
HAL Id: hal-02350328
https://hal.science/hal-02350328v1

Submitted on 6 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Why Propositional Quantification Makes Modal Logics
on Trees Robustly Hard?

Bartosz Bednarczyk, Stéphane Demri

To cite this version:
Bartosz Bednarczyk, Stéphane Demri. Why Propositional Quantification Makes Modal Logics on Trees
Robustly Hard?. 34th Annual ACM/IEEE Symposium on Logic In Computer Science (LICS’19), Jun
2019, Vancouver, France. �10.1109/LICS.2019.8785656�. �hal-02350328�

https://hal.science/hal-02350328v1
https://hal.archives-ouvertes.fr

Why Propositional Quantification Makes Modal
Logics on Trees Robustly Hard?
Bartosz Bednarczyk

Institute of Computer Science
University of Wroc law, Poland

Stéphane Demri
LSV, CNRS, ENS Paris-Saclay

Université Paris-Saclay, France

Abstract—Adding propositional quantification to the
modal logics K, T or S4 is known to lead to undecid-
ability but CTL with propositional quantification under
the tree semantics (QCTLt) admits a non-elementary
Tower-complete satisfiability problem. We investigate
the complexity of strict fragments of QCTLt as well as
of the modal logic K with propositional quantification
under the tree semantics. More specifically, we show
that QCTLt restricted to the temporal operator EX is
already Tower-hard, which is unexpected as EX can
only enforce local properties. When QCTLt restricted to
EX is interpreted on N-bounded trees for some N ≥ 2,
we prove that the satisfiability problem is AExppol-
complete; AExppol-hardness is established by reduction
from a recently introduced tiling problem, instrumental
for studying the model-checking problem for interval
temporal logics. As consequences of our proof method,
we prove Tower-hardness of QCTLt restricted to EF or
to EXEF and of the well-known modal logics K, KD, GL,
S4, K4 and D4, with propositional quantification under
a semantics based on classes of trees.

I. Introduction

a) The flavours of propositional quantification in
modal and temporal logics: An early work on modal log-
ics with propositional quantification can be found in [1]
and the undecidability of the propositional modal logic
K (resp. T, K4 and S4) augmented with propositional
quantification is first established in [2] (by reduction from
the second-order arithmetic). A notable exception is the
decidability of S5 augmented with propositional quan-
tification [2], [3] but having strictly more than one S5
modality leads again to undecidability [4] (see also [5], [6]).

Many subsequent works have dealt with second-order
modal logics, see e.g. [7], [8], [9], but in the realm of
temporal logics, LTL with propositional quantification
(written QLTL) is introduced in Sistla’s PhD thesis [10]
(see also [11]) and non-elementarity of the satisfiability
problem is a consequence of [12]. By contrast, CTL with
propositional quantification (written QCTL) admits al-
ready an undecidable satisfiability problem by [2] but its
variant under the tree semantics (written QCTLt) admits a
Tower-complete satisfiability problem [13], [14] (Tower
is introduced in [15]). Having a tree semantics means that
the formulae of QCTLt are interpreted on computation
trees obtained from the unwinding of finite (total) Kripke

structures, which allows us to regain decidability (see a
similar approach in [16]). This is a major observation
from [13], partly motivated by the design of decision
procedures for ATL with strategy contexts [17]. The tree
semantics, as far as satisfiability is concerned, amounts to
consider Kripke structures that are finite-branching trees
in which all the maximal branches are infinite.

The modal logic K with propositional quantification
from [2] is interpreted under the structure semantics,
as classified in [13], but many variants of propositional
quantification exist in the literature (see e.g. [18], [19],
[20] and [21], [22] in the context of epistemic reasoning).
Sometimes, propositional quantification is syntactically
restricted in the temporal language, but its inclusion is
motivated by a gain of expressive power while preserving
the decidability of the reasoning tasks. By way of example,
in [23], an extension of the modal µ-calculus with partial
propositional quantification is introduced to perform con-
trol synthesis, whereas an extension for model-checking
computer systems is also presented in [24].

Interestingly enough, hybrid logics with the downarrow
operator ↓x, see e.g [25], [26], [27], [28], can be understood
as a form of propositional quantification since ↓x φ en-
forces that the propositional variable x holds true only
at the current world (before evaluating the formula φ). In
such logics, the companion formula @xψ allows to jump to
the unique world satisfying x; @x is a powerful operator
to navigate in the structure [27] (obviously, this is related
to the universal modality, see e.g. [29]).

b) Our motivations: As recalled above, the modal
logics K augmented with propositional quantification are
undecidable [2] and a fortiori, undecidability holds for
fragments of CTL with propositional quantification. Ac-
tually, these results hold under the structure semantics
but QCTLt (tree semantics) admits Tower-complete sat-
isfiability and model-checking problems [13]. As QCTLt
can express that every tree node has exactly one child,
Tower-hardness for the satisfiability problem for QCTLt,
is a corollary of the Tower-hardness of the satisfiability
problem for QLTL, see e.g. [12], [11], [30].

Given the central position of the modal logic K, surpris-
ingly, the complexity of the satisfiability problem for K
with propositional quantification under the tree semantics
has never been investigated (closely related to QCTLtX –978-1-7281-3608-0/19/$31.00 c©2019 IEEE

i.e. QCTLt restricted to EX– as EX corresponds to 3

in K but with total models). QCTLtX is a natural and
modest fragment of QCTLt and we aim at characterising
its complexity. Furthermore, the model-checking problem
for QCTLt is Tower-hard even with input Kripke struc-
tures having at most two successor worlds per world and
Tower-hardness of QLTL holds with linear structures of
length ω, see e.g. [11]. Thus, it is worth understanding
what happens with the satisfiability problem for QCTLtX
when the tree models are N -bounded (i.e., each node has
at most N children) for some fixed N ≥ 1.

