

Assessing the Seasonal Dynamics of Nitrate and Sulfate Aerosols at the South Pole Utilizing Stable Isotopes

Wendell Walters, Greg Michalski, J. Böhlke, Becky Alexander, Joel Savarino,

Mark H Thiemens

▶ To cite this version:

Wendell Walters, Greg Michalski, J. Böhlke, Becky Alexander, Joel Savarino, et al.. Assessing the Seasonal Dynamics of Nitrate and Sulfate Aerosols at the South Pole Utilizing Stable Isotopes. Journal of Geophysical Research: Atmospheres, 2019, 124 (14), pp.8161-8177. 10.1029/2019JD030517. hal-02350370

HAL Id: hal-02350370 https://hal.science/hal-02350370

Submitted on 25 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Assessing the Seasonal Dynamics of Nitrate and Sulfate Aerosols at the

2 South Pole Utilizing Stable Isotopes

Wendell W. Walters^{1,2*}, Greg Michalski^{3,4*}, J.K. Böhlke⁵, Becky Alexander⁶, Joël Savarino⁷, and Mark H. Thiemens⁸

¹Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence,
 RI, USA

- ⁷ ²Institute at Brown for Environment and Society, Brown University, Providence, RI, USA.
- ⁸ ³Department of Earth, Atmospheric, and Planetary Sciences Purdue University, West Lafayette,
- 9 IN, USA.
- ⁴Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- ⁵U.S. Geological Survey, Reston, VA 20192, USA
- ¹² ⁶Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, F-38000 Grenoble, France
- ¹³ ⁷Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
- ⁸Department of Chemistry and Biogeochemistry, University of California, San Diego, La Jolla,
 CA, USA.
- Corresponding author: Wendell W. Walters (wendell_walters@brown.edu) & Greg Michalski(gmichals@purdue.edu)

18 Key Points:

- The stable isotope compositions of nitrate and sulfate were measured from aerosol samples collected at the South Pole
- Distinct seasonal cycles were found in both concentration and isotopic compositions
 resulting from changing contributions of emission sources and oxidation chemistry
- The budgets of nitrate and sulfate at the South Pole are complex functions of transport,
 localized chemistry, biological activity, and meteorological conditions.
- 25

26 Abstract

Atmospheric nitrate (NO₃⁻ = particulate NO₃⁻ + gas-phase nitric acid (HNO₃)) and sulfate (SO₄²⁻) 27 are key molecules that play important roles in numerous atmospheric processes. Here, the 28 seasonal cycles of NO₃⁻ and total suspended particulate sulfate (SO₄²⁻(TSP)) were evaluated at the 29 South Pole from aerosol samples collected weekly for approximately 10-months (January 26 to 30 31 October 18) in 2002 and analyzed for their concentration and isotopic compositions. Aerosol NO₃⁻ was largely affected by snowpack emissions in which [NO₃⁻] and $\delta^{15}N(NO_3^-)$ were highest 32 $(49.3\pm21.4 \text{ ng/m}^3, n = 8)$ and lowest $(-47.0\pm11.7\%, n = 5)$, respectively, during periods of 33 sunlight in the interior of Antarctica. The seasonal cycle of $\Delta^{17}O(NO_3^{-})$ reflected tropospheric 34 chemistry year-round with lower values observed during sunlight periods and higher values 35 observed during dark periods, reflecting shifts from HO_x - to O_3 -dominated oxidation chemistry. 36 $SO_4^{2-}(TSP)$ concentrations were highest during summer and fall (86.7±73.7 ng/m³, n =18) and are 37 suggested to be derived from dimethyl sulfide (DMS) emissions supported by $\delta^{34}S(SO_4^{2-})_{(TSP)}$ 38 values (18.5±1.0‰, n=10) near the DMS δ^{34} S source value. The seasonal cycle of $\Delta^{17}O(SO_4^{2-1})$ 39)_(TSP) exhibited minima values during summer (0.9 \pm 0.1‰; n=5) and maxima during fall (1.3 \pm 40 0.3‰, n =6) and spring (1.6 \pm 0.1‰, n=5), indicating a shift from HO_x- to O₃-dominated 41 chemistry in the atmospheric derived SO_4^{2-} component. Overall, the budgets of NO_3^{-} and SO_4^{2-} 42 (TSP) at the South Pole are complex functions of transport, localized chemistry, biological activity, 43 and meteorological conditions, and these results will be important for future interpretations of 44 oxyanions in ice core records in the interior of Antarctica. 45

46

47 **1 Introduction**

The interior of Antarctica is a unique region to study atmospheric chemistry because of its
pristine nature, distinctive climatology, and the potential influence of stratospheric dynamics on

50	tropospheric chemistry (Hill-Falkenthal et al., 2013; McCabe et al., 2007; Savarino et al., 2007;
51	Shaw, 2010; Wagenbach, 1996). The region is also vital for paleoclimotology studies that relate
52	trace gases (CO ₂ , CH ₄ , N ₂ O) and aerosols, trapped in the polar ice, to past global climate shifts
53	and feedback mechanisms (Alexander et al., 2003; Augustin et al., 2004; Barnola et al., 1987;
54	Legrand et al., 1988; Leuenberger et al., 1992; Meure et al., 2006; Röthlisberger et al., 2000).
55	By measuring changes in greenhouse gas concentrations and their stable isotopic compositions, it
56	is possible to place constraints on the change in sources of these compounds over time (Craig et
57	al., 1988; Friedli et al., 1986; Leuenberger et al., 1992). This is because these gases have small
58	photochemical removal rates, which gives them a long atmospheric lifetime (~10s-100s yr).
59	This allows them to be thoroughly mixed in the global troposphere and incorporated into the ice
60	before removal mechanisms can induce any noticeable isotopic fractionation; thus, the change in
61	isotopic composition can be related, by mass balance, to global source changes.
62	

Utilizing the isotopic composition of nitrate (NO₃⁻) and sulfate (SO₄²⁻) in ice is more 63 complex because both the aerosol and gaseous components of these compounds have 64 atmospheric lifetimes that are considerably shorter (days to months) relative to greenhouse gases. 65 However, these are important oxyanions to study because of the significant role they play in the 66 chemical activity of the atmosphere with important implications for climatic forcing and controls 67 on the atmospheric oxidation budget (Arimoto et al., 2001; Hauglustaine et al., 2014; Haywood 68 & Boucher, 2000; Kiehl et al., 2000). NO_3^{-1} and SO_4^{2-1} are formed as secondary products from the 69 oxidation of precursor gases, nitrogen oxides ($NO_x = NO + NO_2$) and sulfur dioxide (SO_2). 70 Primary sources of SO_4^{2-} also exist including direct emission via sea-salt particles. Due to the 71 72 conserved mass of S and N between the precursor gases and the oxidized end-products of NO₃⁻

and of SO_4^{2-} , the N (δ^{15} N) and S (δ^{34} S) isotopic composition may serve as a proxy providing key 73 information about emissions sources of reduced N and S gases (Hastings et al., 2009; Heaton, 74 1990; Nielsen, 1974). This may be a helpful tool to constrain N and S emissions sources that 75 remain relatively unclear in the interior of Antarctica (Delmas, 2013; Legrand et al., 2017; 76 Preunkert et al., 2008; Weller et al., 2018). In contrast, the O isotopic composition (δ^{18} O & 77 Δ^{17} O) is associated with the incorporation of oxygen atoms from various atmospheric oxidants as 78 gaseous precursors (i.e., NO_x and SO₂) are oxidized to NO₃⁻ or SO₄²⁻ (Alexander et al., 2005; 79 Michalski et al., 2003). The number of isotopic studies of NO_3^- or SO_4^{2-} in polar regions are 80 relatively meager but have received increased attention in recent years, and interpretations of the 81 isotopic signals continue to evolve (Erbland et al., 2013; Frey et al., 2009; Hill-Falkenthal et al., 82 2013; Ishino et al., 2017; McCabe et al., 2007; Savarino et al., 2007, 2016). However, to utilize 83 stable isotopes in NO₃⁻ and SO₄²⁻ in a paleoclimate context (i.e., ice core studies) in the interior 84 of Antarctica, we must have a better understanding of the isotopic signatures of these molecules 85 in the polar atmosphere. 86

87

Isotopic compositions of NO₃⁻ can be a useful way to understand sources and oxidation pathways responsible for its formation. Previous works in Antarctica have suggested snowpack photolysis and localized recycling, continental transported anthropogenic derived NO₃⁻, and stratospheric inputs as important sources of NO₃⁻ (Savarino et al., 2007). These NO₃⁻ inputs have somewhat distinctive δ^{15} N values of -32.7±8.4‰ (Savarino et al., 2007), 2.5±12.5‰ (Elliott et al., 2009; Freyer, 1978; Heaton, 1987), and estimated 19±3‰ (Savarino et al., 2007), respectively.

95	Oxidation pathways during NO ₃ ⁻ formation may be evaluated by using Δ^{17} O data
96	(McCabe et al., 2007; Michalski et al., 2003; Morin et al., 2007, 2009; Savarino et al., 2007).
97	Briefly, during NO_x oxidation, O atoms of the responsible oxidants are incorporated into the
98	product NO ₃ ⁻ . Tropospheric O ₃ has an elevated $\Delta^{17}O(O_{3bulk})$ near 26‰ (Johnston & Thiemens,
99	1997; Krankowsky et al., 1995; Vicars et al., 2012; Vicars & Savarino, 2014), with the
100	transferrable O atom of O_3 associated with the terminal end of O_3 (O_{3term}) possessing a
101	$\Delta^{17}O(O_{3term})$ of 39.3±2.0‰ (Vicars & Savarino, 2014). This contrasts with most other
102	atmospheric O-bearing molecules including O ₂ , H ₂ O, and RO ₂ (or HO ₂) that have a Δ^{17} O near
103	0% (Barkan & Luz, 2005). These differences provide quantitative measures to evaluate NO_x
104	oxidation chemistry involving various contributions from O_3 , HO_x , RO_x , and XO (where $X = Br$
105	or Cl) oxidation pathways (Michalski et al., 2003) and to compare modeled formation pathways
106	(Alexander et al., 2009) with direct observations (Morin et al., 2008; Savarino et al., 2013). The
107	Δ^{17} O observed in nitrate is a balance between the Δ^{17} O of NO ₂ and the subsequent oxidation
108	pathway resulting in NO ₃ ⁻ . The Δ^{17} O of NO ₂ should reflect NO _x photochemical cycling between
109	NO-O ₃ -RO ₂ (or HO ₂), resulting in expected values near 28 to 39‰ (Morin et al., 2011),
110	representing a NO + O_3 branching ratio of 0.72 to 1.0. Post NO ₂ reaction pathways have been
111	assumed to reflect O isotopic mass balance with the associated oxidants, which has been derived
112	in numerous previous works (Alexander et al., 2009; Ishino et al., 2017; Michalski et al., 2003;
113	Morin et al., 2009). Based on this framework, the $NO_2 + OH$ pathway is expected to produce
114	the lowest $\Delta^{17}O(NO_3^-)$ values (17.3 to 25.1‰), while the NO ₃ + RH and XONO ₂ hydrolysis are
115	expected to produce the highest $\Delta^{17}O(NO_3^-)$ values (38.0 to 42.7‰) (Table 1) (Morin et al.,
116	2011). Thus, $\Delta^{17}O(NO_3)$ may be useful to further understand oxidation chemistry involving
117	NO_3^- in sensitive polar environments.

