2S as described in section 2.5, the reference materials were shipped to the Stable Isotope Geochemistry Laboratory at IPG-Paris (Institut de Physique du Globe) for sulfur isotope analysis. At IPG, the samples were dried and then transferred to aluminum boat and weighed. Due to the small quantity (~ 0.3 mg Ag₂S or less) of the sample, we found it is very difficult to transfer the dry Ag₂S from the collection tube to the Al boat. Alternatively, we transferred the solid with a small amount of water together

256	from the tube to the Al boat, and then dried the samples. Under this circumstance, we
257	found that after drying, the inside wall of the Al boat became light-brown in color, and
258	the mass of the dried Al boat with sample exceeded the sum of the sample and the Al
259	boat, indicating the gain of extra mass during the drying process. This is likely due to the
260	development of a thin layer of Al_2O_3 on Al metal surface when Al contacts with water at
261	the drying temperature (70 °C). This is consistent with the observation that, after drying
262	an Al boat with Milli-Q water at 70 °C, a brown layer on the inner surface of the Al boat
263	was formed and the mass of the Al boat was increased . Nevertheless, the results of
264	fluorination yields and sulfur isotopic analysis suggested this neither influences the
265	fluorination procedure nor the isotopes composition.
266	The dried Ag_2S samples were fluorinated in nickel bombs under approximately 37
267	kPa of fluorine gas (F_2) at 250 °C overnight. The evolved SF ₆ was purified cryogenically
268	and then by a gas chromatography. Because of the small amount of samples (< 0.5 mg
269	Ag ₂ S), a microvolume cold finger of an isotope ratio mass spectrometer (Thermo
270	Scientific MAT 253) working in dual-inlet mode was used to concentrate the sample gas
271	for isotope analysis $^{[24]}$. The analytical uncertainty (1 σ) for the instrument was 0.25 ‰
272	for δ^{34} S, 0.010 ‰ for Δ^{33} S and 0.062 ‰ for Δ^{36} S obtained by replicate analysis (<i>N</i> = 4)
273	of IAEA-S-1 over a period of four weeks (one week per IAEA-S-1 analyzed) when the
274	processed sulfate standards were also measured for sulfur isotopic composition.

- 275 **RESULTS AND DISCUSSIONS**
- 276 H₂S collection agents

The reduction product, H_2S , has to be collected and converted to Ag_2S before fluorination for isotope analysis. As mentioned above, $Cd(CH_3CO_2)_2^{[16, 17]}$ and $AgNO_3^{[13]}$ have both been shown to be able to efficiently trap H_2S by forming CdS and Ag_2S

precipitates, respectively. The CdS precipitate is further converted to Ag_2S by adding AgNO₃ solution ^[16, 17].

Conventional reducing solution commonly contains phosphorous acid (H_3PO_3) or 282 hypophosphorous acid $(H_3PO_2)^{[13]}$, and phosphine (PH_3) is produced when the reducing 283 solution is heated ^[18]. Once PH₃ gets in contact with AgNO₃, it reduces Ag^+ to Ag^0 and 284 leads to excess precipitate in addition to $Ag_2S^{[17]}$. To prevent this, Thode et al.^[16] and 285 Forrest et al.^[17] used Cd(CH₃CO₂)₂ as the trapping solution. In particular, Forrest et al.^[17] 286 flushed the Cd(CH₃CO₂)₂ solution with N₂ for 15 minutes after CdS precipitates and prior 287 to adding AgNO₃. This step was found to effectively remove PH₃ and thus no excess 288 precipitate formed. However, Arnold et al. ^[13] found that when using AgNO₃ as the 289 trapping solution, excess of Ag precipitate in the trap is not detrimental to the final 290 isotope analysis of the sulfur content after fluorination. Because of this, AgNO₃ appears 291 to be a better reagent to collect H_2S , given the environmentally toxic nature of Cd^{2+} . 292 In this study, we first employed 0.01 M AgNO₃ as the trapping solution. However, 293 we observed spuriously high precipitate in the trap as soon as the reducing solution was 294 295 heated, and the trapping solution turned to completely dark in a few minutes, even when there was no sulfate added to the reducing solution. At the same time, we noticed 296 297 apparent silver mirror on the inside wall of the collection tube, indicating reduction of Ag^+ to Ag^0 . This severely reduction of the AgNO₃ solution is probably due to the high 298 production of PH₃ from our reducing solution. Different from the conventional reducing 299 solution, our reducing solution used NaH₂PO₂ instead of H₃PO₂/H₃PO₃. NaH₂PO₂ starts 300 301 to decompose and produce PH₃ at 90 °C, while H₃PO₃ effectively decomposes to yield