c) Our contributions: Given QCTLt, the extension
of CTL with propositional quantification under the tree
semantics (i.e., the models are finite-branching trees where
all the maximal branches are infinite), let QCTLt≤N be
its variant in which the models are N -bounded, for
some N ≥ 1. We write QCTLtX and QCTLtX,≤N , to denote
respectively the restriction to operator EX, and QCTLtF
to denote the restriction of QCTLt to EF.
(?) We prove that for all N ≥ 2, the satisfiability prob-
lem for QCTLtX,≤N is AExppol-complete (Section III).
AExppol is the class of problems decidable with an
exponential-time alternating TM with a polynomial num-
ber of alternations. For AExppol-hardness, our reduction
is from the alternating multi-tiling problem introduced
in [31], [32] (used to prove that the model-checking prob-
lem for the interval temporal logic BĒ with regular ex-
pressions is AExppol-hard).
(??) More generally and despite the modest scope
of EX, the satisfiability problem for QCTLtX is shown
Tower-hard (Theorem 20), by a uniform reduction
from k-NExpTime-complete tiling problems (uniformity
is with respect to k). The corresponding upper bound is
known from [13] and it is worth noting that all the Tower
upper bound results presented in this paper are based
on translations into the satisfiability problem for QCTLt,
sometimes via intermediate decision problems, which even-
tually, uses Rabin’s Theorem [33] in some essential way.
The hardness proof is one of the main results of the
paper and amounts first to show that one can enforce
that a node has a number of children equal to some
tower of exponentials of height k with a formula of size
exponential in k. By contrast, checking the satisfiability
status of CTL∗ formulae, requires only to consider tree
models with branching degree bounded by the size of the
formula, see e.g. [34], [30]. Once this complex construction
enforcing a very high number of children is performed,
the reduction from the tiling problems can be done with
the help of other properties on the number of children.
Hence, even though QCTLX under the structure semantics
is undecidable [2] and the variant of QCTLtX under the
tree semantics (QCTLt) is decidable by [13], the problem
admits a high complexity despite the local range of EX.
(? ? ?) By adapting our proof method, we show that
QCTLtF and QCTLtXF (variant of QCTLtF with the unique
operator EXEF) are Tower-hard too (see Section V-A).

(? ? ??) As EX, EF and EXEF correspond to the modal-
ity 3 in several modal logics (e.g., EXEF corresponds
to 3 in transitive frames), we are able to establish Tower-
completeness for standard modal logics with propositional
quantification when interpreted on tree-like structures (see
Section V-B). For instance, as the provability logic GL
(after Gödel and Löb) is complete for the class of fi-
nite transitive trees, i.e., the accessibility relation is the
transitive closure of the child-relation in the tree, see
e.g. [35], we also investigate the satisfiability problem
under the finite tree semantics. We show that QCTLftX
and QCTLftXF (‘ft’ stands for ’finite tree semantics’) are
Tower-complete too. The satisfiability problem for K
(resp. GL) with propositional quantification under the
finite (resp. transitive) tree semantics is shown Tower-
complete. Tower-complete versions of S4, D4 and K4
with propositional quantification under adequate classes
of tree-like structures are also established in Section V-B.

II. Preliminaries
A. Kripke structures and computation trees

Below, we recall standard definitions about Kripke
structures. Let AP = {p, q, x, y, . . .} be a countably infinite
set of propositional variables. A Kripke structure K is a
triple 〈W,R, l〉, where W is a set of worlds, R ⊆ W ×W
is a total transition relation (for all w ∈ W , there is
w′ ∈ W such that (w,w′) ∈ R) and l : W → 2AP

is a labelling function. Totality is a standard property
for defining classes of models for temporal logics such
as CTL. In the sequel, by a ‘Kripke structure’ we mean
a structure according to the above definition, otherwise
when arbitrary (or finite, etc.) Kripke structures need
to be considered, we explicitly specify which classes of
structures we have in mind. For instance, a tree model
(resp. finite tree model) T = 〈V,E, l〉 is an arbitrary
Kripke structure where (V,E) is a (resp. finite) rooted tree.
Standard definitions about trees are omitted herein. Such
structures play an important role in the paper, as the tree
semantics involves specific tree models (those obtained as
computation trees of Kripke structures).

Given an arbitrary Kripke structure K = 〈W,R, l〉 and
w ∈ W , a finite path π from w is a finite sequence
w0, · · · , wn such that w0 = w and for all i ∈ [0, n − 1],
we have (wi, wi+1) ∈ R. An infinite path from w is an
infinite sequence w0, · · · , wn, · · · such that w0 = w and for
all i ≥ 0, we have (wi, wi+1) ∈ R. With ΠK,w we denote
the set of all finite paths starting from a world w ∈W on
a Kripke structure K. Given an arbitrary Kripke structure
K = 〈W,R, l〉 and w ∈ W , the computation tree unfolding
K from w is the tree model TK,w = 〈V,E, l′〉 such that (a)
V

def= ΠK,w, (b) πEπ′ def⇔ π = w0, . . . , wn, π′ is of the
form π,wn+1 for some wn+1 ∈W and (wn, wn+1) ∈ R, and
(c) for all π = w0, . . . , wn ∈ V , we have l′(π) def= l(wn).
So, when K is finite and total, TK,w is a finite-branching
tree model in which all the maximal branches are infinite

2

(Thus it is also a –total– Kripke structure). In the sequel,
unless otherwise stated, the tree semantics involves such
finite-branching trees with infinite maximal branches.

B. The logics QCTLs, QCTLt and QCTLft

The formulae of QCTL-like logics are defined from the
grammar below by extending the set of formulae from
CTL [36] with propositional quantification:

φ ::= p | ¬φ | φ ∧ φ | EXφ | E(φUφ) | A(φUφ) | ∃p φ,

where p ∈ AP. We use the standard abbreviations ∨,→
,↔,⊥,>, as well as other temporal operators like AX,
EF, AG: AX(φ) def= ¬EX(¬φ), EF(φ) def= E(>Uφ)
and AG(φ) def= ¬EF(¬φ). Similarly, the universal
quantifier ∀p φ is used as ¬∃p ¬φ. We denote by |φ| the
length of the formula φ measured in a standard way, i.e., as
the number of symbols used to write φ. The modal depth
of a formula φ, written md(φ) is defined as usually, as the
maximal number of nested temporal operators in φ.

The restriction of QCTL to the only temporal operator
EX (resp. EF) is written QCTLX (resp. QCTLF). AX
(resp. AG) is allowed in QCTLX (resp. in QCTLF) as
it is the dual operator of EX (resp. EF). The main
object of study in the paper is the logic QCTLX under
the tree semantics (below, written QCTLtX). Moreover, we
write QCTLXF to denote the restriction of QCTL to the
(combined) temporal operator EXEF. In the rest of the
paper, we refer to QCTL (or to some of its fragments) to
denote a set of formulae and the notation QCTL• with a
superscript ‘•’ refers to a logic based on QCTL (or on some
of its fragments) under a specific semantics and for which
the symbol ‘•’ is just a reminder of the semantics.