Previous studies have suggested biogenic sulfur, sea-salt, continental transported SO_4^{2-} 118 (derived from mineral, continental biogenic, and anthropogenic sources) and stratospheric inputs 119 to be important SO_4^{2-} sources to the interior of Antarctica (Arimoto et al., 2001; Hill-Falkenthal 120 et al., 2013). These sources have reported δ^{34} S signatures of 18.6±1.9‰ for dimethyl sulfide 121 (DMS) (Patris et al., 2002; Sanusi et al., 2006), 21±0.1‰ for sea-salt SO₄²⁻ (Rees et al., 1978), 122 $3\pm3\%$ for continental derived SO₄²⁻ production (Jenkins & Bao, 2006; Li & Barrie, 1993; 123 Norman et al., 1999), and 2.6±0.3‰ for stratospheric (Castleman Jr et al., 1974), respectively. 124 Δ^{17} O analysis of SO₄²⁻ is a well-established tool for assessing SO₂ oxidation formation 125 pathways (Alexander et al., 2005; Jenkins & Bao, 2006; Lee & Thiemens, 2001; Savarino et al., 126 2000). Briefly, atmospheric SO₂ rapidly attains isotopic equilibrium with H₂O (Holt et al., 127 1981). Thus, any Δ^{17} O signature observed in SO₄²⁻ derives from SO₂ oxidation and can be used 128 to assess the relative importance of SO₂ oxidation pathways, allowing for an understanding of 129 the relative importance of aqueous-phase and gas-phase oxidation (Alexander et al., 2005, 2009; 130 Dominguez et al., 2008; Hill-Falkenthal et al., 2013; Lee & Thiemens, 2001; Savarino et al., 131 2003). Previous works have shown that the Δ^{17} O signature of O_{3(bulk}) (26‰) (Vicars & Savarino, 132 2014) and hydrogen peroxide (~1.7‰) (Lyons, 2001; Savarino & Thiemens, 1999) are partially 133 transferred into SO_4^{2-} based on O mass-balance resulting in $\Delta^{17}O(SO_4^{2-})$ values near 6.5% and 134 0.8‰, respectively. However, we note that if O atom transfer occurs from O_{3(term)} as suggested 135 by *ab initio* results (Liu et al., 2001), then the S(IV) + O₃ oxidation pathway could have a Δ^{17} O 136 as high as 9.3-10.6‰ (Table 1). Gas-phase oxidation via OH will result in a $\Delta^{17}O(SO_4^{2-})$ of 0‰ 137 when isotopic equilibrium with H_2O is reached. Other potentially important aqueous phase SO_2 138 $S(IV) (=SO_2 \cdot H_2O + HSO_3^2 + SO_3^2)$ oxidation pathways include aqueous metal-catalyzed O_2 139 oxidation, which results in estimated $\Delta^{17}O(SO_4^{2-})$ of -0.1‰ (Barkan & Luz, 2005) and S(IV) 140

141	oxidation via hypohalous acids (HOX = HOBr + HOCl) with an expected $\Delta^{17}O(SO_4^{2-})$ of 0‰
142	due to rapid equilibrium with H ₂ O (Chen et al., 2016; Fogelman et al., 1989; Troy & Margerum,
143	1991). Tropospheric S(IV) oxidation via O_3 is the only significant mechanism producing SO_4^{2-}
144	with Δ^{17} O values >1‰, allowing for quantitative evaluation of the relative contribution of O ₃
145	during SO_4^{2-} formation (Table 1). Thus, $\Delta^{17}O(SO_4^{2-})$ can be a useful tracer for constraining the
146	transport and oxidation chemistry of SO_4^{2-} aerosols at the South Pole. Aqueous-phase formation
147	of SO_4^{2-} is highly pH-dependent, particularly the O_3 pathway; therefore $\Delta^{17}O(SO_4^{-2-})$ can provide
148	useful constraints on the oxidation dynamics involving S(IV).
149	

Table 1. Summary of NO₃⁻ and SO₄²⁻ oxidation pathways and their expected Δ^{17} O values (adapted from Ishino et al., (2017)). Δ^{17} O values of NO₃⁻ are estimated based on box model results of Morin et al., (2011). Δ^{17} O values of SO₄²⁻ are adapted based on calculations from Savarino et al., (2000).

Species	Oxidation Pathway	$\Delta^{17}O(\text{oxidant})(\%)$	Transferring Factor	$\Delta^{17}O$
-	-		_	Product(%)
NO ₃	$NO_2 + OH$	0 (OH)	2/3(NO ₂)	17.3 - 25.1
	N ₂ O ₅ hydrolysis	(37.3 - 42.3) (O _{3term}), 0 (H ₂ O)	$2/3(NO_2) + 1/6(O_{3term})$	31.0 - 35.2
	$NO_3 + RH$	(37.3 – 42.3) (O _{3term})	$2/3(NO_2) + 1/3(O_{3term})$	38.0 - 42.3
	XONO ₂ hydrolysis	(37.3 – 42.3) (BrO)	$2/3(NO_2) + 1/3(BrO)$	38.0 - 42.3
SO_4^{2-}	$SO_2 + OH$	0 (OH)	-	0
	$SO_3^{2-} + O_{3(aq)}$	37.3 – 42.3 (O _{3term})	$1/4(O_{3term})$	9.3 - 10.6
	$HSO_3 + H_2O_{2(aq)}$	1.6 (H ₂ O ₂)	$1/2(H_2O_2)$	0.8
	$SO_3^{2-} + O_2(cat. Fe,$	$-0.3(O_2)$	$1/4(O_2)$	-0.1
	Mn)			
	$SO_3^{2-} + HOX + H_2O$	37.3 – 42.3 (HOX)	-	0
55				

155

Previous isotopic studies have reported the $\Delta^{17}O(NO_3^-)$ at the coast of Antarctica (Dumont d'Urville (DDU), (Ishino et al., 2017; Savarino et al., 2007) and in the interior of

159 Antarctica (Erbland et al., 2013; Frey et al., 2009; McCabe et al., 2007; Savarino et al., 2016), generally finding a distinctive Δ^{17} O seasonal cycle that reflects the higher relative contribution of 160 O_3 oxidation and/or stratospheric input during the winter and increased $HO_x + RO_x$ oxidation 161 during the summer. Previous Antarctica $\delta^{15}N(NO_3)$ measurements indicate a distinctive 162 seasonal cycle driven by localized snowpack emissions during periods of sunlight (Erbland et al., 163 2013; Frey et al., 2009; Savarino et al., 2007). Work has also been reported for $\Delta^{17}O(SO_4^{2-})$ at 164 DDU (Ishino et al., 2017) and at Dome C (Hill-Falkenthal et al., 2013), which also find a general 165 seasonal cycle reflecting shifts in gas-phase to aqueous phase oxidation (Hill-Falkenthal et al., 166 2013). However, the oxidation dynamics involving NO_3^- and SO_4^{2-} over Antarctica, particularly 167 in the interior, are far from solved (Savarino et al., 2016; Hill-Falkenthal et al., 2013). 168 Additionally, $\Delta^{17}O(SO_4^{2-})$ from snow pit samples at the South Pole has recently been shown to 169 have large interannual variation related to El-Nino Southern Oscillations (ENSO) events 170 (Shaheen et al., 2013). To improve understanding of the dynamics associated with NO_3^- and 171 SO_4^{2-} aerosols in the interior of Antarctica, here we present concentration and $\delta^{15}N$, $\delta^{34}S$, $\delta^{18}O$ 172 and $\Delta^{17}O$ measurements of atmospheric NO₃⁻ (=particulate NO₃⁻ + HNO_{3(g)}) and total suspended 173 particulate $SO_4^{2-}(SO_4^{2-}(TSP))$ collected at the South Pole for approximately 10 months in 2002. 174 The dynamics of NO₃⁻ and SO₄²⁻(TSP) are assessed in terms of source changes (δ^{15} N and δ^{34} S) and 175 oxidation chemistry (Δ^{17} O & δ^{18} O). These data will be useful for understanding the seasonal 176 cycling of NO₃⁻ and SO₄²⁻(TSP) concentrations in the atmosphere at the South Pole, which has a 177 unique feature of the absence of diurnal solar radiation cycle, contrary to Dome C or coastal 178 Antarctic sites. 179

181 2 Materials and Methods

182

183 **2.1 South Pole Meteorology**

184 Antarctica has a unique climate and meteorology that has important implications for atmospheric chemistry as previously well-described (Davis et al., 2004; Helmig et al., 2007; 185 Hill-Falkenthal et al., 2013; Legrand et al., 2009; Stohl & Sodemann, 2010; Wendler & Kodama, 186 1984). The South Pole is on the continents' interior high-plateau at an elevation of 2,836 meters 187 above sea level that slopes downward towards its perimeter (Wendler & Kodama, 1984). There 188 are six months of continuous sunlight and six months without sunlight. This cycle in sunlight 189 can have a strong influence on chemistry driven by photolysis, in which these reactions shut 190 down completely during the polar winter and can play an important role on localized 191 192 concentrations of atmospheric oxidants that are often driven by photolysis reactions. Solar 193 radiation is similar during both spring and autumn; however, due to the build-up of photolabile molecules during the winter, solar radiation returning in the spring can create a different 194 195 chemical environment relative to autumn. In addition, greater amounts of UV radiation reach the troposphere during the spring due to the annual occurrence of stratospheric O_3 depletion during 196 the early spring. The 2002 O_3 hole was characteristically small relative to the previous six years 197 198 and split into two holes at the end of September due to the appearance of sudden stratospheric warming (Varotsos, 2002). According to the South Pole Station Meteorology Office 199 (http://amrc.ssec.wisc.edu/usap/southpole/), (1) South Pole surface temperatures have a typical 200 annual range between -76 °C and -18 °C with a mean annual temperature of -49.5 °C, (2) there 201 are strong surface inversions especially during the winter, (3) there is generally very little 202 203 precipitation in Antarctica's interior and the majority consists of ice crystals or diamond dust,

and (4) winds are generally light compared to the coastal regions of Antarctica, and the
 prevailing direction is from the north.

206

207 2.2 Aerosol Collection

Aerosols were collected on pre-cleaned 20.3×25.4 cm glass fiber filters fitted onto a 208 high-volume air sampler between January 26 to October 25 in 2002. The glass fiber filter is 209 assumed to collect total atmospheric nitrate (i.e. particulate nitrate $(p-NO_3)$ + nitric acid 210 (HNO₃)) as previously suggested (Frey et al., 2009). The sampler was located on the roof of the 211 Atmospheric Research Observatory (ARO), which is a clean sector roughly one km upwind of 212 the South Pole Observatory (SPO) (90.00° S, 59.00° E). Aerosols were collected for seven-day 213 periods with a flow rate of 1 m³/min at STP, yielding an average pumped air volume of 10,080 214 m³ per collected sample. Filters were kept frozen after collection and during shipment for 215 subsequent chemical and isotopic analysis. 216

217

218 **2.3** Anion concentrations and Isotopic Characterization

Water soluble aerosol compounds were extracted from the filters using 100 ml of 219 Millipore water and mechanical shaking for 10 minutes. Filter extracts were analyzed for NO_3^{-1} , 220 and SO₄²⁻ concentrations by ion chromatography (Dionex 2020i). Filter blanks never exceeded 221 2% of sample; thus, blank corrections were neglected. Based on the concentrations (2-20 ppm), 222 filters were combined by date to ensure at least 8 μ mol of NO₃⁻ and SO₄²⁻ available for isotopic 223 analysis. Adjustments for sea-salt sulfate were not made because of high sodium (Na⁺) filter 224 blanks. Previous aerosol SO_4^{2-} measurements in the interior of Antarctica (Dome C) have 225 indicated a relative minor contribution from sea-salt SO_4^{2-} of 3.9 to 6.7% during the summer 226

227	(January 15 to March 15, 2010) with an increasing relative contribution during winter of 31.7 to
228	33.6% (May 15 to Aug 15, 2010) (Hill-Falkenthal et al., 2013). We report SO_4^{2-} (sea-salt +
229	secondary) and the sea-salt SO_4^{2-} contribution is expected to be relatively small, particularly
230	during the summer, but note that sea-salt contribution is likely higher during winter.
231	
232	The O isotopes of NO_3^- and SO_4^{2-} were characterized using the thermal decomposition
233	method (Michalski et al., 2002; Savarino et al., 2001). Briefly, the filter extracts were pumped
234	on to a high capacity anion trapping column (Dionex AG15) that was attached to the injection
235	valve of a Dionex 2020i ion chromatography, equipped with anion analytical column (AS9-HC)
236	and a H^+ suppressor membrane column. A 260 mM sodium hydroxide eluent solution was
237	diluted 1:30 with Millipore water and flowed through the system at 0.8 ml/min. Peaks were
238	detected by an online conductivity detector. There three distinctive peaks eluted over a 30-
239	minute separation period; an organic/MSA/Cl ⁻ peak (14 min), NO ₃ ⁻ (23 min) and SO ₄ ²⁻ (30 min).
240	Thanks to the suppressor membrane column, the sample ions leave the system in their acid forms
241	while the hydroxide eluent is neutralized. The separated H_2SO_4 and HNO_3 were further
242	processed through an offline cation exchange membrane in Ag^+ form to generate $AgNO_3$ and
243	Ag_2SO_4 solutions (10 ml) that were then freeze dried. The silver salts were rehydrated with 70
244	μ L of Millipore water and pipetted into silver boats (AgNO ₃) or pre-combusted quartz boats
245	(Ag_2SO_4) , which were then freeze dried. The AgNO ₃ and Ag ₂ SO ₄ were then thermally
246	decomposed to evolve O_2 gas that was then analyzed by a dual inlet isotope ratio mass
247	spectrometer (Finnigan-Mat 251). Based on standards of the same size that were processed in a
248	similar manner, the precision of the analysis is $\pm 0.2\%$ for Δ^{17} O and $\pm 2.0\%$ for δ^{18} O.