302	PH_3 at 200 °C. Therefore, at the temperature of the reduction experiment (i.e., 124 °C),
303	our reducing solution was presumably producing much more PH ₃ than the conventional
304	reducing solution. To remove the excess precipitate other than Ag_2S caused by PH_3 , we
305	used 1 M HNO ₃ , followed by 1 M NH ₄ OH to wash the precipitate formed in the AgNO ₃
306	trapping solution. Only part of the precipitate was removed after these treatments and
307	there was still virtually more precipitate than expected. Thus, AgNO ₃ is not a good choice
308	as the trapping solution, as least with regard to our reducing solution.
309	To avoid the reduction of Ag^+ by PH ₃ , we next tested 0.1 M Cd(CH ₃ CO ₂) ₂ as the
310	trapping solution and following the strategies described in Forrest et al. ^[17] . Despite this,
311	excess precipitation was still frequently observed after AgNO ₃ was added to the trapping
312	solution for CdS to Ag_2S conversion. In particular, we noticed during the collection of
313	H ₂ S, yellow material was accumulated at the wall right above the surface of the
314	$Cd(CH_3CO_2)_2$ solution, indicating the formation of CdS. However, at the same time, the
315	entire $Cd(CH_3CO_2)_2$ solution became light brown and the brown color got deeper with
316	increasing trapping time. When AgNO ₃ was added after the collection, the trapping
317	solution turned to dark with extensive precipitate at the same time. Obviously there were
318	still interferences between the trapping solution and/or AgNO ₃ with the volatile
319	product(s) of the reducing solution. Similarly, excess precipitate remained after washing
320	with 1 M HNO ₃ and 1 M NH ₄ OH. This, together with the toxic nature of Cd^{2+} , made us
321	decide to abandon $Cd(CH_3CO_2)_2$ as the trapping solution in our system.
322	Instead, we used 0.1 M NaOH as the trapping solution to collect H_2S . At this pH of
323	13, the trapped H_2S mainly existed in the form of HS^- , as shown in Figure 3a. Since the

NaOH trapping solution was purged with He, under this condition the dissolved O_2 was

325	very low and thus the trapped sulfide was stable. The use of NaOH as the trapping
326	solution has two advantages, 1) the trapped H_2S can be precisely quantified in real-time
327	using an ultraviolet spectrophotometer as described in section 2.4, and thus the progress
328	toward to complete reduction of a sulfate sample can be monitored; 2) that no reaction
329	between PH_3 and $AgNO_3$ occurs avoiding the production of excessive mass interference.
330	After sample collection, 1 mL 0.01 M AgNO ₃ was added to the trap to produce
331	Ag ₂ S. AgOH was produced at the same time, which changed to Ag ₂ O quickly. The
332	suspension was allowed to settle down for 10-20 minutes after thoroughly shaking, and
333	then a few drops of 68 % HNO_3 were added to acidify the trapping solution. Ag ₂ O was
334	readily dissolved in the acidified solution and only Ag ₂ S remains.
335	H ₂ S yield
336	In the 0.1 M NaOH trapping solution, sulfide was mainly present in the form of HS ⁻
337	(Figure 3a). Figure 3b shows the typical absorbance spectra of two Na_2S working
338	standards (in 0.1 M NaOH matrix) and two NaOH trapping solution after 2 hours
339	collection of H_2S , and as expected, the absorbance spectra peak ~ 230 nm, consistent
340	with that from <i>Guenther et al.</i> ^[22] . In Figure 3c, an average of calibration curve over three
341	days working standards is plotted.
342	As described in section 2.3, we had three different sulfate samples processed using
343	our system, Na_2SO_4 , $BaSO_4$ -EB, and P-BaSO ₄ , and the time-resolved H_2S yields from
344	these three materials are plotted in Figure 4. The real-time production of H_2S was
345	monitored by ultraviolet determination of HS ⁻ in the trapping solution every 15-20
346	minutes. Once the produced H_2S reached the amount expected from the starting sulfate,
347	or no longer increases with time, the block heater was turned off and the reduction train