The propositional quantifiers can be interpreted in var-
ious ways, see e.g. [24], [37], [18], [23], [20]. Below, we
provide a satisfaction relation defined on arbitrary Kripke
structures, providing the so-called structure semantics for
QCTL (and leading to the logic QCTLs). However, the
version of QCTL with formulae interpreted on computation
trees obtained from the unfoldings of finite Kripke struc-
tures (i.e., in that case the satisfaction relation operates
on tree-like structures), is known as QCTL under the
tree semantics (written QCTLt) and is extensively studied
in [13]. To define formally the semantics for propositional
quantifiers, we introduce the notion of X-equivalence
where X is a set of propositional variables. We say that
two Kripke structures K = 〈W,R, l〉 and K′ = 〈W ′, R′, l′〉
are X-equivalent (written K ≈X K′), iff W = W ′, R = R′

and l(w) ∩X = l′(w) ∩X for all w ∈W .
Given an arbitrary Kripke structure K = 〈W,R, l〉

(possibly infinite, non-total, etc.), w ∈W and a formula φ
in QCTL, the satisfaction relation |= is defined as follows
(usual clauses for Boolean connectives are omitted):
K, w |= p iff p ∈ l(w)
K, w |= EXφ iff ∃ w′ s.t. (w,w′) ∈ R and K, w′ |= φ
K, w |= E(φUψ) iff ∃ path w0, . . . , wn s.t. w0 = w,

K, wn |= ψ and ∀ i ∈ [0, n− 1],
we have K, wi |= φ

K, w |= A(φUψ) iff ∀ infinite paths w0, . . . , wn, . . .
s.t. w0 = w,∃ j ≥ 0 s.t. K, wj |= ψ
and for all i ∈ [0, j − 1],K, wi |= φ

K, w |= ∃p φ iff ∃ K′ s.t. K ≈AP\{p} K′ & K′, w |= φ

Note that K, w |= EFφ iff there is w′ ∈ R∗(w) such that
K, w′ |= φ. Stating that there is a unique successor of w
satisfying x can be expressed by EX x ∧ ¬(∃ p EX(x ∧
p) ∧EX(x ∧ ¬p)), where p is distinct from x.

The satisfiability problem for the logic QCTLs (under
the structure semantics) takes as input a formula φ in
QCTL and asks whether there is a finite (total) Kripke
structure K and w such that K, w |= φ. The tree semantics
introduced in [13] is obtained by considering as only admis-
sible models the computation trees of finite (total) Kripke
structures. As noted in [13, Remark 5.7], an equivalent
formulation can be provided: the satisfiability problem for
the logic QCTLt (under the tree semantics) takes as input
a formula in QCTL and asks whether there is a finite-
branching tree model T in which all the maximal branches
are infinite such that T, ε |= φ and ε is the root of T. The
equivalence is mainly due to the fact that QCTLt can be
translated into MSO over tree models with arbitrary finite
branching (getting decidability by Rabin’s Theorem [33])
and by using the regular tree model property, see expla-
nations in [38, Section 6.3]. In the sequel, we operate with
the latter definition and we write SAT(L) to denote the
satisfiability problem for the logic L.

The distinction between the tree semantics and the
structure semantics is crucial and affects the computa-
tional properties of the satisfiability problems.

Proposition 1. (I) SAT(QCTLs) is undecidable [13, The-
orem 5.1]. (II) SAT(QCTLt) is decidable and Tower-
complete [13, Theorem 5.3]. (III) The satisfiability prob-
lem for QCTLt is Tower-hard even if restricted to ω-
sequences [12], [11].

All our Tower upper bound results are based on trans-
lations into QCTLt, sometimes via intermediate problems,
which eventually uses Rabin’s Theorem [33] in some es-
sential way. This is not surprising, as considering tree-like
models and propositional quantification naturally leads to
invoke the decidability of SωS [33] or its linear version
S1S [39]. Decidability of other logics with propositional
quantification is shown that way in [40], [41], [16].

To conclude this section, we write QCTLft to denote the
variant of QCTLt in which the tree models are assumed
to be finite. Of course, the computation trees of (total)
finite Kripke structures do not lead to finite trees, but
several standard modal logics such as K and GL, can be
characterised by classes of finite tree-like structures, see
Section V for further developments.

C. Complexity classes and tiling problems
In this section, we introduce tiling problems that are

mainly used in Sections III-C and IV-D. Let t be a
tetration function defined for integers n, k ≥ 0, inductively

3

as t(0, n)=n and t(k+1, n)=2t(k,n). Intuitively the function
t defines the tower of exponentials of height k, i.e., t(1, n) =
2n, t(2, n) = 22n , and so on. By k-NExpTime we denote
the class of all problems decidable with a nondeterministic
Turing machines of working time in O(t(k, p(n))) for some
polynomial p(·), on each input of length n. We define
Tower as the class of all problems of time complex-
ity bounded by a tower of exponentials, whose height
is an elementary function [15]. Thus, to show Tower-
hardness (using elementary reductions [15]), it is sufficient
to prove k-NExpTime-hardness for all k using uniform
reductions [15]. For proving hardness results, we make
extensive use of tiling problems, see e.g. [42].

The tiling problem Tilingk takes as inputs a triple
〈T ,H,V〉 and c ∈ T n for some n ≥ 1 such that T is
a finite set of tile types, H ⊆ T × T (resp. V ⊆ T × T)
represents the horizontal (resp. vertical) matching relation,
and c = t0, t1, . . . , tn−1 ∈ T n is the initial condition.
A solution for the instance 〈T ,H,V〉, c is a mapping
τ : [0, t(k, n)− 1]× [0, t(k, n)− 1]→ T such that
(init) For all i ∈ [0, n− 1], τ(0, i) = ti.
(hori) For all i, j ∈ [0, t(k, n)− 1], i < t(k, n)− 1 implies

(τ(i, j), τ(i+1, j)) ∈ H.
(verti) For all i, j ∈ [0, t(k, n)− 1], j < t(k, n)− 1 implies

(τ(i, j), τ(i, j+1)) ∈ V.
A mapping τ satisfying (hori) and (verti) is called a
tiling. So, the problem of checking whether an instance
of Tilingk has a solution (note that k does not appear in
the instance and it influences only the size of the grid) is
k-NExpTime-complete, see e.g. [42].

Given N ≥ 1, let us consider the satisfiability problem
for QCTLtX,≤N in which the structures are tree models
where all the maximal branches are infinite but each
node has at most N children (and at least one child).
To characterise the complexity of SAT(QCTLtX,≤N), we
consider the complexity class AExppol that consists of
all problems decidable by an alternating Turing machine
(ATM) [43] working in exponential-time and using only
polynomially many alternations [31], [32]. We stress here
that allowing unbounded number of alternations gives us
the class ExpSpace and classes similar to AExppol have
been considered in [44], typically STA(f(n),g(n),h(n)). The
complexity of several logical problems has been captured
by the class AExppol, see e.g. [45], [20], [31]. For prov-
ing AExppol-hardness, we use an elegant modification of
Tiling1, introduced in [31], [32]. The extension amounts
to consider a stack of n tilings, with a matching relation
between two consecutive tile types on the same position
of the grid, and quantifications over the tile types on the
first row (initial conditions). Details follow below.

The alternating multi-tiling problem AMTP takes as in-
puts an even number n (in unary), 〈T ,H,V〉 (as for
defining Tiling1), T0 ⊆ T , Tacc ⊆ T and Tmulti ⊆ T × T .
Given an initial condition c = (w1, . . . , wn) ∈ (T 2n

0)n,
a solution for c is a multi-tiling (τ1, . . . , τn) on the grid
[0, 2n − 1]× [0, 2n − 1] such that:

(m-init) For all α ∈ [1, n], for all j ∈ [0, 2n−1], τα(0, j) =
wα(j) (i.e., the first row of τα is wα).