250	During the thermal decomposition of the silver salts, liquid nitrogen traps cryogenically
251	removed the byproduct gases, $NO_{2(g)}$ and $SO_{2(g)}$ (Michalski et al., 2002; Savarino et al., 2001).
252	The $NO_{2(g)}$ aliquots were cryogenically transferred to evacuated glass tubes that were flame-
253	sealed and sent to the USGS stable isotope lab in Reston, Virginia for $\delta^{15}N$ analysis. Samples
254	included aliquots of $NO_{2(g)}$ produced from the nitrate isotopic reference material USGS35. At
255	USGS, sealed tubes containing $NO_{2(g)}$ were cracked under vacuum and transferred cryogenically
256	to quartz-glass tubes containing Cu, Cu ₂ O, and CaO, which were then flame sealed and baked at
257	$850^\circ C$ and cooled slowly to convert $NO_{2(g)}$ to N_2 and remove traces of H_2O and CO_2 (Bohlke et
258	al., 1993). The baked tubes were cracked under vacuum at the inlet to a Finnigan Delta series
259	IRMS and the N_2 was analyzed in dual-inlet mode against aliquots of N_2 prepared similarly from
260	nitrate isotopic reference materials RSIL-N55 (+3.6‰) and USGS32 (+180‰) with
261	reproducibility of ± 0.1 to 0.2‰. Overall uncertainties were larger because of potential
262	fractionation effects during NO ₂ production. We note that all SP samples had a near quantitative
263	conversion of NO_3^- to $NO_{2(g)}$ and thus are expected to result in minimal isotopic fractionation.
264	However, NO ₂ generated from USGS35 and analyzed a year later had poor conversion yield (16
265	to 29%) and yielded $\delta^{15}N = -14.0 \pm 0.1\%$, compared to the reported reference value of +2.7 ‰.
266	Thus, there could be uncertainty in our absolute reported $\delta^{15}N$ values, but we expect this to be
267	minimal due to the high conversion yields of our samples. Residual $SO_{2(g)}$ from thermal
268	decomposition was oxidized to SO_4^{2-} using a 30% hydrogen peroxide solution and precipitated
269	as BaSO ₄ . The BaSO ₄ was mixed with V_2O_5 and $\delta^{34}S$ was determined using TCEA interface and
270	CF-IRMS, with standard deviations of approximately $\pm 0.3\%$, based on replicate analysis of
271	international standard reference materials.

273 All isotopic compositions are reported relative to an internal reference material using 274 delta (δ) notation in units of per mil (∞) (Eq. 1):

275
$$\delta(\%_0) = 1000 \left(\frac{R_{samp}}{R_{ref}} - 1\right)$$
(Eq. 1)

where R refers to the ratio of the heavy to the light isotope (i.e. ${}^{15}N/{}^{14}N$, ${}^{34}S/{}^{32}S$, ${}^{17}O/{}^{16}O$, and ${}^{18}O/{}^{16}O$) for the sample or reference, respectively. Atmospheric nitrogen (N₂), Vienna Cañon Diablo troilite (VCDT), and Vienna Standard Mean Ocean Water (VSMOW) are the established international delta-scale references for N, S, and O, respectively. Oxygen mass-independence ($\Delta^{17}O$) was quantified using the linear definition with a mass-dependent coefficient of 0.52, which is approximately representative of O mass-dependent coefficients expected and observed

282

283

in nature (Eq. 2):

 $\Delta^{17}O = \delta^{17}O - 0.52g\delta^{18}O$ (Eq. 2)

We note that the exact O mass-dependent coefficient will depend on specific equilibrium or kinetic processes, which will have different $\ln(1 + \delta^{17}O)$ versus $\ln(1 + \delta^{18}O)$ relationships with slopes between 0.5 and 0.531 (Young et al., 2002). However, a co-efficient of 0.52 was chosen to be consistent with similar previously published works (Alexander et al., 2004; Michalski et al., 2003; Morin et al., 2007; Savarino et al., 2007) and because it represents a reasonable average of O mass-dependent coefficients expected and observed in nature (Barkan & Luz, 2003; Kaiser et al., 2004; Weston Jr, 2006).

291

292 2.4 Complementary Analysis

Air-mass back trajectories arriving at the South Pole were analyzed using NOAA's

HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model (Stein et al., 2015).

Confidential manuscript submitted to Journal of Geophysical Research: Atmospheres

295	The model was initiated using the reanalysis meteorology in a regular $2.5^{\circ} \times 2.5^{\circ}$ longitude-
296	latitude grid. Seven-day backward trajectories were computed for air masses arriving at the
297	South Pole at an altitude of 3,000 m above sea-level every 5 days for the entire sampling period
298	(January 26 to October 25 in 2002). Ancillary data including temperature, relative humidity,
299	solar irradiance, and [O ₃] data for 2002 were obtained from the South Pole Observatory (NOAA)
300	(https://www.esrl.noaa.gov/gmd/dv/data/index.php?site=SPO) and used for statistical analysis.

301

302 **3 Results**

303 **3.1 Concentrations**

Weekly measured $[NO_3^-]$ and $[SO_4^{2^-}]_{(TSP)}$ are displayed in Figs. 1 and 2, respectively. 304 Overall, both $[NO_3^-]$ and $[SO_4^{2-}]_{(TSP)}$ were quite variable ranging from 3.6 to 87.2 ng/m³ and 6.5 305 to 266.3 ng/m^3 , respectively. Linear regression correlations between measured concentrations 306 and reported ancillary data (averaged over one-week aerosol collection periods) are reported 307 separately for $[NO_3^-]$ and $[SO_4^{2^-}]_{(TSP)}$ as correlation matrices in the Supporting Information 308 (Table S1 and S2). Overall, strong correlations are found between $[NO_3]$ and solar irradiance 309 $(R^2 = 0.72)$, while temperature is found to strongly correlate with $[SO_4^{2-}]_{(TSP)}$ ($R^2 = 0.67$) (Table 310 S1 and S2). Temporal analyses of $[NO_3^-]$ and $[SO_4^{2-}]_{(TSP)}$ indicate somewhat similar seasonal 311 cycles, in which concentrations are generally highest during the summer and lowest during 312 winter (Fig. 1 and 2). However, because $[NO_3^-]$ and $[SO_4^{2-}]_{(TSP)}$ were not strongly correlated (\mathbb{R}^2 313 314 = 0.29), we will present their results separately. Seven-day back trajectory analysis indicates that air masses tend to derive over the interior of Antarctica (Fig. 3). Slight seasonal variations 315 are observed in which autumn (April to July) and winter (July to October) seven-day back 316 317 trajectories indicate that some air masses may have traveled over the northern coastal regions of

Antarctica before arriving at SPO, while air masses in summer (Jan to April) and spring (October to sampling end (October 25, 2002)) circulate entirely over the interior of Antarctica (Fig. 3).

320 <u>3.1.1 [NO₃⁻]</u>

At the beginning of the year (January to March), [NO₃] reached a maximum 321 concentration of 86.2 ng/m^3 in late January and then decreased rapidly to a background 322 concentration of approximately 5.0 ng/m^3 in early March. This strong decline in [NO₃⁻] overlaps 323 with decreasing local solar irradiance. The background $[NO_3]$ is maintained until early July, in 324 which $[NO_3]$ concentrations slowly increase until the end of the sampling period (October 25, 325 2002), reaching a value of approximately 16.5 ng/m^3 . With the onset of solar irradiation at the 326 start of October, NO₃⁻ is found to rapidly increase until sampling ended. The observed seasonal 327 pattern in [NO₃⁻] is similar to that previously reported for atmospheric NO₃⁻ collected at the 328 South Pole (McCabe et al., 2007), Dome C (Erbland et al., 2013; Frey et al., 2009), and along the 329 coast of Antarctica at Dumont d'Urville (DDU) (Ishino et al., 2017; Savarino et al., 2007). 330 331

332 $3.1.2 [SO_4^{2-}]_{(TSP)}$

At the beginning of the year, $[SO_4^{2^-}]_{(TSP)}$ was relatively elevated and reached a maximum of 211.4 ng/m³ during mid-February and then slowly decreased to a baseline value of approximately 15 ng/m³ in late April. This baseline $[SO_4^{2^-}]_{(TSP)}$ concentration was maintained until mid-September. Subsequently, $[SO_4^{2^-}]_{(TSP)}$ increased slightly and reached a value of 67.5 ng/m³ in the final sample (October 25, 2002). The observed $[SO_4^{2^-}]$ seasonal cycle is consistent with previously reported measurements at Dome C (Hill-Falkenthal et al., 2013) and at DDU (Ishino et al., 2017).

340

Fig. 1. Seasonal variation of atmospheric NO_3^- collected at the South Pole in 2002 including (a) 343 concentrations, (b) $\Delta^{17}O(NO_3^{-1})$, (c) $\delta^{18}O(NO_3^{-1})$, and (d) $\delta^{15}N(NO_3^{-1})$. A comparison between 344 previously reported NO₃⁻ concentration and Δ^{17} O from aerosols collected at the South Pole 345 (12/1/03 to 12/01/04) is shown in (a) and (b) (McCabe et al., 2007). Ranges of potential δ^{15} N 346 (NO_3) sources are indicated in (d) including stratospheric inputs (19±3‰; (Savarino et al., 347 2007), continental transported anthropogenic derived NO_3^- (2.5±12.5‰; Elliott et al., 2009; 348 Freyer, 1978; Heaton, 1987), and localized recycling of NO₃⁻ during periods of snowpack 349 photolysis (-32.7±8.4‰; (Berhanu et al., 2015; Berhanu et al., 2014; Savarino et al., 2007)). 350 Periods of constant sunlight and darkness at the South Pole are separated by the black dashed 351 lines. 352

354

Fig. 2. Seasonal variations of atmospheric $SO_4^{2-}(TSP)$ collected from aerosols in 2002 at the 356 South Pole including (a) concentrations, (b) $\Delta^{17}O(SO_4^{2-}(TSP))$, (c) $\delta^{18}O(SO_4^{2-}(TSP))$, and (d) 357 $\delta^{34}S(SO_4^{2-}(TSP))$. A comparison between previously reported $SO_4^{2-}(TSP)$ concentrations and 358 $\Delta^{17}O(SO_4^{2-}(TSP))$ from aerosols collected at Dome C (2010) is shown in (a) and (b) (Hill-359 Falkenthal et al., 2013). Ranges of typical δ^{34} S(SO₄²⁻) sources are indicated in (d) including sea-360 salt SO₄²⁻ (21±0.1‰; Rees et al., 1978), DMS (18.6±1.9‰; Patris et al., 2002; Sanusi et al., 361 2006)), long-range transport of continental SO_4^{2-} derived from anthropogenic emissions (3±3%) 362 (Jenkins & Bao, 2006; Li & Barrie, 1993; Norman et al., 1999), and stratospheric SO_4^{2-} input 363 (2.6±0.3%; (Castleman Jr et al., 1974)). Periods of constant sunlight and darkness at the South 364 Pole are separated by the black dashed lines. 365

- 367
- 368

Fig. 3. HYSPLIT seven-day back trajectory analysis at the South Pole Observatory (90.00° S,
59.00° E; indicated by star) for our sampling period of January 26 to October 25 in 2002 and
sorted by season.