348 was flushed with He for 20 more minutes after the reaction tube cooled to room349 temperature.

350	In general, Na ₂ SO ₄ was reduced faster than P-BaSO ₄ , and much faster than BaSO ₄ -
351	EB. Regardless the quantity of the starting sulfate, after 1 hour of reduction, an average
352	H_2S yield of (85.7 \pm 10.3) % was reached when Na_2SO_4 was the starting material. In
353	comparison, the H ₂ S yield after 1 hour of reduction was (63.9 \pm 2.1) % for BaSO ₄ -EB
354	and only (18.5 \pm 0.04) % for P-BaSO4. After 2 hours, a (99.5 \pm 3.7) % yield was reached
355	for Na ₂ SO ₄ , indicating the completion of the reduction. However, after 2 hours, it
356	appeared that no more H_2S was produced for $BaSO_4$ -EB and P-BaSO ₄ , and the yield
357	remained at (80.4 \pm 0.75) % for BaSO ₄ -EB and (28.5 \pm 0.09) % for P-BaSO ₄ after 4 or 5
358	hours. For two of the BaSO ₄ -EB samples, we let the reaction continue overnight, and the
359	yield increased from 41.7 % and 34.5 % at 5 hours to 58.3 % and 86.5 %, respectively.
360	The final yields (yield after stopping the reaction) of Na ₂ SO ₄ , BaSO ₄ -EB and P-
361	BaSO ₄ sample with different quantities of sulfate are plotted in Figure 5. Overall,
362	Na_2SO_4 was often 100 % reduced within two hours regardless the starting quantify, even
363	when the drying agent and the cryogenic trap were put in-line, while a 100 % yield for
364	BaSO ₄ -EB, and P-BaSO ₄ was never observed even after overnight heating.
365	The different apparent reaction speeds and yields of H ₂ S between Na ₂ SO ₄ , BaSO ₄ -
366	EB and P -BaSO ₄ and the reducing solution likely reflect the effect of the sulfate salt
367	solubility. Na_2SO_4 is soluble in water, while $BaSO_4$ has a very low solubility of 0.01
368	$\mu mol/mL$ in water at 20 °C and less than 0.02 $\mu mol/mL$ at ~120 °C $^{[25]}.$ Given the small
369	volume of the reducing solution used (1 mL), there would be less than 2 $\%$ of the added
370	BaSO ₄ (if 1 μ mol is added) dissolved. Our observations clearly point the sulfate ion