(m-tiling) For α ∈ [1, n], τα satisfies (hori) and (verti).
(m-multi) For α ∈ [1, n − 1], for all i, j ∈ [0, 2n − 1],

(τα(i, j), τα+1(i, j)) ∈ Tmulti.
(m-accept) For some j ∈ [0, 2n− 1], τn(2n− 1, j) ∈ Tacc.
An instance I for AMTP made of n, 〈T ,H,V〉, T0, Tacc ⊆ T ,
Tmulti ⊆ T ×T is positive iff for all w1 ∈ T 2n

0 , there is w2 ∈
T 2n

0 such that · · · for all wn−1 ∈ T 2n

0 , there is wn ∈ T 2n

0
such that there is a solution (τ1, . . . , τn) for (w1, . . . , wn).
AMTP is shown AExppol-complete in [31], [32].

III. What happens when trees are bounded?
In this section, we study SAT(QCTLtX,≤N) with N ≥ 1.

A. A toolkit for introducing local nominals
Below, we introduce formulae to simulate partially the

use of nominals from hybrid modal logics [26]. A nominal
x is usually understood as a propositional variable true
at exactly one world of the model (a global property).
In QCTLtX, such a property cannot be enforced but it
can be done wih respect to nodes at a bounded depth
from the evaluation node, whence the adjective ‘local’ for
the nominals. The use of local nominals is essential in all
our hardness proofs, as it allows us to simulate first-order
quantification on a given set of nodes of bounded depth.

Given a tree model T and a node v, the variable x is
a nominal for the depth k ≥ 1 from v iff there is v′ ∈ V
such that T, v′ |= x, vEkv′, and for all v′′ 6= v′ such that
vEkv′′, we have T, v′′ 6|= x (Ek is the relation obtained by
composing k times E). The formula nom(x, k) defined as
EXkx∧¬∃ p (EXk(x∧p)∧EXk(x∧¬p)), states that x is
a nominal for the depth k (EXk denotes k copies of EX).

Lemma 2. x is a nominal for the depth k ≥ 1 from v iff
T, v |= nom(x, k).

Let us define @k
xφ as the formula EXk(x ∧ φ).

Lemma 3. Assuming that x is a nominal for the depth
k ≥ 0 from v such that vEkv′ and T, v′ |= x, we have
T, v |= @k

xφ iff T, v′ |= φ.

Given d ≥ 1 and variables x1, . . . , xd (that play the
role of nominals), we write @x1,...,xd

φ to denote the for-
mula @1

x1
@1
x2
· · ·@1

xd
φ (usually assuming that nom(x1, 1)

holds and for all i ∈ [2, d], @1
x1

@1
x2
· · ·@1

xi−1
nom(xi, 1)

holds true). We write @x̄φ instead of @x1,...,xd
φ when x̄

is understood as x1, . . . , xd. Given a node v0 such that
T, v0 |= nom(x1, 1)∧

∧
i∈[2,d] @1

x1
@1
x2
· · ·@1

xi−1
nom(xi, 1), we

write v1, . . . , vd to denote the unique sequence of nodes
such that for all i ∈ [1, d], we have vi−1Evi and T, vi |= xi.
Existence and unicity of the nodes v1, . . . , vd follow from
Lemma 2 and Lemma 3. Here is another useful lemma.

Lemma 4. Assume that T, v0 |= nom(x1, 1) ∧∧
i∈[2,d] @1

x1
@1
x2
· · ·@1

xi−1
nom(xi, 1) and v1, . . . , vd is asso-

ciated to x1, . . . xd. Then, T, v0 |= @x̄φ iff T, vd |= φ.

4

Let diff-nom(x1, . . . , xα, k) be
∧
i∈[1,α] nom(xi, k) ∧∧

i<j∈[1,α] ¬@k
xi
xj . It allows us to name α distinct nodes

at the depth k. Hence, the respective nodes interpreting
the nominals x1, . . . , xα are pairwise distinct.

Lemma 5. Given a tree model T and a node v, we have
T, v |= diff-nom(x1, . . . , xα, k) iff there are α distinct
nodes v1, . . . , vα such that for all i ∈ [1, α], xi is a nominal
for the depth k ≥ 1 from v.

The proof is by an easy verification and is a variant
of the proof of Lemma 2. Let us illustrate the use of
diff-nom(x1, . . . , xα, k) to specify that a node has at most
2n children, a property that can be stated in graded modal
logics [46], [47], [48]. Given a finite set X of propositional
variables, let us design a formula that expresses that
no pair of distinct children agree on every propositional
variable from X, as done in [14]. Here it is: Uni(X) def=
∀x, y diff-nom(x, y, 1) → ¬(

∧
p∈X @1

xp ↔ @1
yp). So,

3≤2n> from graded modal logics can be expressed with
∃ p0, . . . , pn−1 Uni({p0, . . . , pn−1}). In Section IV, we show
how to express succinctly hyperexponential bounds.

B. Beyond the ExpSpace upper bound: AExppol

Given φ in QCTLtX,≤N , it is clear that for a N -bounded
tree model T satisfying φ at its root node ε, it is irrelevant
what happens at nodes of depth strictly more than md(φ).
Hence, φ is satisfiable iff there is a finite N -bounded
tree structure T with all the branches of length exactly
md(φ) satisfying φ at its root ε (as the branches of
tree models are infinite, we need to consider branches
of length exactly md(φ)). So, T has at most |φ|N |φ|
nodes. To get an algorithm in NExpSpace, guess such an
exponential-size finite tree structure, and perform model-
checking on it with an algorithm inherently in PSpace
(as model-checking finite structures with MSO is PSpace-
complete [49], [50] and φ can be translated to MSO in the
standard way), which leads to NExpSpace. By Savitch’s
Theorem, we get the ExpSpace upper bound. This bound
is not completely satisfactory as it does not use much of
QCTLtX,≤N and Section III-C proves AExppol-hardness of
SAT(QCTLtX,≤N) as soon as N ≥ 2. So, the goal of this
section is to establish an AExppol upper bound. The tight
upper bound for SAT(QCTLtX,≤N) relies on the following
ingredients.
(i) Every formula φ of QCTLtX is logically equivalent to a

QCTLtX formula φ′ in prenex normal form (PNF) such
that φ′ can be computed in polynomial-time in |φ|.
Formulae in PNF are of the form Q1 p1 · · · Qβ pβ ψ
where {Q1, . . . ,Qβ} ⊆ {∃,∀} and ψ is quantifier-free.

(ii) Existence of an N -bounded tree model for φ is equiv-
alent to the existence of an N -bounded finite tree
structure such that all branches are of length md(φ).