373 **3.2 Isotopic Compositions**

374 3.2.1 Nitrate

- 375 Nine measurements of the isotopic composition of nitrate were made from the collected
- samples, which are summarized in Table 2 with average South Polar Observatory data
- 377 (https://www.esrl.noaa.gov/gmd/dv/data/index.php?site=SPO). The $\delta^{15}N(NO_3)$ ranged from -
- 60.8 to 10.5% (Fig. 1). The observed $\delta^{15}N(NO_3)$ range is consistent with previous $\delta^{15}N$
- measurements of NO₃⁻ collected in coastal Antarctica that ranged from -46.9 to 10.8‰ (Savarino
- et al., 2007) and at Dome C ranging from -35 to 13‰ (Frey et al., 2009), which generally falls

381 within the ranges of the expected NO_3^- sources that includes snowpack photolysis and localized recycling (-32.7±8.4‰) (Berhanu et al., 2015; Berhanu et al., 2014; Savarino et al., 2007), long 382 range transport of continental NO₃⁻ (2.5±12.5‰) (Elliott et al., 2009; Freyer, 1978; Heaton, 383 1987), and stratospheric inputs (estimated 19±3‰) (Savarino et al., 2007) (Fig. 1). Multi-384 factorial analysis indicates strong linear correlations between $\delta^{15}N$ and $[NO_3^-]$ (R² = 0.66) and 385 solar irradiance ($R^2 = 0.80$) (Table S1). These correlations likely explain the $\delta^{15}N(NO_3^-)$ seasonal 386 cycle observed in Fig. 1, in which lowest $\delta^{15}N(NO_3^{-})$ values are observed during periods of 387 sunlight indicating the importance of snowpack emissions and localized photochemical 388 recycling, while highest δ^{15} N(NO₃⁻) are found during periods of darkness (Fig. 1), which is 389 similar to the seasonal variability previously reported at the coast (Savarino et al., 2007) and in 390 the interior of Antarctica (Erbland et al., 2013; Frey et al., 2009). 391

392

Large variability was observed in $\delta^{18}O(NO_3^-)$ and $\Delta^{17}O(NO_3^-)$ that ranged from 47.0 to 393 95.1‰ and 21.8 to 41.1‰, respectively (Fig. 1). These ranges of values are consistent with 394 previously reported NO₃⁻ measurements in Antarctica that ranged from 60 to 111‰ and 20.0 to 395 43.1‰ for δ^{18} O and Δ^{17} O, respectively (Savarino et al., 2007). Multifactorial analysis indicates 396 strong relationships between δ^{18} O and temperature (R² = 0.82), relative humidity (R² = 0.90), 397 and O_3 mixing ratio ($R^2 = 0.72$) (Table S1). These relationships may be linked by the strong 398 $\delta^{18}O(NO_3)$ seasonal pattern, in which values were lowest during the summer and late spring and 399 highest during winter and early spring. Multifactorial analysis found $\Delta^{17}O(NO_3^{-})$ to only 400 strongly correlate with O₃ mixing ratio ($R^2 = 0.67$) (Table S1). A comparison between δ^{18} O and 401 Δ^{17} O indicates a slight linear correlation (R² = 0.46) (Table S1). This modest correlation might 402 403 indicate that the O isotopic composition of the collected nitrate was not a simple mixture

- 404 between two atmospheric oxidants as previously observed at DDU (Savarino et al., 2007) and
- Summit, Greenland (Fibiger et al., 2016) but instead may have been influenced by multiple
- atmospheric oxidants with distinct δ^{18} O and Δ^{17} O spaces that were incorporated into atmospheric
- NO_3^- through NO_x oxidation (Michalski et al., 2012) (Fig. 4).

Table 2. Summary of average [NO₃⁻] (at STP), temperature (Temp), relative humidity (RH), solar radiation, and

412 [O₃], for each collection period corresponding to NO₃⁻ isotopic composition measurement (see text for details).

413 Parentheses indicate $\pm 1\sigma$ for the indicated collection period.

				Solar				
Collection	Avg $[NO_3]$	Temp		Irradiance	[O ₃]			
Date	(ng/m^3)	(°C)*	RH(%)*	(W/m ²)*	(ppb _v)*	$\delta^{15}N(\pm 2\%)$	$\delta^{18}O(\pm 2\%)$	$\Delta^{17}O(\pm 0.2\%)$
01/26 - 02/09	76.1	-36.4 (2.0)	68.8 (4.0)	265.2 (81.1)	22.6 (3.6)	-46.3	51.0	27.9
02/09 - 02/16	53.0	-38.7 (2.4)	69.4 (5.4)	209.6 (34.9)	20.8 (1.1)	-53.0	53.5	28.0
02/16 - 02/23	24.0	-39.3 (6.2)	70.3 (5)	170.1 (21.3)	20.4 (1)	-49.4	47.0	26.9
02/23 - 03/29	12.3	-49.8 (6.2)	68.4 (5.1)	47.0 (42.9)	20.7 (1.4)	-5.9	58.7	21.8
03/29 - 05/31	5.5	-53.4 (9.3)	65.5 (6.0)	0(0)	25.9 (3.0)	-5.1	80.4	25.6
07/26 - 08/09	12.5	-57.0 (6.7)	64.4 (5.4)	0(0)	34.3 (1.0)	10.5	95.1	41.1
08/09 - 09/13	16.4	-56.8 (9.3)	65.5 (5.8)	0(0)	33.9 (1.6)	4.6	75.9	32.3
10/11 - 10/18	25.3	-55.1 (1.8)	64.2 (2.6)	126.6 (24.5)	30.8 (1.2)	-25.7	84.6	31.4
10/18 - 10/25	67.6	-49.2 (3.6)	68.5 (4.2)	148.3 (25.5)	31.4 (0.8)	-60.8	69.0	32.4

416 *data obtained from the South Pole Observatory (NOAA) (https://www.esrl.noaa.gov/gmd/dv/data/index.php?site=SPO)

Fig. 4. Relationship between δ^{18} O and Δ^{17} O for collected NO₃⁻ sorted by season displayed with the high δ^{18} O- Δ^{17} O end member, O_{3(term.)}/XO (δ^{18} O = 95 – 115‰ (Johnston & Thiemens, 1997) and Δ^{17} O = 39.3‰ (Vicars & Savarino, 2014) and its mixing relations with other important tropospheric O bearing atmospheric molecules including RO₂/HO₂ (δ^{18} O ~ 23.5‰ and Δ^{17} O ~ 0‰), H₂O (δ^{18} O = -40‰ and Δ^{17} O = 0‰, and OH (δ^{18} O = -80‰ and Δ^{17} O = 0‰) (Michalski et al., 2012).

429

430 **3.2.2 Sulfate**

431 Measured $\delta^{34}S(SO_4^{2-})_{(TSP)}$ was found to range from 11.9 to 21.2‰ (Table 3), which is a 432 similar range to recently reported $\delta^{34}S(SO_4^{2-})_{NSS}$ in the Southern Ocean of 6.0 to 19.0‰ (Li et 433 al., 2018). These ranges of values are near the $\delta^{34}S$ values of the presumed major SO_4^{2-} sources 434 including: dimethyl sulfide emissions = 18.6±1.9‰ (Patris et al., 2002; Sanusi et al., 2006), sea-435 salt $SO_4^{2-} = 21\pm0.1\%$ (Rees et al., 1978), continental $SO_4^{2-}(3\pm3\%)$ (Jenkins & Bao, 2006; Li & 436 Barrie, 1993; Norman et al., 1999), and stratospheric $SO_4^{2-} = 2.6\pm0.3\%$ (Castleman Jr et al., 437 1974). There is a strong $\delta^{34}S(SO_4^{2-})_{(TSP)}$ seasonal cycle, with highest values (17.7 to 21.2‰) 438 near the beginning of year between January and April. After reaching a peak value of 21.2‰ at 439 the end of March, $\delta^{34}S(SO_4^{2-})_{(TSP)}$ decreased to baseline value between 13 and 15‰ that 440 remained relatively constant with an average of $13.9 \pm 1.2\%$ (n = 8) until our SO_4^{2-} collection 441 period ended (mid-October).

442

Measured $\Delta^{17}O(SO_4^{2-})_{(TSP)}$ values had a narrow range from 0.8 to 1.8% (Table 3). Peaks 443 in $\Delta^{17}O(SO_4^{2-})_{(TSP)}$ occurred during sampling between March to May and August to mid-October 444 with average values of $1.4 \pm 0.2\%$ (n = 4) and $1.6 \pm 0.1\%$ (n = 3), respectively. Since these 445 values are greater than 1‰, contributions from O₃ aqueous phase oxidation pathway are 446 expected (Alexander et al., 2005) (Fig. 5). The observed $\Delta^{17}O(SO_4^{2-})_{(TSP)}$ profile is similar to 447 that previously observed at Dome C (Hill-Falkenthal et al., 2013) with corrections made to 448 account for sea-salt influence to be consistent with our data (Fig. 2). Measured $\delta^{18}O(SO_4^{2-})_{(TSP)}$ 449 ranged from -12.8 to 8.5% with a mass-weighted value of -7.3% (Table 3). Generally, 450 $\delta^{18}O(SO_4^{2-})_{(TSP)}$ was lowest during the polar summer and highest during polar winter (Fig. 2). 451 The relationship between $\delta^{18}O(SO_4^{2-})_{(TSP)}$ and $\Delta^{17}O(SO_4^{2-})_{(TSP)}$ is found to weakly correlate (R² = 452 0.11) (Fig. 5), which might reflect that $\delta^{18}O(SO_4^{2-})_{(TSP)}$ and $\Delta^{17}O(SO_4^{2-})_{(TSP)}$ was influenced by 453 mixing between SO₂ and several different atmospheric oxidations (e.g. O₃, O₂, H₂O₂) as well as a 454 mixture of primary (e.g. sea-salt) and secondary SO_4^{2-} with distinct $\delta^{18}O-\Delta^{17}O$ spaces, as 455 previously suggested from South Pole snow pit samples (Shaheen et al., 2013). Strong 456 correlations were observed between $\delta^{18}O(SO_4^{2-})_{(TSP)}$ and temperature (R² =0.59) and O₃ 457 concentration ($R^2 = 0.81$) recorded at the South Pole Observatory Station. These strong 458 correlations were not observed between $\Delta^{17}O(SO_4^{2-})_{(TSP)}$ and temperature (R² =0.15) and O₃ 459

460 concentration ($R^2 = 0.09$) (Table S2), which isn't surprising because aqueous-phase O₃ oxidation

Fig. 5. Relationship between δ^{18} O and Δ^{17} O for collected SO₄²⁻(TSP) (blue points) along with a linear regression of the data (red dashed line; R² = 0.11). The isotopic composition of sea-salt sulfate is indicated by the yellow star.