371	(SO_4^{2-}) or sulfuric acid (H_2SO_4) as the reactive species with the reducing acids, i.e. the
372	sulfate salt has to be dissolved first in order to produce H_2S . This explains why the
373	$BaSO_4$ samples reacted so slowly with the reducing solution relative to Na_2SO_4 . In
374	addition, if there is excess Ba^{2+} ion in the solution (due to dissolve of excess $BaCl_2$ that
375	used to precipitate $BaSO_4$ from Na_2SO_4), it will inhibit the dissolution of $BaSO_4$ as the
376	dissociation equilibrium of BaSO ₄ will be pushed to the BaSO ₄ side, following Le
377	Chatelier's principle. This probably explains why the reducing reaction with P -BaSO ₄
378	was faster than that with $BaSO_4$ -EB. To confirm the effect of excess Ba^{2+} ion on reducing
379	BaSO ₄ , we made a few BaSO ₄ samples with extensively more Ba^{2+} by adding 1 mL 0.1
380	M BaCl ₂ to 1 mL 1 mM Na ₂ SO ₄ solution. The samples were then directly dried without
381	removing supernatant from the precipitate. For these samples, after the reduction started,
382	we measure the trapping solution every hour for 7 hours, and no H_2S was detected at all
383	times.

Therefore, the solubility of the sulfate salt largely affects the reducing speed and the 384 385 overall yield. We thus recommend to extract and convert sulfate in natural samples to Na₂SO₄ whenever possible when applying our reducing solution. The extraction of 386 sulfate can be conducted using the IC method described in Geng et al. ^[26] or the anion-387 exchange resin method described in Le Gendre et al.^[21]. In case of BaSO₄ is 388 unavoidable, excess Ba²⁺ should be removed after precipitating BaSO₄ with BaCl₂, and 389 increasing the volume of reducing solution (e.g., to 10 mL instead of 1 mL) and/or 390 reaction time may improve the yield. 391

392 Isotope analysis of the standard materials

393 Since the overall goal of reducing sulfate to sulfide is to perform the four-sulfur isotope analysis, we processed three different barium sulfate standards, IAEA-SO-5, 394 IAEA-SO-6 and NBS-127, which were equivalent to P-BaSO₄ samples. Unfortunately 395 there are no international standards in sodium sulfate form and thus a strict comparison of 396 the isotopic precision of the reduction step for the two chemical forms is impossible. 397 398 Even a simple comparison of the salt from an identical sulfate batch is not possible as BaSO₄ reduction will never reach a full decomposition. The fluorination yield from Ag₂S 399 to SF_6 and sulfur isotopic composition measured from these standards are listed in Table 400 401 1. The fluorination yield ranges from 84.6 % to 113.5 % and is with an average of (101 \pm 7.5) %, except one standard with a low yield of 26.1 %. Regardless the fluorination yield, 402 the measured isotopic values of all processed sulfate standards are statistically consistent 403 with their accepted values, including the one with relatively low yield (26.1 %). The 404 measured δ^{34} S (‰)_{VCDT} values of all standards with different quantities of sulfur (0.34 - 2 405 μ mol in SF₆) versus their accepted δ^{34} S (‰)_{VCDT} values are plotted in Figure 6. A least-406 square linear regression gives a slope of (0.99 ± 0.01) , suggesting a good reproducibility 407 and the conservation of sulfur isotopic composition during the reduction of sulfate to 408 409 sulfide using our reducing system, despite the reduction yields of these standard materials were not 100%. This is not a surprise. In fact, if any sulfur isotope fractionation occurs 410 during the reduction, it would be between the solid BaSO₄ and the dissolved part HSO₄ 411 (the form of SO_4^{2-} in concentrated acid solution), but not in the step(s) from SO_4^{2-} to H_2S 412 because the dissolved part is 100 % converted to H_2S . Kusakabe and Robinson ^[27] found 413 414 that sulfur isotope fractionation between solid $BaSO_4$ and the dissolved HSO_4^- in the BaSO₄- HSO₄⁻-H₂O system is very small (less than 0.4 ‰ in the temperature range from 415

416 110 to 350 °C), which could explain why the solubility effect seems to not affect the
417 isotopic measurements.

For these standards, we also reported the Δ^{33} S and they are all not distinct from what can be expected from mass-dependent fractionation. However, we did not include the Δ^{36} S values as when these standards were measured, the mass spectrometer had a high and variable background at m/z = 131 up to 50 mV which made the δ^{36} S values drifting and not reliable.