(iii) Checking whether T, ε |= Q1 p1 · · · Qβ pβ ψ (in-
volving a N -bounded finite tree with branches of
length md(ψ) and the input formula in PNF) can

be done with an alternating Turing machine in time
O((|ψ|+ β)|T|) and with at most β alternations.

To establish (i), we cannot rely on [13, Prop. 3.1] as the
translation in [13, Prop. 3.1] involves temporal operators
beyond the language of QCTLtX. Fortunately, on tree mod-
els, EXQ p ψ ↔ Q p EXψ and (Q p ψ)∧ψ′ ↔ Q p (ψ∧ψ′)
are valid (Q ∈ {∃,∀}), assuming that p does not occur in
ψ′ (otherwise, rename the quantified variable).

Lemma 6. For every formula φ in QCTLtX, one can
compute in polynomial-time in |φ| a logically equivalent
formula in PNF Q1 p1 · · · Qβ pβ ψ with β ≤ |φ|.

So, the equivalent formula in PNF remains equivalent
in QCTLtX,≤N . Let us be a bit more precise about proving
(ii). Given a tree model T, we write T � n to denote its
subtree obtained by taking only nodes on the depth at
most n from the root. A completion of a finite tree T′ of
maximal depth n is an infinite tree T (finite-branching and
all the maximal branches are infinite) such that T′ = T�n.

Lemma 7. Let T, ε be a model for the QCTLtX–formula φ.
Then, any completion of T�md(φ), ε is also a model for φ.

The construction is standard and goes in exactly the
same way as in the literature, e.g. [35, Theo. 2.3]. Since
we are interested in the satisfiability problem over N -
bounded trees, the overall size of a structure T�md(φ) can
be bounded, typically |T�md(φ)| < |φ|N |φ|. Consequently:

Lemma 8. For any φ, φ is satisfiable for QCTLtX,≤N iff
φ is satisfiable in a finite N -bounded tree structure of size
bounded by |φ|N |φ| and each branch is of length md(φ).

In order to establish (iii), the details are omitted but
we apply the naive model-checking algorithm for MSO
with an ATM: existential (resp. universal) quantification
∃p (resp. ∀p) requires time O(|T|) and the machine en-
ters in a sequence of existential (resp. universal) states.
The quantifier-free formula ψ is evaluated as a first-order
formula by the standard translation for modal logic. Note
also that checking T′, v |= ψ can be done in polynomial
time in |ψ|+ |T′| (see [36], [51]). All is in place to establish
our improved upper bound.

Theorem 9. For N ≥ 1, SAT(QCTLtX,≤N) ∈ AExppol.

When N = 1, the upper bound can be improved as
the number of alternations is linear and the size of the
finite witness “tree” is polynomial in |φ|, and therefore the
whole procedure can be implemented with a polynomial-
time ATM (thus in PSpace [43]). The matching lower
bound is inherited from the problem QBF.

Corollary 10. SAT(QCTLtX,≤1) is PSpace-complete.

C. A reduction from AMTP (with fixed N ≥ 2)
In order to show that the problem is AExppol-hard, we

define below a reduction from AMTP presented in Section II
and introduced in [31]. To define a grid [0, 2n−1]× [0, 2n−

5

1], a major part in the solution of an instance of AMTP, we
specify a tree such that every node at distance less than
2n from the root ε has exactly two children (so there are
exactly 22n nodes at distance 2n from ε) and each node
at distance 2n encodes a position (H,V) in [0, 2n − 1] ×
[0, 2n− 1], thanks to the use of the propositional variables
hn−1, . . . , h0 and vn−1, . . . , v0. The ith bit of H (resp. V) is
taken care by the truth value of hi (resp. vi) and the least
significant bit is encoded by h0/v0. The formula grid(2n)
below is dedicated to encode this grid.

(
∧

i∈[0,2n−1]

AXi EX=2>) ∧ ∀x, y diff-nom(x, y, 2n)→

(
∨

j∈[0,n−1]

¬(@2n
x hj ↔ @2n

y hj) ∨ ¬(@2n
x vj ↔ @2n

y vj)),

where EX=2> = ∃ x1, x2 diff-nom(x1, x2, 1)∧AX(x1∨x2)
and states that there are exactly two children. Moreover,
AX0ψ

def= ψ and AXi+1ψ
def= AXAXiψ. As there are

exactly 22n descendants at distance 2n from the root, if
two such distinct descendants differ by at least one propo-
sitional variable from hn−1, . . . , h0, vn−1, . . . , v0 (exactly
what is expressed by the second conjunct of grid(2n)),
then the full grid [0, 2n − 1] × [0, 2n − 1] is encoded. The
correctness of grid(2n) obviously relies on Lemma 3.

Let 〈T ,H,V〉 be a triple from an instance of AMTP and
j ∈ N. Each tile type t ∈ T will be represented by a fresh
propositional variable tj . So, {tj : t ∈ T } (written below
T j) is understood as the jth copy of T . First, let us define
the formulae φjcov, φjH and φjV whose conjunction states
that every position of the grid has a unique tile type in T j ,
and the horizontal and vertical matching conditions are
satisfied. The formula φjcov expresses that every position
of the grid has a unique tile type:

φjcov
def= ∀ x nom(x, 2n)→ @2n

x (
∨
t∈T

tj ∧
∧

t6=t′∈T
¬(tj ∧ t′j)).

For the horizontal matching constraints, we need to ex-
press when two nodes at distance 2n interpreted respec-
tively by x and y and representing respectively the position
(H,V) and (H′,V′), satisfy V = V′ and H′ = H + 1. The
formula HN(x, y) (‘HN’ for ’horizontal neighbours’) does
the job using standard arithmetical reasoning on numbers
encoded in binary.∨
i∈[0,n−1]

(@2n
x ¬hi ∧@2n

y hi ∧ (
∧

α∈[0,i−1]

@2n
x hα ∧@2n

y ¬hα)∧

(
∧

α∈[i+1,n]

(@2n
x hα ↔ @2n

y hα))∧(
∧

α∈[0,n−1]

@2n
x vα ↔ @2n

y vα)).

φjH below encodes horizontal matching constraints:

∀ x, y (nom(x, 2n)∧nom(y, 2n)∧HN(x, y))→
∨

(t,t′)∈H

@2n
x tj ∧@2n

y t′j .

Let VN(x, y) be the formula obtained from HN(x, y) by
replacing each occurrence of hα (resp. vα) by vα (resp. hα).
The following formula φjV encodes the vertical matching

constraints: ∀ x, y (nom(x, 2n) ∧ nom(y, 2n) ∧VN(x, y))→∨
(t,t′)∈V @2n

x tj ∧ @2n
y t′j . To state that a root node

satisfying grid(2n) encodes a tiling with respect to T j , we
consider φjtiling

def= φjcov∧φ
j
H∧φ

j
V . To encode an instance of

AMTP, there are still properties that need to be expressed.
Let us assume that the root node ε satisfies grid(2n).
• Given T0 ⊆ T , for each position of the first row of the

grid, exactly one tile type in T j0 holds.