				1				
Collection Date	Avg [p-SO42-] (ng/m3)	Temp (°C)*	RH(%)*	Solar Irradiance (W/m ²)*	[O ₃] (ppb _v)*	δ ³⁴ S(±0.3‰)	δ ¹⁸ O(±2‰)	Δ ¹⁷ O(±0.2‰)
1/26 - 2/1	115.3	-35.2 (2.5)	71.9 (4.3)	301.1 (36.6)	22.6 (3.6)	18.3	-12.8	0.9
2/1 - 2/9	211.4	-37.2 (0.9)	66.7 (1.7)	273.7 (19.1)	22 (3.4)	17.7	-11.3	0.8
2/9 - 2/16	124.8	-38.7 (2.4)	69.4 (5.4)	209.6 (34.9)	20.8 (1.1)	18.0	-9.1	1.0
2/16 - 2/23	266.3	-39.3 (6.2)	70.3 (5)	170.1 (21.3)	20.4 (1)	18.6	-11.6	0.9
2/23 - 3/1	172.8	-46.2 (3.7)	68.4 (6.4)	106.7 (30)	20.5 (1.2)	18.3	-10.4	0.9
3/1 - 3/8	107.8	-47.4 (4.5)	69.8 (2.5)	82.9 (18.7)	19.8 (1.4)	18.9	-12.2	0.9
3/8 - 3/22	124.9	-49.3 (5.4)	69.5 (4.3)	24.9 (15.5)	21.4 (1.4)	18.8	-2.8	1.8
3/22 - 4/5	59.9	-52.9 (10)	65.8 (6.7)	1.5 (1.8)	22.6 (0.8)	21.2	-3.9	1.2
4/5 - 4/19	47.5	-50.1 (9)	66.6 (4.7)	0 (0)	24.1 (1)	18.2	-5.5	1.3
4/19 - 5/24	15.5	-57.9 (6)	63.3 (4.7)	0 (0)	27.9 (2.3)	17.4	-0.1	1.2
5/24 - 6/28	17.1	-59.4 (8.7)	64.1 (6)	0 (0)	32.3 (1.1)	13.5	2.7	1.0
6/28 - 7/19	13.0	-53.7 (8.8)	67 (7.7)	0 (0)	34.1 (0.7)	15.6	7.0	1.1
7/19 - 8/2	16.1	-56.5 (8.3)	64.9 (6.4)	0 (0)	34.4 (1.1)	13.3	5.0	1.2
8/2 - 8/23	12.5	-55.7 (10)	65.2 (6.1)	0 (0)	34.4 (1.3)	14.3	6.9	0.8
8/23 - 9/13	18.5	-57.8 (7.4)	65.2 (5)	0 (0)	33.4 (1.5)	12.7	7.6	1.1
9/13 - 9/20	67.1	-54.8 (7.6)	64.9 (3.6)	1.2(1)	32.4 (1)		1.5	1.4
9/20 - 10/4	27.9	-59.4 (5.5)	64.5 (4.9)	19.2 (15.8)	32.4 (1.6)	14.7	0.6	1.6
10/4 - 10/11	44.8	-48.4 (6.4)	68.9 (3.8)	62 (23.1)	33.4 (1.2)		8.5	1.6
0/11 - 10/18	54.9	-55.1 (1.8)	64.2 (2.6)	126.6 (24.5)	30.8 (1.2)	11.9	-3.2	1.7
10/18 - 10/25	70.5	-492(38)	685(42)	148 3 (25 5)	314(0.8)	15.4	-36	15

476 **Table 3.** Summary of average $[SO_4^{2-}]_{(TSP)}$, temperature (Temp), relative humidity (RH), solar radiation, and $[O_3]$ for 477 each collection period corresponding to $SO_4^{2-}_{(TSP)}$ isotopic composition measurement (see text for details). 478 Parentheses indicate $\pm 1\sigma$ for the indicated collection period.

480

481 *data obtained from the South Pole Observatory (NOAA)

482

483 **4 Discussion**

- 484 **4.1 NO₃ Seasonal Cycle**
- 485 **4.1.1** δ^{15} N(NO₃⁻)

```
486
```

The strong correlations between solar irradiance at the South Pole and $[NO_3^-]$ (R² = 0.72)

and $\delta^{15}N(NO_3)$ (R² = 0.80) indicate that localized snowpack photolysis played a key role in

488 controlling NO₃, which has important implications for the oxidative environment at the South

489 Pole (Chen et al., 2004). During periods of sunlight, $[NO_3^-]$ are found to be highest (45.0±23.6

490 ng/m^3 , n = 9) and $\delta^{15}N(NO_3^-)$ are found to be lowest (-47.0±11.7‰, n = 5) (Fig. 1), which is

491	consistent with other studies in Antarctica (Erbland et al., 2013; Frey et al., 2009; Ishino et al.,
492	2017; Savarino et al., 2007). The extremely low $\delta^{15}N(NO_3)$ found during sunlight periods at the
493	South Pole are typically not found in mid-latitudes, but only appears to occur in Antarctica, due
494	to the chemical and physical processes related to snowpack NO_3^- photolysis that has a large N
495	isotopic enrichment factor (ε) near -48‰ (Berhanu et al., 2015; Berhanu et al., 2014). This
496	favors the release of NO _x depleted in 15 N and can explain the extremely low δ^{15} N(NO ₃ ⁻) values
497	found during periods of sunlight. The exportation out of the continent ice sheet of this locally
498	produced nitrate with extremely low $\delta^{15}N(NO_3^-)$ values may explain the low $\delta^{15}N$ observed in the
499	Antarctic dry valley (Michalski et al., 2005).
500	During periods of darkness, $\delta^{15}N(NO_3^-)$ was found to increase to $1.0 \pm 6.8\%$ (n= 4),
501	reflecting contributions from another source of NO ₃ ⁻ with a higher δ^{15} N end-member. This
502	source is likely derived from an increasing importance of long-range transport of continental
503	NO ₃ ⁻ (Lee et al., 2014) and/or stratospheric NO ₃ ⁻ denitrification (Savarino et al., 2007) during
504	periods of darkness, with estimated $\delta^{15}N(NO_3^-)$ values of 2.5±12.5‰ (Elliott et al., 2009; Freyer,
505	1978; Heaton, 1987) and 19±3‰ (Savarino et al., 2007), respectively. Previous modeling work
506	of NO ₃ ⁻ over Antarctica has indicated a background level of NO ₃ ⁻ concentration is expected to
507	occur during May and July, consistent with our observations (Fig.1) (Lee et al., 2014). This
508	source of NO_3^- has been modeled to result from NO_x emissions from fossil fuel combustion, soil
509	emissions, and lightning originating from 25° to 65 °S that is transported to Antarctica as p-NO ₃ ⁻
510	and HNO ₃ resulting from its formation above continental source regions at an altitude of 5-11
511	km. (Lee et al., 2014). The slight peak in NO_3^- concentrations during August (Fig. 1) has also
512	been modeled and has been suggested to be the result of increasing importance of long-range
513	transported PAN and subsequent thermal decomposition and influences from stratospheric

514	denitrification (Lee et al., 2014). Both potential sources are consistent with our measured
515	$\delta^{15}N(NO_3^{-1})$ at the South Pole during winter. We note that while $\delta^{15}N$ values of PAN are
516	uncertain as the isotopic fractionation associated with PAN formation and decomposition are
517	unknown, these values are likely similar to the continental (or anthropogenic) NO_3^- of
518	2.5±12.5‰ (Elliott et al., 2009; Freyer, 1978; Heaton, 1987).
519	
520	4.1.2 Nitrate Δ^{17} O and δ^{18} O
521	The measured seasonal profile of $\Delta^{17}O(NO_3^-)$ matches closely with that previously
522	reported for NO ₃ ⁻ aerosols collected at the South Pole in 2003 to 2004 (McCabe et al., 2007), that
523	were suggested to reflect localized tropospheric oxidation chemistry during summer and a
524	combination of stratospheric denitrification and transported nitrate from the lower latitudes
525	during winter. Tropospheric oxidation can result in a $\Delta^{17}O(NO_3^-)$ in the range of 17.3 to 42.3‰
526	that reflects NO _x cycling with O ₃ , RO ₂ (or HO ₂), and reactive halogens (XO; most notably BrO)
527	and subsequent NO ₂ oxidation that may incorporate O atoms derived from O ₃ , H ₂ O, and/or OH
528	in the product NO ₃ ⁻ (Michalski et al., 2003; Morin et al., 2009) (Table 1). Elevated $\Delta^{17}O(NO_3^{-})$
529	values of stratospheric NO ₃ ⁻ are suspected to exist due to elevated stratospheric $\Delta^{17}O(O_3)$
530	signature (Janssen, 2005) relative to tropospheric O ₃ and/or elevated ClONO ₂ Δ^{17} O signatures
531	(McCabe et al., 2007) when $ClONO_2$ is the dominant source of stratospheric nitrate during the
532	polar vortex (R1-R2):

$$ClO + NO_2 \rightarrow ClONO_2$$
 (R1)

$$ClONO_2 + HCl \rightarrow HNO_3 + Cl_2$$
 (R2)

535 This framework is consistent with the measured $\Delta^{17}O(NO_3^-)$ that was within the general 536 expected troposphere $\Delta^{17}O(NO_3^-)$ range during summer, fall, and spring (21.8 to 32.4‰),

reflecting tropospheric nitrate formation contributions by $NO_2 + OH$ oxidation that tend to be 537 higher during periods of sunlight due to elevated OH concentrations. The high $\Delta^{17}O(NO_3^{-1})$ 538 observed during winter (41.1‰) likely reflects tropospheric nitrate formation dominated by NO₃ 539 + RH or halogen hydrolysis during the absence of sunlight and/or stratospheric denitrification. 540 541 To further constrain NO₃⁻ oxidation pathways, we considered $\delta^{18}O-\Delta^{17}O$ spaces for major 542 tropospheric O bearing molecules incorporated into NO_3^- (Fig. 3) (Fibiger et al., 2016; Michalski 543 et al., 2012). Here we assume that the O isotopic composition of NO₃⁻ is derived from a mixture 544 between a high δ^{18} O- Δ^{17} O end-member, O_{3(terminal)} and XO (δ^{18} O = 95-115‰ (Johnston & 545 Thiemens, 1997), $\Delta^{17}O = 39.3 \pm 2.0\%$; (Vicars & Savarino, 2014) and various low $\delta^{18}O - \Delta^{17}O$ end-546 members of O bearing molecules that are incorporated into NO₃⁻ including O₂/RO₂/HO₂ (δ^{18} O = 547 23.5% $\Delta^{17}O = 0\%$; (Kroopnick & Craig, 1972), H₂O ($\delta^{18}O = -27.5 \pm 20\%$, $\Delta^{17}O = 0\%$) and OH 548 $(\delta^{18}O = -70 \pm 20\%, \Delta^{17}O = 0)$. We note that OH may not attain complete isotopic equilibrium 549 with H₂O vapor in polar regions because of low water mixing ratios (Morin et al., 2007). If OH 550 maintains some of its O_3 character from $O(^1D)$, the mixing line between O_3 and OH remains the 551 same, with the O atom incorporated into NO_3^- shifted towards O_3 (Fibiger et al., 2016). We note 552 that due to the speculative nature of δ^{18} O values of some of the major O bearing molecules it can 553 be difficult to quantitatively use this to evaluate oxidation pathways, but it may provide some 554 additional qualitative constraints. 555

556

From $\delta^{18}O-\Delta^{17}O$ space, summer NO₃⁻ tended to be a mixture between O_{3(term)} and OH, indicating that NO₃⁻ is primary formed through the NO₂ + OH + M \rightarrow HNO₃ + M oxidation pathway. Elevated [OH] has been measured during the summer at the South Pole (as high as 2.0

 $\times 10^{6}$ molecules/cm³; (Mauldin et al., 2001)). If OH oxidation dominated summer NO₃⁻ 560 formation, then based on Δ^{17} O mass-balance, the starting NO₂ would have had a Δ^{17} O of 41.4‰, 561 indicating near complete NO_x cycling with O_3 . This is unrealistic due to the high HO_x 562 concentration in summer in the interior of Antarctica (Savarino et al., 2016), suggesting that an 563 unknown processes appears to play a significant role on the atmospheric NO_3^- budget during 564 summer at the South Pole, which has also been reported for Dome C (Savarino et al., 2016). Fall 565 NO_3^- tended to shift towards a mixture involving $O_{3(term)}$ and O_2 , which indicates incorporation of 566 O atoms derived from RO₂/HO₂ during NO_x photochemical cycling. This is consistent with 567 model results for the mid to high latitude of the Southern Hemisphere that predicts the dominant 568 post NO₂ oxidation pathways are likely a mixture between NO₂ + OH (dominant daytime) and 569 NO₃ + DMS (dominant nighttime) pathways (Alexander et al., 2009). Since the South Pole is 570 dark during this period, (i.e. absence of NO_x photochemical cycling), this suggests that some of 571 the NO_3^- during autumn is derived from long-range transport, which is consistent with the 572 $\delta^{15}N(NO_3)$ values measured during this collection period, conclusions drawn for NO₃ collected 573 during the fall at DDU (Savarino et al., 2007), and model expectations (Lee et al., 2014). Winter 574 δ^{18} O- Δ^{17} O space indicates that all O atoms derived from O_{3(term)}, suggesting that either high end-575 member δ^{18} O- Δ^{17} O tropospheric oxidation pathways (e.g. NO₃ + DMS or XONO₂ hydrolysis) 576 played an important role in NO₃⁻ formation or stratospheric denitrification. Finally, spring NO₃⁻ 577 tracked between $O_{3(term)}$ and RO_2 (or HO_2) and OH. We note that springtime mixing 578 relationships overlap with O3(term) and H2O mixing, but the N2O5 hydrolysis pathway is expected 579 to play a minor role over the South Pole during this period (Alexander et al., 2009). Since 580 snowpack photolysis returns during this period of constant sunlight, local oxidation is expected 581 to dominate the NO₃⁻ formed at the South Pole as supported by our $\delta^{15}N(NO_3)$ results. This 582

indicates that RO_2 (and/or HO_2) chemistry played an important role in NO_x photochemical

584 cycling leading to elevated localized [O₃] (Crawford et al., 2001). Post NO₂ oxidation is likely a

mixture between daytime pathways including $NO_2 + OH$ and $XONO_2$ hydrolysis (Alexander et

al., 2009). These two pathways have opposite δ^{18} O- Δ^{17} O mixing end-members (e.g. Fig 4) and

587 likely explains the observed mid-ranged NO₃⁻ δ^{18} O- Δ^{17} O values during spring.