423 CONCLUSION

We present a simple and reliable reducing method modified from the literature for the 424 425 conversion of sulfate to sulfide for four-sulfur isotope analysis. This system is simple to set up, easy to replace and cheap to acquire and is made of sealed test tubes and PEEK 426 flowing lines (metal part, e.g. needle, in contact with the hot reducing solution is not 427 allowed). This method uses a reducing solution made of 100 mL 57 % HI and 13 g 428 NaH₂PO₂, and a very small amount (1 mL) reducing solution was demonstrated to be 429 able to completely reduce soluble sulfate salt $(0.5 - 2.5 \mu mol)$ to sulfide within 2 hours, 430 431 minimizing the use of relatively expensive HI acid. In practice, nothing prohibits the recycling of the used reducing solution by adding a few mgs of NaH₂PO₂ in order to 432 reduce I₂ back to I⁻ in a boiling flask if the used solution turns brown ^[14]. In addition, the 433 reduction train avoids distillation apparatus and multiple reduction trains can be operated 434 at a time, making it easier to process multiple samples simultaneously. The use of NaOH 435 436 as the trapping solution allows the assessment of reduction yield directly from UV determination of HS⁻ in the trapping solution. 437

438	This new approach was demonstrated to produce H_2S very rapidly with a 100 %
439	recovery when soluble sulfate salt was used (e.g., Na_2SO_4), as opposed to $BaSO_4$ for
440	which the kinetic was slow and conversion never reached 100 % even after overnight
441	reaction. However, despite the relatively low reduction yield for BaSO ₄ , there was no
442	significant isotope fractionation effect induced by the reduction. As it is the dissolved
443	part of sulfate salt that reacts with the reducing solution, this method is best suitable for
444	natural samples containing soluble sulfate (e.g., aerosol, snow and ice core), which can be
445	extracted (e.g., by the resin method) and converted to Na ₂ SO ₄ . Barite precipitate method
446	for sulfate extraction and purification is not recommended due to the inhibition of the salt
447	solubility on the reduction speed and yield. In case of $BaSO_4$ is the main form of sulfate
448	(e.g., barite), increasing the volume of the reducing solution and/or the reaction time may
449	improve the H_2S yield with no guarantee of a complete conversion. While poor
450	conversion and fluorination yields do not seem to introduce isotope fractionations, poor
451	yield reduces the sensitivity of the method to sample sizes above few micromoles of
452	sulfate and may also have consequence on the mass-dependent slopes between sulfur
453	isotope ratios as ${}^{33}S/{}^{32}S$ ratio of the international standard have never been calibrated.

455

456 Acknowledgements

L. Geng was supported by a Marie Sklodowska Curie action from the EU (contract 457 number 700853). This work is also supported by JSPS KAKENHI Grant Numbers 458 17H06105 (N.Y.), 16H05884 (S.H.), and 17J08978 (S.I.). S. Hattori, and S. Ishino, were 459 460 supported by a Japan-France Research Cooperative Program (SAKURA and CNRS) of MEXT, Japan. J. Savarino thank the CNRS/INSU (PRC program 207394) and the PH-461 SAKURA program of the French Embassy in Japan (project 31897PM) for financial 462 support for this collaboration. This work has also been supported by a grant from Labex 463 OSUG@2020 (Investissements d'avenir – ANR10 LABX56). This work was partially 464 supported by the ANR FOFAMIFS project, grant ANR-14-CE33-0009-01 of the French 465 Agence Nationale de la Recherche. 466 467