φjinit
def= ∀ x (nom(x, 2n) ∧@2n

x (
∧

α∈[0,n−1]

¬hα))→

@2n
x (

∨
t∈T0

tj ∧
∧

t 6=t′∈T0

¬(tj ∧ t′j)).

• Assuming that ε satisfies φjtiling ∧ φ
j′

init, for each posi-
tion of the first row of the grid, the tile type in T j0
coincides with the tile type in T j

′

0 (corresponding to
(m-init)):

φj,j
′

coinci
def= ∀ x (nom(x, 2n) ∧@2n

x (
∧

α∈[0,n−1]

¬hα))→

@2n
x (

∨
t∈T0

tj ∧ tj
′
).

• Given Tacc ⊆ T and assuming that ε satisfies φjtiling,
there is a position on the last row with a tile type in
Tacc (corresponding to (m-accept)):

φjacc
def= ∃ x nom(x, 2n) ∧@2n

x ((
∧

α∈[0,n−1]

hα) ∧
∨
t∈Tacc

tj).

• Given Tmulti ⊆ T ×T , and assuming ε satisfies φjtiling∧
φj+1

tiling, on every position, the tile type in T j and the
tile type in T j+1 are in the relation Tmulti (corre-
sponding to (m-multi)): φjmulti

def= ∀ x nom(x, 2n) →
@2n
x (

∨
(t,t′)∈Tmulti

tj ∧ t′j+1).
Given a set of propositional variables X = {r1, . . . , rβ},
we write ∃ X ψ to denote ∃ r1 ∃ r2 · · · ∃ rβ ψ. ∀ X ψ is
defined similarly. Given an instance I of of AMTP made of
n, 〈T ,H,V〉, T0, Tacc, Tmulti, let us define φI below:

grid(2n) ∧ ∀ T 1
0 ∃ T 2

0 ∀ T 3
0 · · · ∃ T n0

∧
j∈[1,n]

φjinit →

(∃ {tj : t ∈ T , j ∈ [n+ 1, 2n]} (
∧

j∈[n+1,2n]

φjtiling ∧ φ
j,(j−n)
coinci)∧

(
∧

j∈[n+1,2n−1]

φjmulti) ∧ φ
2n
acc).

Now, we can state the correctness of the reduction.

Lemma 11. I is a positive instance of AMTP iff φI is
satisfiable in QCTLtX,≤N .

The proof is a bit tedious but has no serious difficulties,
as all the conditions for being a solution of I can be easily
expressed, as soon as the grid [0, 2n − 1] × [0, 2n − 1] is
encoded. Moreover, the quantifications involved in AMTP
are straightforwardly taking care of in QCTLtX,≤N thanks
to the presence of propositional quantification. This leads
us to one of the main results of the paper.

Theorem 12. For all N ≥ 2, SAT(QCTLtX,≤N) is
AExppol-hard.

6

IV. Tower-hardness of SAT(QCTLtX)
We are back to the (general) problem SAT(QCTLtX).

A. Overview of the method
In order to show Tower-hardness, we shall reduce

the k-NExpTime-complete tiling problem Tilingk intro-
duced in Section II-C to SAT(QCTLtX) and this should be
done in a uniform way so that Tower-hardness can be
concluded (see the discussion in [15, Section 3.1.2]). Hence,
we need to encode concisely a grid t(k, n) × t(k, n) and
to do so, the main task consists in enforcing that a node
has t(k, n) children with a formula of elementary size in
k+n (bounded by a tower of exponentials of fixed height).
Actually, our method produces a formula of exponential
size in k+n. Of course, this is not the end of the story as
we need to encode the grid t(k, n)× t(k, n) and to express
on it constraints about the tiling τ . First, let us explain
how to enforce that a node has exactly t(k, n) children,
by partly taking advantage of the proof technique of local
nominals (see Section III-A).

For the forthcoming subsections, we assume that n is
fixed. Below, we classify the nodes of a tree model by their
type (a value in N) such that any node is of type 0, and if
a node is of type k > 0, then it has exactly t(k, n) children
and all the children are of type k−1. To be more precise, a
node may have two types (as one of them is always zero).
So, a node of type 1 has exactly 2n children. As every
node is of type 0 and for k > 0, being of type k entails
a number of children equal to t(k, n), if a node is of type
k > 0, this value k is unique. Additional conditions apply
for being of type k > 0 but we can already notice that a
node v of type k implicitly defines a balanced subtree of
depth k with root v. In order to enforce that a node is
of type k ≥ 1, and therefore has exactly t(k, n) children,
with each node v of type k ≥ 0 is associated a number
in [0, t(k + 1, n) − 1]. Such a number is written nbT(v).
The subscript ‘T’ may be omitted when the context is
clear. When the type of the node v is zero, its number is
defined as the unique m such that the number represented
by the truth values of pn−1, pn−2, . . . p0 is equal to m. As
usual, the propositional variable pi is responsible for the
ith bit of m and by convention, the least significant bit
is encoded by the truth value of p0. Otherwise, when the
type of v is equal to some k > 0, its number is represented
by the binary encoding of the propositional variable val on
its children assuming that there are t(k, n) children whose
respective (bit) numbers span all over [0, t(k, n) − 1] and
therefore all the children are implicitly ordered.

This principle makes sense conceptually but it remains
to express it in QCTLtX. That is why, in the table
below, we present a list of formulae to be defined.
All of them are interpreted on a node v0 of level
k ≥ 0, 1 ≤ d ≤ k, and ̂̄x, ȳ denotes nom(x1, 1) ∧
nom(y1, 1) ∧

∧
i∈[2,d](@1

x1
@1
x2
· · ·@1

xi−1
nom(xi, 1) ∧

@1
y1

@1
y2
· · ·@1

yi−1
nom(yi, 1)). Assuming that the nodes

v1, . . . , vd are associated with x̄ = x1, . . . , xd (resp.

v′1, . . . , v
′
d are associated with ȳ = y1, . . . , yd), v0, v1, . . . , vd

and v0, v
′
1, . . . , v

′
d can be understood as two branches

rooted at v0 ending at vd and at v′d respectively. The
formula ̂̄x, ȳ uses subformulae introduced in Section III-A
and the wide hat symbol in ̂̄x, ȳ is a graphical reminder of
these two branches. By contrast, ̂̄x, x̄ states the existence
of a single branch with nodes v0, . . . , vd.