588

589 **4.2** SO₄²⁻ Seasonal Cycle

590 **4.2.1** $\delta^{34}S(SO_4^{-2})_{(TSP)}$

Elevated $[SO_4^{2-}]_{(TSP)}$ (86.7 ± 73.7 ng/m³, n =17) occurred during summer and fall when 591 biogenic activity was highest (January – May) and supported by an average $\delta^{34}S(SO_4^{2-})_{(TSP)}$ of 592 18.5±1.0‰ (n=10), which is indistinguishable from DMS δ^{34} S value of 18.6±1.9‰ (Patris et al., 593 2002; Sanusi et al., 2006). Seven-day back mass-trajectories, indicate that air masses did not 594 originate over the coast of Antarctica. During winter (June-August), $[SO_4^{2-}]_{(TSP)}$ decreased to a 595 baseline level of approximately 15.3 ng/m³ with an average $\delta^{34}S(SO_4^{2-})_{(TSP)}$ of 14.2 ± 0.9‰ 596 (n=4). This decrease in $[SO_4^{2-}]_{(TSP)}$ is result of substantially less biogenic sulfur production 597 during this time-period in the Southern Hemisphere, which is supported by a decrease in 598 wintertime $\delta^{34}S(SO_4^{2-})_{(TSP)}$ indicating a relatively larger contribution from a non-biogenic 599 $\delta^{34}S(SO_4^{2-})$ source with a low end-member such as continental transport (including volcanic, 600 mineral, continental biogenic, and anthropogenic sources) (Patris et al., 2000) ($\delta^{34}S = 3\pm 3\%$; 601 (Jenkins & Bao, 2006; Li & Barrie, 1993; Norman et al., 1999), stratospheric intrusions ($\delta^{34}S =$ 602 2.6±0.3‰; (Castleman Jr et al., 1974), and localized passive volcanic emission of SO₂ (δ^{34} S = 0 603 to 5%; Liotta et al., 2012). Stratospheric inputs should result in a SO_4^{2-} with an elevated 604 $\Delta^{17}O(SO_4^{2-})$ due to oxidation reactions involving OH with a modeled $\Delta^{17}O$ between 2 and 45% 605

(Lyons, 2001), but an increase in $\Delta^{17}O(SO_4^{2-})$ was not observed during this sampling period 606 limiting this possibility. At the end of winter and early spring (September – October), $[SO_4^{2-}]$ 607]_(TSP) increased to 29.6 ± 19.0 ng/m³ (n = 7), and the mass-weighted $\delta^{34}S(SO_4^{2-})_{(TSP)}$ was 13.7 ± 608 1.4% (n = 4), which is lower that observed during winter. This again indicates the potential 609 importance of a SO_4^{2-} source with a low end-member $\delta^{34}S$ value. Previous work in the Southern 610 Ocean have indicated that spring-time SO_4^{2-} (NSS) tends to be dominated by DMS emissions (Li et 611 al., 2018). Thus, the increase in $SO_4^{2-}(TSP)$ during this period likely reflects the increased 612 emission of DMS but relatively low $\delta^{34}S(SO_4^{2-})_{(TSP)}$ during this period highlights the importance 613 of a non-biogenic $SO_{4^{-}(TSP)}^{2^{-}}$ source with a low-end member $\delta^{34}S(SO_{4^{-}}^{2^{-}})$ value. Overall, elevated 614 $\delta^{34}S(SO_4^{2-})_{(TSP)}$ throughout the year points suggests that biogenic emissions tend to dominate the 615 $SO_4^{2-}(TSP)$ source year-round at the South Pole assuming sea-salt SO_4^{2-} contribution is negligible. 616 A relatively higher contribution from a non-biogenic SO_4^{2-} source was observed during winter 617 and spring than observed during summer and fall based on $\delta^{34}S(SO_4^{2-})_{(TSP)}$. These findings are 618 consistent with previous work in the interior of Antarctica (Concordia) that have shown that 619 biogenic-derived SO_4^{2-} tends to dominate the nss- SO_4^{2-} budget year-round based off nss- SO_4^{2-} to 620 MSA measurements (Legrand et al., 2017). 621

622

623 **4.2.2** $\Delta^{17}O(SO_4^{2-})$ and $\delta^{18}O(SO_4^{2-})$

The measured $\Delta^{17}O(SO_4^{2-})_{(TSP)}$ values at the South Pole had a somewhat similar seasonal cycle as that reported for at Dome C (Fig. 2). Typically, lowest values are observed during summer ($\Delta^{17}O = 0.9\pm0.1\%$; n=5) and during winter ($1.0\pm0.2\%$; n=4) reflecting greater contributions from OH, H₂O₂, and HOBr (or HOCl) oxidation pathways (Fig. 5). Highest $\Delta^{17}O$ values occurred during autumn ($1.3\pm0.3\%$, n=6) and spring ($1.6\pm0.1\%$, n=5). Since these Δ^{17} O values greater than 1‰ indicate contributions from aqueous O₃ oxidation. The maximum contribution from S(IV) + O₃ oxidation for each SO₄²⁻ sample was calculated assuming no contribution from H₂O₂ (Eq. 3) (Chen et al., 2016):

632
$$f_{O_{3,max}} = \frac{\Delta^{17}O_{obs}(SO_4^{2-})}{\Delta^{17}O(SO_4^{2-})O_3}$$
(Eq. 3)

where $\Delta^{17}O(SO_4^{2-})_{O3} = 9.9\%$ (Table 1). In a similar manner, the minimum contribution from O₃ oxidation can be estimated assuming that H₂O₂ is the only other oxidation pathway (Eq. 4) (Chen et al., 2016):

636
$$f_{O_{3,min}} = \frac{\Delta^{17}O_{obs}(SO_4^{2-}) - \Delta^{17}O(SO_4^{2-})_{H_2O_2}}{\Delta^{17}O(SO_4^{2-})_{O_3} - \Delta^{17}O(SO_4^{2-})_{H_2O_2}}$$
(Eq. 4)

where $\Delta^{17}O(SO_4^{2-})_{H2O2} = 0.7\%$ (Table 1). This yields an estimated O₃ contribution range 637 (minimal to maximum) of 0.02–0.09, 0.06–0.13, 0.04–0.11, and 0.10-0.16 for summer, fall, 638 winter, and spring, respectively. This indicates that O_3 oxidation appears to have played the 639 largest role during spring and smallest role during summer (Fig. 5). A relatively minor 640 contribution from O_3 oxidaiton during summer is not surprising due to the strong role HO_x 641 chemistry and HOX plays during this period. We note that our estimate for f_{O3} for wintertime 642 $SO_4^{2-}(TSP)$ might be influenced by a possible higher contribution from primary $SO_4^{2-}(SS)$ during 643 this period, with a $\Delta^{17}O = 0\%$ that we cannot accurately correct for with our dataset. Assuming 644 a similar SO_4^{2-} (SS) contribution in our samples as found at Dome C during winter of ~0.33, our 645 estimated f_{O3} range would increase to 0.09-0.16. 646

647

The observed $\delta^{18}O(SO_4^{2-})_{(TSP)}$ also exhibited somewhat of a seasonal trend, with lowest values found during summer ($\delta^{18}O = -11.1 \pm 1.2\%$) and highest values found during winter ($\delta^{18}O = -6.6 \pm 1.0\%$) (Table 3). This apparent non-correlation may be driven by the isotopic equilibration between SO₂ and H₂O vapor (Holt et al., 1981) (R3):

652
$$S^{16}O^{16}O + H_2^{18}O \rightleftharpoons S^{16}O^{18}O + H_2^{16}O$$
 (R3)

This isotopic exchange reaction favors the partitioning of 18 O into SO₂ with an isotopic 653 enrichment factor that is strongly dependent on temperature, with increasing isotopic enrichment 654 factors for decreasing temperatures (Richet et al., 1977). This exchange reaction may explain the 655 moderate correlation observed between $\delta^{18}O(SO_4^{2-})_{(TSP)}$ and temperature (R² = 0.59) in which 656 $\delta^{18}O(SO_4^{2-})_{(TSP)}$ is found to increase with lower temperatures. Therefore, without having 657 knowledge of the precursor $\delta^{18}O(SO_2)$ it is currently nearly impossible to use $\delta^{18}O-\Delta^{17}O$ space of 658 $SO_4^{2-}(TSP)$ to quantitatively evaluate differences in reaction pathways. However, we note that due 659 to the potential of δ^{18} O- Δ^{17} O evaluation of SO₄²⁻, future work should aim to better quantify the 660 δ^{18} O- Δ^{17} O of formation pathways requiring a combination of experimental and modeling work. 661

662

663 **5 Conclusions**

Aerosol samples were collected over a ten-month period at the South Pole in 2002, and a 664 combination of concentration and isotopic analysis was used to evaluate the dynamics of NO_3^{-1} 665 and $SO_4^{2-}(TSP)$. NO₃⁻ variations were found to be driven by seasonal snowpack photolysis 666 resulting in elevated [NO₃] levels because of localized atmospheric recycling, producing 667 relatively low $\delta^{15}N(NO_3)$ values (-47.0±11.7‰, n = 5) during periods of sunlight at the South 668 Pole. The seasonal cycle of $\Delta^{17}O(NO_3^{-1})$ at the South Pole indicates tropospheric chemistry 669 dominates NO₃⁻ formation year-round with possible stratospheric denitrification contributions 670 during winter. Seasonal $[SO_4^{2-}]_{(TSP)}$ had some similarities with $[NO_3^{-}]$, with highest values 671 during summer and lowest values during winter. Summertime elevated [SO₄²⁻]_(TSP) appears to be 672 derived from transported biogenic sulfur emissions as evidenced by $\delta^{34}S(SO_4^{2-})_{(TSP)}$ of 673 18.5±1.0‰ (n=10) that is near the marine biogenic δ^{34} S value. The seasonal cycle of $\Delta^{17}O(SO_4^{2-1})$ 674

- $(1.57)_{(TSP)}$ exhibited nearly uniform values year-round (0.8 to 1.8%) with slight seasonal variation that
- indicated highest aqueous O_3 oxidation contributions during fall and autumn.
- 677

678	Acknowledgments, Samples, and Data
679	W.W.W. acknowledges support from an Atmospheric and Geospace Sciences National Science
680	Foundation Postdoctoral Fellow (Grant # 1624618). We acknowledge support from the Purdue
681	Center for Climate Change. The authors declare no financial conflicts of interest. We thank the
682	South Pole Observatory and the National Oceanic and Atmospheric Administration Earth System
683	Research Laboratory Global Monitoring Division for access to ancillary meteorology and ozone
684	data. Data presented in this manuscript are available within the text (Tables 2 & 3) and in the
685	Supporting Information.