468 469 470	Refer	ences
471 472	[1]	D. E. Canfield. Biogeochemistry of Sulfur Isotopes. <i>Reviews in Mineralogy and Geochemistry</i> 2001 , <i>43</i> , 607.
473 474	[2]	J. Farquhar, H. M. Bao, M. Thiemens. Atmospheric influence of Earth's earliest sulfur cycle. <i>Science</i> 2000a , 289, 756.
475	[3]	G. Feulner. The Faint Young Sun Problem. Rev. Geophys. 2012, 50.
476 477	[4]	J. Farquhar, J. Savarino, T. L. Jackson, M. H. Thiemens. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. <i>Nature</i> 2000b , <i>404</i> , 50.
478 479 480	[5]	J. Cole-Dai, D. Ferris, A. Lanciki, J. Savarino, M. Baroni, M. H. Thiemens. Cold decade (AD 1810-1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. <i>Geophys. Res. Lett.</i> 2009 , <i>36</i> .
481 482	[6]	J. Savarino, A. Romero, J. Cole-Dai, S. Bekki, M. H. Thiemens. UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. <i>Geophys. Res. Lett.</i> 2003 , <i>30</i> .
483 484	[7]	M. Baroni, M. H. Thiemens, R. J. Delmas, J. Savarino. Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. <i>Science</i> 2007 , <i>315</i> , 84.
485 486	[8]	A. Lanciki, J. Cole-Dai, M. H. Thiemens, J. Savarino. Sulfur isotope evidence of little or no stratospheric impact by the 1783 Laki volcanic eruption. <i>Geophys. Res. Lett.</i> 2012 , <i>39</i> .
487 488	[9]	N. Wu, J. Farquhar, H. Strauss, ST. Kim, D. E. Canfield. Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial. <i>Geochim Cosmochim Ac</i> 2010 , <i>74</i> , 2053.
489 490 491	[10]	P. Sansjofre, P. Cartigny, R. I. F. Trindade, A. C. R. Nogueira, P. Agrinier, M. Ader. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth. <i>Nat Commun</i> 2016 , <i>7</i> .
492 493 494	[11]	S. Ono, B. Wing, D. Rumble, J. Farquhar. High precision analysis of all four stable isotopes of sulfur (32S, 33S, 34S and 36S) at nanomole levels using a laser fluorination isotope-ratio- monitoring gas chromatography–mass spectrometry. <i>Chem Geol</i> 2006 , 225, 30.
495 496	[12]	Y. Ueno, S. Aoyama, Y. Endo, F. Matsu'ura, J. Foriel. Rapid quadruple sulfur isotope analysis at the sub-micromole level by a flash heating with CoF3. <i>Chem Geol</i> 2015 , <i>419</i> , 29.
497 498	[13]	G. L. Arnold, B. Brunner, I. A. Müller, H. Røy. Modern applications for a total sulfur reduction distillation method - what's old is new again. <i>Geochem T</i> 2014 , <i>15</i> , 4.
499 500 501	[14]	M. C. van Grondelle, F. van de Craats, J. D. van der Laarse. Microcoulometric determination of total inorganic sulphur in water by a hydroiodic acid reduction method. <i>Anal Chim Acta</i> 1977 , <i>92</i> , 267.
502 503 504	[15]	K. Toshiyasu, T. Tomoo, Y. Yooko, K. Ikuko. Tin (II)-Strong Phosphoric Acid. A New Reagent for the Determination of Sulfate by Reduction to Hydrogen Sulfide. <i>B Chem Soc Jpn</i> 1955 , <i>28</i> , 641.
505 506	[16]	H. G. Thode, J. Monster, H. B. Dunford. Sulphur isotope geochemistry. <i>Geochim Cosmochim Ac</i> 1961 , 25, 159.