Formulae to be defined Intuitive meaning
type(k) v0 is of type k
first(k) nb(v0) = 0
last(k) nb(v0) = t(k + 1, n)− 1
uniq(k) ∀v, v′ ((v0Ev) & (v0Ev′) & v 6= v′) →

nb(v) 6= nb(v′)
compl(k) ∀v ((v0Ev) & nb(v) < t(k, n)− 1) →

∃ v′ (v0Ev′) ∧ nb(v′) = nb(v) + 1
nb(x̄) k= nb(ȳ) nb(vd) = nb(v′d)

nb(ȳ) k= nb(x̄) + 1 nb(v′d) = 1 + nb(vd)

nb(x̄)
k
< nb(ȳ) nb(vd) < nb(v′d)

In the last 3 lines of the table, the superscript ‘k’ above
‘=’ and ‘<’ allows us to remember that the formula is
evaluated at a node of type k; as x̄ and ȳ are of length d,
the number comparison is done on nodes of type k − d.

In order to define type(k) (k ≥ 1), we specify that every
child is of type k − 1, there is a child with number equal
to zero, and if a child has number m < t(k, n) − 1, then
there is a child with number equal to m+1. Moreover, two
distinct children have distinct numbers in [0, t(k, n) − 1].
Satisfying these conditions guarantees that the number
for the children span all over [0, t(k, n) − 1]. The for-
mula type(k) (k ≥ 1) is defined as AX(type(k − 1)) ∧
EX(first(k−1))∧uniq(k)∧compl(k). Note that the formula
is built over the propositional variables p0, . . . , pn−1, val
(only). Let us explain how we shall proceed below to define
all these formulae. For successive values N ∈ N, we define
inductively the formulae type(N), first(N) and last(N),
and nb(x1, . . . , xd)

k= nb(y1, . . . , yd), nb(x1, . . . , xd)
k
<

nb(y1, . . . , yd) and nb(y1, . . . , yd)
k= nb(x1, . . . , xd) + 1 for

k − d = N − 1. For N = 0, only the formulae type(0),
first(0) and last(0) make sense. The case N = 1 is not yet
an instance of the general case. We first treat the cases for
N ∈ {0, 1} and then the general case with N ≥ 2.

B. Formulae for N ∈ {0, 1}
When k = 0 (i.e. k = N and N = 0), only the intended

properties for the formulae type(0), first(0) and last(0) are
meaningful: type(0) def= >, first(0) def= ¬pn−1 ∧ · · · ∧ ¬p0

and last(0) def= pn−1 ∧ · · · ∧ p0. One can check that T, v |=
type(0) iff v is of type 0, and assuming that v is understood
as a node of type 0, we have T, v |= first(0) iff nbT(v) = 0
and T, v |= last(0) iff nbT(v) = t(1, n)− 1 = 2n − 1.

Let us move to the case N = 1 and we define the
formulae type(k), first(k) and last(k) with k = 1 (i.e.
k = N = 1) as well as nb(x1, . . . , xd)

k
< nb(y1, . . . , yd)

and nb(y1, . . . , yd)
k= nb(x1, . . . , xd)+1 with k−d = 0 (i.e.

7

k−d = N − 1 with N = 1). So, k and d can be arbitrarily
large as soon as k = d. The formula nb(x1, . . . , xd)

k=
nb(y1, . . . , yd) needs also to be defined and is simply equal
to ¬(nb(x1, . . . , xd)

k
< nb(y1, . . . , yd)) ∧ ¬(nb(y1, . . . , yd)

k
<

nb(x1, . . . , xd)).
The formula type(1) defined below states that there is

a child with number equal to zero, if a child has number
m < 2n − 1, then there is a child with number equal to
m + 1, all the children are of type 0, and two distinct
children have distinct numbers in [0, 2n − 1]. Remember
that the number of each child (of type 0) is computed
from the propositional variables in {pn−1, . . . , p0}. The
arithmetical reasoning between children, leading to the
fact that there are exactly 2n children whose numbers span
all over [0, 2n−1] takes advantage of standard arithmetical
properties on numbers encoded by n bits. Here is the
formula type(1): AX(type(0)) ∧ EX(first(0)) ∧ uniq(1) ∧
compl(1). It remains to specify what are uniq(1) and
compl(1). In order to define uniq(1), we simply state that
there are no two distinct children (of type 0) with the
same number: ∀x, y diff-nom(x, y, 1)→ ¬(nb(x) 1= nb(y)).
The formula diff-nom(x, y, 1) guarantees that we pick
two distinct children and the nominals x and y allow to
access to them (and check the values of the propositional
variables in {pn−1, . . . , p0}). The formula compl(1) below
states that for each child v (of type 0) that is not the
last one, there is also a child v′ (of type 0) such that
nbT(v′) = nbT(v) + 1. Here is the formula compl(1):
∀x (nom(x, 1) ∧ @1

x(¬last(0))) → ∃y nom(y, 1) ∧ nb(y) 1=
nb(x) + 1. Finally, it remains to define the formulae
nb(x) 1= nb(y) and nb(y) 1= nb(x) + 1 used respectively in
uniq(1) and in compl(1). Below, we treat the more general
situation with k = d (k is not necessarily equal to 1), and
nb(x) 1= nb(y) and nb(y) 1= nb(x)+1 are specific instances
with k = d = 1. Let assume that x̄ = x1, . . . , xk and
ȳ = y1, . . . , yk (so d = k).
• nb(y1, . . . , yk) k= nb(x1, . . . , xk) + 1 is defined as

n−1∨
i=0

@x̄(¬pi∧
i−1∧
j=0

pj)∧@ȳ(
i−1∧
j=0
¬pj∧pi)∧(

n−1∧
j=i+1

@x̄pj ⇔ @ȳpj).

• nb(x1, . . . , xk)
k
< nb(y1, . . . , yk) is defined as

n−1∨
i=0

@ȳpi ∧@x̄¬pi ∧ (
n−1∧
j=i+1

@x̄pj ⇔ @ȳpj).

The above definitions use standard properties about
numbers encoded in binary representation with n bits (the
least significant bit is represented by the truth value of p0).
For the sake of completeness, let us define first(1), last(1)
as follows: first(1) def= AX(¬val), last(1) def= AX(val).

Here is a preliminary lemma that states that we have
properly proceeded for the binary encoding of numbers
with the propositional variables in pn−1, . . . , p0 (and
Lemma 4 needs to be used).

Lemma 13. Let T be a tree model and v be one of its
nodes such that v satisfies ̂̄x, ȳ (x̄ and ȳ are both of length
k) and, vk and v′k are understood as nodes of type 0.
(I) T, v |= nb(ȳ) k= nb(x̄) + 1 iff nbT(v′k) = 1 + nbT(vk).
(II) T, v |= nb(x̄)

k
< nb(ȳ) iff nbT(vk) < nbT(v′k).

(III) T, v |= nb(x̄) k= nb(ȳ) iff nbT(vk) = nbT(v′k).

Here is the main lemma of this subsection.

Lemma 14. Let T be a tree model and v be one of its
nodes. (I) T, v |= type(1) iff v is of type 1, (II) Assuming
v satisfies type(1), we have T, v |= first(1) (resp. T, v |=
last(1)) iff nbT(v) = 0 (resp. nbT(v) = t(2, n)− 1).