687 **References**

Alexander, B., Thiemens, M. H., Farquhar, J., Kaufman, A. J., Savarino, J., & Delmas, R. J. (2003). East
 Antarctic ice core sulfur isotope measurements over a complete glacial-interglacial cycle. *Journal*

690 of Geophysical Research: Atmospheres, 108(D24).

- Alexander, B., Savarino, J., Kreutz, K. J., & Thiemens, M. H. (2004). Impact of preindustrial biomass burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen. *Journal of Geophysical Research: Atmospheres*, 109(D8).
- Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., et al. (2005). Sulfate
 formation in sea-salt aerosols: Constraints from oxygen isotopes. *Journal of Geophysical*
- 696 *Research: Atmospheres*, *110*(D10).

697	Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., & Kunasek, S. A. (2009).
698	Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen
699	isotopic composition (Δ^{17} O) of atmospheric nitrate. <i>Atmos. Chem. Phys.</i> , 9(14), 5043–5056.
700	Arimoto, R., Nottingham, A. S., Webb, J., Schloesslin, C. A., & Davis, D. D. (2001). Non-sea salt sulfate
701	and other aerosol constituents at the South Pole during ISCAT. Geophysical Research Letters,
702	28(19), 3645–3648.
703	Augustin, L., Barbante, C., Barnes, P. R., Barnola, J. M., Bigler, M., Castellano, E., et al. (2004). Eight
704	glacial cycles from an Antarctic ice core. Nature, 429, 623-628.
705	Barkan, E., & Luz, B. (2003). High-precision measurements of 170/160 and 180/160 of O2 and O2/Ar
706	ratio in air. Rapid Communications in Mass Spectrometry, 17(24), 2809–2814.
707	https://doi.org/10.1002/rcm.1267
708	Barkan, E., & Luz, B. (2005). High precision measurements of ${}^{17}\text{O}/{}^{16}\text{O}$ and ${}^{18}\text{O}/{}^{16}\text{O}$ ratios in H ₂ O. <i>Rapid</i>
709	Communications in Mass Spectrometry, 19(24), 3737–3742.
710	Barnola, JM., Raynaud, D., Korotkevich, Y. S., & Lorius, C. (1987). Vostok ice core provides 160,000-
711	year record of atmospheric CO ₂ . <i>Nature</i> , <i>329</i> (6138), 408.
712	Berhanu, T. A., Meusinger, C., Erbland, J., Jost, R., Bhattacharya, S. K., Johnson, M. S., & Savarino, J.
713	(2014). Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and
714	wavelength dependence. The Journal of Chemical Physics, 140(24), 244306.
715	Berhanu, T. A., Savarino, J., Erbland, J., Vicars, W. C., Preunkert, S., Martins, J. F., & Johnson, M. S.
716	(2015). Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica.
717	Atmospheric Chemistry and Physics, 15(19), 11243–11256.
718	Bohlke, J. K., Gwinn, C. J., & Coplen, T. B. (1993). New reference materials for nitrogen-isotope-ratio
719	measurements. Geostandards Newsletter, 17(1), 159-164.
720	Castleman Jr, A. W., Munkelwitz, H. R., & Manowitz, B. (1974). Isotopic studies of the sulfur
721	component of the stratospheric aerosol layer. Tellus, 26(1-2), 222-234.

- 722 Chen, G., Davis, D., Crawford, J., Hutterli, L. M., Huey, L. G., Slusher, D., et al. (2004). A reassessment
- of HO_x South Pole chemistry based on observations recorded during ISCAT 2000. *Atmospheric Environment*, 38(32), 5451–5461.
- Chen, Q., Geng, L., Schmidt, J. A., Xie, Z., Kang, H., Dachs, J., et al. (2016). Isotopic constraints on the
 role of hypohalous acids in sulfate aerosol formation in the remote marine boundary layer.
- 727 Atmospheric Chemistry and Physics, 16(17), 11433–11450.
- Craig, H., Chou, C. C., Welhan, J. A., Stevens, C. M., & Engelkemeir, A. (1988). The Isotopic
 Composition of Methane in Polar Ice Cores. *Science*, *242*(4885), 1535.
- 730 Crawford, J. H., Davis, D. D., Chen, G., Buhr, M., Oltmans, S., Weller, R., et al. (2001). Evidence for

photochemical production of ozone at the South Pole surface. *Geophysical Research Letters*,
28(19), 3641–3644.

- Davis, D., Chen, G., Buhr, M., Crawford, J., Lenschow, D., Lefer, B., et al. (2004). South Pole NO_x
 Chemistry: an assessment of factors controlling variability and absolute levels. *Atmospheric Environment*, 38(32), 5375–5388.
- Delmas, R. J. (2013). *Ice core studies of global biogeochemical cycles* (Vol. 30). Springer Science &
 Business Media.
- Dominguez, G., Jackson, T., Brothers, L., Barnett, B., Nguyen, B., & Thiemens, M. H. (2008). Discovery
 and measurement of an isotopically distinct source of sulfate in Earth's atmosphere. *Proceedings* of the National Academy of Sciences, 105(35), 12769–12773.
- Elliott, E. M., Kendall, C., Boyer, E. W., Burns, D. A., Lear, G. G., Golden, H. E., et al. (2009). Dual
- nitrate isotopes in dry deposition: Utility for partitioning NOx source contributions to landscape
 nitrogen deposition. *Journal of Geophysical Research. Biogeosciences*, *114*(4).
- Erbland, J., Vicars, W. C., Savarino, J., Morin, S., Frey, M. M., Frosini, D., et al. (2013). Air-snow
- transfer of nitrate on the East Antarctic Plateau Part 1: Isotopic evidence for a photolytically
- driven dynamic equilibrium in summer. *Atmos. Chem. Phys.*, *13*(13), 6403–6419.

747	Fibiger, D. L., Dibb Jack E., Chen Dexian, Thomas Jennie L., Burkhart John F., Huey L. Gregory, &
748	Hastings Meredith G. (2016). Analysis of nitrate in the snow and atmosphere at Summit,
749	Greenland: Chemistry and transport. Journal of Geophysical Research: Atmospheres, 121(9),
750	5010–5030.
751	Fogelman, K. D., Walker, D. M., & Margerum, D. W. (1989). Nonmetal redox kinetics: hypochlorite and
752	hypochlorous acid reactions with sulfite. Inorganic Chemistry, 28(6), 986-993.
753	Frey, M. M., Savarino, J., Morin, S., Erbland, J., & Martins, J. M. F. (2009). Photolysis imprint in the
754	nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for
755	reactive nitrogen cycling. Atmospheric Chemistry and Physics, 9(22), 8681-8696.
756	Freyer, H. D. (1978). Seasonal trends of NH_4^+ and NO_3^- nitrogen isotope composition in rain collected at
757	Jülich, Germany. <i>Tellus</i> , <i>30</i> (1), 83–92.
758	Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U., & Stauffer, B. (1986). Ice core record of the
759	13C/12C ratio of atmospheric CO ₂ in the past two centuries. <i>Nature</i> , $324(6094)$, 237–238.
760	Hastings, M. G., Jarvis, J. C., & Steig, E. J. (2009). Anthropogenic Impacts on Nitrogen Isotopes of Ice-
761	Core Nitrate. Science, 324(5932), 1288–1288.
762	Hauglustaine, D. A., Balkanski, Y., & Schulz, M. (2014). A global model simulation of present and future
763	nitrate aerosols and their direct radiative forcing of climate. Atmospheric Chemistry & Physics,
764	14(5).
765	Haywood, J., & Boucher, O. (2000). Estimates of the direct and indirect radiative forcing due to
766	tropospheric aerosols: A review. Reviews of Geophysics, 38(4), 513-543.
767	Heaton, T. H. E. (1987). 15N14N ratios of nitrate and ammonium in rain at Pretoria, South Africa.
768	Atmospheric Environment (1967), 21(4), 843–852.
769	Heaton, T. H. E. (1990). $^{15}N/^{14}N$ ratios of NO _x from vehicle engines and coal-fired power stations. <i>Tellus</i>
770	<i>B</i> , <i>42</i> (3), 304–307.
771	Helmig, D., Oltmans, S. J., Carlson, D., Lamarque, JF., Jones, A., Labuschagne, C., et al. (2007). A
772	review of surface ozone in the polar regions. Atmospheric Environment, 41(24), 5138–5161.

773	Hill-Falkenthal, J., Priyadarshi, A., Savarino, J., & Thiemens, M. (2013). Seasonal variations in ³⁵ S and
774	Δ^{17} O of sulfate aerosols on the Antarctic plateau. <i>Journal of Geophysical Research: Atmospheres</i> ,
775	118(16), 9444–9455.
776	Holt, B. D., Kumar, R., & Cunningham, P. T. (1981). Oxygen-18 study of the aqueous-phase oxidation of
777	sulfur dioxide. Atmospheric Environment (1967), 15(4), 557-566.
778	Ishino, S., Hattori, S., Savarino, J., Jourdain, B., Preunkert, S., Legrand, M., et al. (2017). Seasonal
779	variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at
780	Dumont d'Urville, coastal Antarctica. Atmos. Chem. Phys., 17(5), 3713-3727.
781	Janssen, C. (2005). Intramolecular isotope distribution in heavy ozone (¹⁶ O ¹⁸ O ¹⁶ O and ¹⁶ O ¹⁸ O).
782	Journal of Geophysical Research: Atmospheres (1984–2012), 110(D8).
783	Jenkins, K. A., & Bao, H. (2006). Multiple oxygen and sulfur isotope compositions of atmospheric sulfate
784	in Baton Rouge, LA, USA. Atmospheric Environment, 40(24), 4528–4537.
785	Johnston, J. C., & Thiemens, M. H. (1997). The isotopic composition of tropospheric ozone in three
786	environments. Journal of Geophysical Research: Atmospheres (1984–2012), 102(D21), 25395–
787	25404.
788	Kaiser, J., Röckmann, T., & Brenninkmeijer, C. A. (2004). Contribution of mass-dependent fractionation
789	to the oxygen isotope anomaly of atmospheric nitrous oxide. Journal of Geophysical Research:
790	Atmospheres, 109(D3).
791	Kiehl, J. T., Schneider, T. L., Rasch, P. J., Barth, M. C., & Wong, J. (2000). Radiative forcing due to
792	sulfate aerosols from simulations with the National Center for Atmospheric Research Community
793	Climate Model, Version 3. Journal of Geophysical Research: Atmospheres, 105(D1), 1441–1457.
794	Krankowsky, D., Bartecki, F., Klees, G. G., Mauersberger, K., Schellenbach, K., & Stehr, J. (1995).
795	Measurement of heavy isotope enrichment in tropospheric ozone. Geophysical Research Letters,
796	22(13), 1713–1716.
797	Kroopnick, P., & Craig, H. (1972). Atmospheric oxygen: isotopic composition and solubility
798	fractionation. Science, 175(4017), 54–55.