507 508	[17]	J. Forrest, L. Newman. Silver-110 microgram sulfate analysis for the short time resolution of ambient levels of sulfur aerosol. <i>Anal. Chem.</i> 1977 , <i>49</i> , 1579.
509 510	[18]	J. B. Davis, F. Lindstrom. Spectrophotometric microdetermination of sulfate. <i>Anal. Chem.</i> 1972 , <i>44</i> , 524.
511 512	[19]	G. Norwitz. Spectrophotometric determination of sulphate in propellents and nitrocellulose. <i>Analyst</i> 1971 , <i>96</i> , 494.
513 514	[20]	L. Gustafsson. Determination of ultramicro amounts of sulphate as methylene blue—I: The colour reaction. <i>Talanta</i> 1960 , <i>4</i> , 227.
515 516 517	[21]	E. Le Gendre, E. Martin, B. Villemant, P. Cartigny, N. Assayag. A simple and reliable anion- exchange resin method for sulfate extraction and purification suitable for multiple O- and S- isotope measurements. <i>Rapid Commun. Mass Spectrom.</i> 2017 , <i>31</i> , 137.
518 519	[22]	E. A. Guenther, K. S. Johnson, K. H. Coale. Direct Ultraviolet Spectrophotometric Determination of Total Sulfide and Iodide in Natural Waters. <i>Anal. Chem.</i> 2001 , <i>73</i> , 3481.
520 521	[23]	R. J. Williams. Determination of inorganic anions by ion chromatography with ultraviolet absorbance detection. <i>Anal. Chem.</i> 1983 , <i>55</i> , 851.
522 523 524	[24]	D. A. Yang, G. Landais, N. Assayag, D. Widory, P. Cartigny. Improved analysis of micro- and nanomole-scale sulfur multi-isotope compositions by gas source isotope ratio mass spectrometry. <i>Rapid Commun. Mass Spectrom.</i> 2016 , <i>30</i> , 897.
525 526	[25]	C. W. Blount. Barite solubilities and thermodynamic quantities up to 300 °C and 1400 bars. <i>Am Mineral</i> 1977 , 9.
527 528 529	[26]	L. Geng, A. J. Schauer, S. A. Kunasek, E. D. Sofen, J. Erbland, J. Savarino, D. J. Allman, R. S. Sletten, B. Alexander. Analysis of oxygen-17 excess of nitrate and sulfate at sub-micromole levels using the pyrolysis method. <i>Rapid Commun. Mass Spectrom.</i> 2013 , <i>27</i> , 2411.
530 531	[27]	M. Kusakabe, B. W. Robinson. Oxygen and sulfur isotope equilibria in the $BaSO_4$ - HSO_4^- - H_2O system from 110 to 350°C and applications. <i>Geochim Cosmochim Ac</i> 1977 , <i>41</i> , 1033.
532 533 534 535	[28]	S. Halas, J. Szaran. Improved thermal decomposition of sulfates to SO_2 and mass spectrometric determination of $\delta^{34}S$ of IAEA SO-5, IAEA SO-6 and NBS-127 sulfate standards. <i>Rapid Commun. Mass Spectrom.</i> 2001 , <i>15</i> , 1618.
536		
537		
538		
539 540		
541		
542	Table	1. Fluorination yield and the measured isotopic values of the sulfate standards
543	proces	sed with the protocol described in this study.
544		
545 546	Figure	a Lagands.
540 547	riguit	Legenus.

Figure 1. A sketch of the reduction train. a: block heater and the reduction tube; b1 & b2: gas washing tubes; c: H_2S collection tube.

550

Figure 2. A sketch of the flow system containing multiple reaction trains. "T1...Tn"
indicate the reduction trains assembled.

553

Figure 3. a. Percents of H_2S and HS^- in solutions with different pH calculated with pK_{a1} of 7.0 and pK_{a2} of 19, the vertical dashed line indicates the pH of the trapping solution used in this study; b. Absorbance spectra of Na₂S working standards and trapping solutions after 1 hour collection, the vertical dashed line indicates the absorbance peak of 230 nm; c. a three-day averaged calibration curve for H_2S quantification.

558 559

Figure 4. Time-resolved yields of H_2S from the reduction of dry Na_2SO_4 , $BaSO_4$ -EB (BaSO₄ with excess Ba^{2+}) and P-BaSO₄ (pure BaSO₄).

562

566

Figure 5. Yields of H_2S from the reduction of Na_2SO_4 , $BaSO_4$ -EB (BaSO₄ with excess Ba²⁺) and P-BaSO₄ (pure BaSO₄) at different sulfate quantities at the time the reaction is stopped.

Figure 6. Measured versus accepted δ^{34} S (‰)_{VCDT} values of IAEA-SO-5, IAEA-SO-6 and NBS-127. The reduction of these sulfate standards to H₂S were conducted using the protocol described in this study.

570

571

572 **Table 1.** Fluorination yield and measured isotopic ratios of the sulfate standards

processed with this system. The values of Δ^{36} S are not reported as when the samples were measured the mass spectrometer had a high background of mass 131 (15 to 50 mV) and thus the Δ^{36} S data were discarded. The initial mass of the BaSO₄ standards were only

approximately weighed, and the mass(es) in Ag_2S form were obtained according to the

<i>STT</i> incustred 1125 production after - 5 nours of reduction.
--

Standards	Ag ₂ S (mg)	SF ₆ yield (%)	Δ^{33} S values vs CDT (‰)		δ^{34} S values vs CDT (‰)		Accepted $\delta^{34}S^a$ values vs CDT (‰)
	0.20	101.7	0.015		19.8		
NDC 107	0.10	105.3	0.018	0.025 ± 0.010	22.4	21.6 ± 1.3	20.3 ± 0.5
NBS-127	0.08	93.7	0.033		22.8		
	0.12	98.2	0.034		21.4		
	0.51	104.6	0.063	0.097 ± 0.071	0.7	0.7 ± 0.2	0.5 ± 0.5
	0.52	101.6	0.052		0.7		
IAEA-SO-5	0.82	26.1	0.203		0.8		
	0.21	99.3	0.067		0.5		
	0.41	113.5	0.077	0.086 ± 0.020	-34.0	-33.5 ± 0.6	-34.1 ± 0.5
IAEA-SO-6	0.46	106.9	0.065		-33.9		
	0.13	102.0	0.110		-32.9		

		0.15	84.6	0.090		-32.9	
578	a. Accepted va	alues are	e taken f	rom Hala	s and Szaran ^[28]	•	
579	1						
580 581							
582							
583							
584							
585 586							
587							
588							
589							
590 591							
592							
593							
594 595							
596							
597							
598							
599 600							
601							
602							

Figure 1. A sketch of the reduction train. a: block heater and the reduction tube; b1 & b2: gas washing tubes; c: H_2S collection tube.

- 609 610

- 619

Figure 2. A sketch of the flow system containing multiple reaction trains. "T1...Tn"

634 indicate the reduction trains assembled.

Figure 3. a. Percents of H_2S and HS^- in solutions with different pH calculated with pK_{a1} of 7.0 and pK_{a2} of 19, the vertical dashed line indicates the pH of the trapping solution used in this study; b. Absorbance spectra of Na₂S working standards and trapping

230 nm; c. a three-day averaged calibration curve for H_2S quantification.

Figure 4. Time-resolved yields of H_2S from the reduction of dry Na_2SO_4 , $BaSO_4$ -EB (BaSO₄ with excess Ba^{2+}) and P-BaSO₄ (pure BaSO₄).

Figure 5. Yields of H₂S from the reduction of Na₂SO₄, BaSO₄-EB (BaSO₄ with excess Ba²⁺) and P-BaSO₄ (pure BaSO₄) at different sulfate quantities at the time the reaction is stopped.

Figure 6. Measured versus accepted δ^{34} S (‰)_{VCDT} values of IAEA-SO-5, IAEA-SO-6 and NBS-127. The reduction of these sulfate standards to H₂S were conducted using the

- 675 protocol described in this study.
- 676