- ⁷⁹⁹ Lee, C. C.-W., & Thiemens, M. H. (2001). The δ^{17} O and δ^{18} O measurements of atmospheric sulfate from ⁸⁰⁰ a coastal and high alpine region: A mass-independent isotopic anomaly. *Journal of Geophysical* ⁸⁰¹ *Research: Atmospheres*, *106*(D15), 17359–17373.
- Lee, H.-M., Henze, D. K., Alexander, B., & Murray, L. T. (2014). Investigating the sensitivity of surfacelevel nitrate seasonality in Antarctica to primary sources using a global model. *Atmospheric Environment*, 89, 757–767.
- Legrand, M., Preunkert, S., Weller, R., Zipf, L., Elsässer, C., Merchel, S., et al. (2017). Year-round record of bulk and size-segregated aerosol composition in central Antarctica (Concordia site) Part 2:
- Biogenic sulfur (sulfate and methanesulfonate) aerosol. *Atmospheric Chemistry and Physics*, *17*,
 14055–14073.
- Legrand, M. R., Lorius, C., Barkov, N. I., & Petrov, V. N. (1988). Vostok (Antarctica) ice core:
- atmospheric chemistry changes over the last climatic cycle (160,000 years). *Atmospheric Environment* (1967), 22(2), 317–331.
- Legrand M., Preunkert S., Jourdain B., Gallée H., Goutail F., Weller R., & Savarino J. (2009).
- 813 Year- round record of surface ozone at coastal (Dumont d'Urville) and inland (Concordia) sites
 814 in East Antarctica. *Journal of Geophysical Research: Atmospheres*, *114*(D20).
- Leuenberger, M., Siegenthaler, U., & Langway, C. (1992). Carbon isotope composition of atmospheric
- 816 CO2 during the last ice age from an Antarctic ice core. *Nature*, *357*(6378), 488.
- Li, J., Michalski, G., Davy, P., Harvey, M., Katzman, T., & Wilkins, B. (2018). Investigating Source
- 818 Contributions of Size-Aggregated Aerosols Collected in Southern Ocean and Baring Head, New
 819 Zealand Using Sulfur Isotopes. *Geophysical Research Letters*, 45(8), 3717–3727.
- Li, S.-M., & Barrie, L. A. (1993). Biogenic sulfur aerosol in the Arctic troposphere: 1. Contributions to
 total sulfate. *Journal of Geophysical Research: Atmospheres*, 98(D11), 20613–20622.
- Liu, Q., Schurter, L. M., Muller, C. E., Aloisio, S., Francisco, J. S., & Margerum, D. W. (2001). Kinetics
- and Mechanisms of Aqueous Ozone Reactions with Bromide, Sulfite, Hydrogen Sulfite, Iodide,
- and Nitrite Ions. *Inorganic Chemistry*, 40(17), 4436–4442.

- Lyons, J. R. (2001). Transfer of mass-independent fractionation in ozone to other oxygen-containing
 radicals in the atmosphere. *Geophysical Research Letters*, 28(17), 3231–3234.
- MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., Van Ommen, T., et al.
- (2006). Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. *Geophysical Research Letters*, *33*(14).
- Mauldin, R. L., Eisele, F. L., Tanner, D. J., Kosciuch, E., Shetter, R., Lefer, B., et al. (2001).
- Measurements of OH, H₂SO₄, and MSA at the South Pole during ISCAT. *Geophysical Research Letters*, 28(19), 3629–3632.
- McCabe, J. R., Thiemens, M. H., & Savarino, J. (2007). A record of ozone variability in South Pole
- Antarctic snow: Role of nitrate oxygen isotopes. *Journal of Geophysical Research: Atmospheres*, *112*(D12), D12303.
- Michalski, G., Savarino, J., Böhlke, J. K., & Thiemens, M. (2002). Determination of the Total Oxygen Isotopic Composition of Nitrate and the Calibration of a Δ^{17} O Nitrate Reference Material. *Analytical Chemistry*, 74(19), 4989–4993.
- Michalski, G., Scott, Z., Kabiling, M., & Thiemens, M. H. (2003). First measurements and modeling of Δ^{17} O in atmospheric nitrate. *Geophysical Research Letters*, *30*(16), 1870.
- Michalski, G., Bockheim, J. G., Kendall, C., & Thiemens, M. (2005). Isotopic composition of Antarctic
- 842 Dry Valley nitrate: Implications for NOy sources and cycling in Antarctica. *Geophysical*843 *Research Letters*, 32(13).
- Michalski, G., Bhattacharya, S. K., & Mase, D. F. (2012). Oxygen isotope dynamics of atmospheric
 nitrate and its precursor molecules. In *Handbook of environmental isotope geochemistry* (pp.
 613–635). Springer.
- Morin, S., Savarino, J., Bekki, S., Gong, S., & Bottenheim, J. W. (2007). Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ^{17} O) of atmospheric nitrate. *Atmospheric Chemistry and Physics*, 7(5), 1451–1469.

850	Morin, S., Savarino, J., Frey, M. M., Yan, N., Bekki, S., Bottenheim, J. W., & Martins, J. M. (2008).
851	Tracing the origin and fate of NOx in the Arctic atmosphere using stable isotopes in nitrate.
852	Science, 322(5902), 730–732.
853	Morin, S., Savarino, J., Frey, M. M., Domine, F., Jacobi, HW., Kaleschke, L., & Martins, J. M. F.
854	(2009). Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean
855	boundary layer from 65°S to 79°N. Journal of Geophysical Research: Atmospheres, 114(D5),
856	D05303.
857	Morin, S., Sander, R., & Savarino, J. (2011). Simulation of the diurnal variations of the oxygen isotope
858	anomaly (Δ 17 O) of reactive atmospheric species. <i>Atmospheric Chemistry and Physics</i> , 11(8),
859	3653–3671.
860	Nielsen, H. (1974). Isotopic composition of the major contributors to atmospheric sulfur. <i>Tellus</i> , 26(1–2),
861	213–221.
862	Norman, A. L., Barrie, L. A., Toom-Sauntry, D., Sirois, A., Krouse, H. R., Li, S. M., & Sharma, S.
863	(1999). Sources of aerosol sulphate at Alert: Apportionment using stable isotopes. Journal of
864	Geophysical Research: Atmospheres, 104(D9), 11619–11631.
865	Patris, N., Delmas, R. J., & Jouzel, J. (2000). Isotopic signatures of sulfur in shallow Antarctic ice cores.
866	Journal of Geophysical Research: Atmospheres, 105(D6), 7071–7078.
867	Patris, N., Delmas, R., Legrand, M., De Angelis, M., Ferron, F. A., Stiévenard, M., & Jouzel, J. (2002).
868	First sulfur isotope measurements in central Greenland ice cores along the preindustrial and
869	industrial periods. Journal of Geophysical Research: Atmospheres, 107(D11).
870	Preunkert, S., Jourdain, B., Legrand, M., Udisti, R., Becagli, S., & Cerri, O. (2008). Seasonality of sulfur
871	species (dimethyl sulfide, sulfate, and methanesulfonate) in Antarctica: Inland versus coastal
872	regions. Journal of Geophysical Research: Atmospheres, 113(D15).
873	Rees, C. E., Jenkins, W. J., & Monster, J. (1978). The sulphur isotopic composition of ocean water
874	sulphate. Geochimica et Cosmochimica Acta, 42(4), 377–381.

- Richet, P., Bottinga, Y., & Janoy, M. (1977). A review of hydrogen, carbon, nitrogen, oxygen, sulphur,
 and chlorine stable isotope enrichment among gaseous molecules. *Annual Review of Earth and Planetary Sciences*, *5*, 65–110.
- Röthlisberger, R., Hutterli, M. A., Sommer, S., Wolff, E. W., & Mulvaney, R. (2000). Factors controlling
 nitrate in ice cores: Evidence from the Dome C deep ice core. *Journal of Geophysical Research: Atmospheres*, *105*(D16), 20565–20572.
- Sanusi, A. A., Norman, A.-L., Burridge, C., Wadleigh, M., & Tang, W.-W. (2006). Determination of the
 S isotope composition of methanesulfonic acid. *Analytical Chemistry*, 78(14), 4964–4968.
- Savarino, J., & Thiemens, M. H. (1999). Analytical procedure to determine both δ^{18} O and δ^{17} O of H₂O₂ in natural water and first measurements. *Atmospheric Environment*, *33*(22), 3683–3690.
- 885 Savarino, J., Lee, C. C., & Thiemens, M. H. (2000). Laboratory oxygen isotopic study of sulfur (IV)
- oxidation: Origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and
 sulfate mineral deposits on Earth. *Journal of Geophysical Research: Atmospheres*, 105(D23),
 29079–29088.
- Savarino, J., Alexander, B., Darmohusodo, V., & Thiemens, M. H. (2001). Sulfur and oxygen isotope
 analysis of sulfate at micromole levels using a pyrolysis technique in a continuous flow system.
 Analytical Chemistry, *73*(18), 4457–4462.
- Savarino, J., Bekki, S., Cole-Dai, J., & Thiemens, M. H. (2003). Evidence from sulfate mass independent
 oxygen isotopic compositions of dramatic changes in atmospheric oxidation following massive
 volcanic eruptions. *Journal of Geophysical Research: Atmospheres, 108*(D21).
- Savarino, J., Kaiser, J., Morin, S., Sigman, D. M., & Thiemens, M. H. (2007). Nitrogen and oxygen
 isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica. *Atmospheric Chemistry and Physics*, 7(8), 1925–1945.
- 898 Savarino, J., Morin, S., Erbland, J., Grannec, F., Patey, M. D., Vicars, W., et al. (2013). Isotopic
- composition of atmospheric nitrate in a tropical marine boundary layer. *Proceedings of the*
- 900 *National Academy of Sciences*, *110*(44), 17668–17673.

- Savarino, J., Vicars, W. C., Legrand, M., Preunkert, S., Jourdain, B., Frey, M. M., et al. (2016). Oxygen
 isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE
- 903 campaign. Atmos. Chem. Phys., 16(4), 2659–2673.
- Shaheen, R., Abauanza, M., Jackson, T. L., McCabe, J., Savarino, J., & Thiemens, M. H. (2013). Tales of
 volcanoes and El-Niño southern oscillations with the oxygen isotope anomaly of sulfate aerosol.
- 906 *Proceedings of the National Academy of Sciences*, *110*(44), 17662–17667.
- Shaw, G., E. (2010). Antarctic aerosols: A review. *Reviews of Geophysics*, 26(1), 89–112.
- 908 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., & Ngan, F. (2015). NOAA's
- HYSPLIT atmospheric transport and dispersion modeling system. *Bulletin of the American Meteorological Society*, 96(12), 2059–2077.
- Stohl, A., & Sodemann, H. (2010). Characteristics of atmospheric transport into the Antarctic
 troposphere. *Journal of Geophysical Research: Atmospheres*, *115*(D2).
- Troy, R. C., & Margerum, D. W. (1991). Non-metal redox kinetics: Hypobromite and hypobromous acid
 reactions with iodide and with sulfite and the hydrolysis of bromosulfate. *Inorganic Chemistry*,
- 915 *30*(18), 3538–3543.
- Varotsos, C. (2002). The southern hemisphere ozone hole split in 2002. *Environmental Science and Pollution Research*, 9(6), 375–376.
- 918 Vicars, W. C., & Savarino, J. (2014). Quantitative constraints on the 17 O-excess (Δ^{17} O) signature of 919 surface ozone: Ambient measurements from 50° N to 50° S using the nitrite-coated filter 920 technique. *Geochimica et Cosmochimica Acta*, *135*, 270–287.
- Vicars, W. C., Bhattacharya, S. K., Erbland, J., & Savarino, J. (2012). Measurement of the 17O-excess
 (Δ17O) of tropospheric ozone using a nitrite-coated filter. *Rapid Communications in Mass Spectrometry*, 26(10), 1219–1231.
- 924 Wagenbach, D. (1996). Coastal Antarctica: Atmospheric Chemical Composition and Atmospheric
- 925 Transport. In *Chemical Exchange Between the Atmosphere and Polar Snow* (pp. 173–199).
- 926 Springer, Berlin, Heidelberg.

- Weller, R., Legrand, M., & Preunkert, S. (2018). Size distribution and ionic composition of marine
 summer aerosol at the continental Antarctic site Kohnen. *Atmospheric Chemistry and Physics*, *18*(4), 2413–2430.
- Wendler, G., & Kodama, Y. (1984). On the climate of Dome C, Antarctica, in relation to its geographical
 setting. *International Journal of Climatology*, 4(5), 495–508.
- Weston Jr, R. E. (2006). When is an isotope effect non-mass dependent? *Journal of Nuclear Science and Technology*, 43(4), 295–299.
- 934 Young, E. D., Galy, A., & Nagahara, H. (2002). Kinetic and equilibrium mass-dependent isotope
- 935 fractionation laws in nature and their geochemical and cosmochemical significance. *Geochimica*
- *et Cosmochimica Acta*, *66*(6), 1095–1104.