C. Formulae with arbitrary N ≥ 2
Let us consider the arbitrary case N ≥ 2. Below, we

define the formulae type(N), first(N) and last(N) as well
as nb(x1, . . . , xd)

k
< nb(y1, . . . , yd), and nb(y1, . . . , yd)

k=
nb(x1, . . . , xd) + 1 with k − d = N − 1. The formula
nb(x1, . . . , xd)

k= nb(y1, . . . , yd) is also defined but does
not require much developments as by definition, it is equal
to ¬(nb(x1, . . . , xd)

k
< nb(y1, . . . , yd)) ∧ ¬(nb(y1, . . . , yd)

k
<

nb(x1, . . . , xd)). We assume that for all k < N , the
formulae type(k), last(k) and first(k) are already defined
and for k − d ≤ N − 2, the formulae nb(x̄)

k
< nb(ȳ),

nb(x̄) k= nb(ȳ) and nb(ȳ) k= nb(x̄) + 1 are already defined
too (x̄ and ȳ are of length d). This can be understood as an
implicit induction hypothesis when proving the correctness
of the formulae built for N .

As for the case N = 1, the formula type(N) follows
the general schema: type(N) def= AX(type(N − 1)) ∧
EX(first(N − 1)) ∧ uniq(N) ∧ compl(N). It remains to
specify what are uniq(N) and compl(N). In order to define
uniq(N), we simply state that there are no two distinct
children (of type N − 1) with the same number:

uniq(N) def= ∀x, y diff-nom(x, y, 1)→ ¬(nb(x) N= nb(y)).

Again, diff-nom(x, y, 1) allows us to select two distinct
children (of type N − 1). The formula compl(N) below
states that for each child v (of type N − 1) that is not the
last one, there is also a child v′ (of type N − 1 too) such
that nbT(v′) = nbT(v) + 1. Here is the formula compl(N):

∀x (nom(x, 1) ∧@1
x(¬last(N − 1)))→

∃y nom(y, 1) ∧ nb(y) N= nb(x) + 1.

It remains to define nb(x) N= nb(y) and nb(y) N= nb(x) + 1
used respectively in uniq(N) and in compl(N). This time
this requires much lengthier developments, apart from
using the properties of the formulae constructed for N −1
and for smaller values (implicit induction hypothesis). Be-
low, we treat the more general situation with k−d = N−1,
and nb(x) N= nb(y) and nb(y) N= nb(x) + 1 are just
particular instances with k = N and d = 1. So, let assume
that x̄ = x1, . . . , xd and ȳ = y1, . . . , yd.

8

For defining nb(y1, . . . , yk) k= nb(x1, . . . , xk) + 1 (see
Section IV-B), we have compared the respective truth
values of pn−1, . . . , p0 for the node vk (interpretation of xk)
and for the node v′k (interpretation of yk). The same prin-
ciple applied for defining nb(x1, . . . , xk) k= nb(y1, . . . , yk).
Typically, nb(y1, . . . , yk) k= nb(x1, . . . , xk) + 1 holds iff
there is i ∈ [0, n− 1], such that
• for every j ∈ [i+ 1, n− 1], vk and v′k agree on pj ,
• vk does not satisfy pi and v′k satisfies pi,
• for j ∈ [0, i−1], vk satisfies pj , v′k does not satisfy pj .

So, we needed to define a partition {[0, i−1], {i}, [i+1, n−
1]} of [0, n − 1]. The same principle applies when the bit
numbers are among [0, t(k − d, n) − 1] to encode a value
in [0, t(k − d+ 1, n)− 1]. This needs to be done concisely
as we cannot go through all the t(k − d, n) bit numbers
because the reduction has to be of elementary complexity.

Now, when attempting to define nb(y1, . . . , yd)
k=

nb(x1, . . . , xd)+1, the nodes vd and v′d are of type k−d > 0
with t(k − d, n) children each. The truth values of val on
their respective children determine precisely the numbers
nb(vd) and nb(v′d).

Let u0, . . . , ut(k−d,n)−1 be the children of vk such that
nb(uj) = j for all j. Similarly, let u′0, . . . , u

′
t(k−d,n)−1

be the children of v′k such that nb(u′j) = j for all j.
So, nb(y1, . . . , yd)

k= nb(x1, . . . , xd) + 1 holds iff there is
i ∈ [0, t(k − d, n)− 1], such that
• for j ∈ [i+ 1, t(k − d, n)− 1], uj and u′j agree on val,
• ui does not satisfy val and u′i satisfies val,
• for every j ∈ [0, i−1], uj satisfies val and u′j does not

satisfy val.
We have a partition {u0, . . . , ui−1}, {ui}, {ui+1, . . . , ut(k−d,n)−1}
of {u0, . . . , ut(k−d,n)−1} (and similarly for the children of
v′d). To do so, we use an existential quantification on the
fresh propositional variables l (left), s (selected bit), r
(right) such that
(a) for every child of vd (resp. v′d), exactly one proposi-

tional variable among {l, s, r} holds true,
(b) exactly one child of vd (resp. v′d) satisfies s,
(c) if v is a child of vd satisfying l (resp. s) and v′ is child

of vd satisfying s (resp. r), then nbT(v) < nbT(v′). The
same condition holds with v′d.

Additional arithmetical constraints are needed to relate
the partition of x̄ with the partition of ȳ (see below the
details) but in a way, it is independent of the partition
itself. For instance, the unique child of vd satisfying s and
the unique child of v′d satisfying s should have the same
(bit) number. Nevertheless, it is clear that we need, at
least, to be able to state in QCTLtX the existence of a
partition satisfying (a), (b) and (c). In the sequel, such
partitions are called lsr-partitions. The formula LSRx̄(k)
below does the job for vd (then use LSRȳ(k) for v′d).

So, let x̄ = x1, . . . , xd. In the context of the definition
of LSRx̄(k), we allow the limit case d = 0, with empty
sequence ε, assuming that @εψ

def= ψ and ε̂, ε
def= >.

Below 0 ≤ d < k and the formula LSRx̄(k) is defined
as the conjunction LSR1

x̄(k) ∧ LSR2
x̄(k) ∧ LSR3

x̄(k) and
is interpreted on a node v0 of type k satisfying ̂̄x, x̄,
and therefore this satisfaction is witnessed by the branch
v0, . . . , vd (notations for developments below).

First, LSR2
x̄(k) def= @x̄(EX=1(s)), with EX=1(ψ)

defined as EXψ∧¬∃ p (EX(ψ∧p)∧EX(ψ∧¬p)) assuming
that p does not occur in ψ. The formula LSR2

x̄(N) simply
states that there is a unique child of vd satisfying s.

Let LSR1
x̄(k) be defined below, stating that for every

child of vd, exactly one variable among {l, s, r} holds true:

@x̄ (AX((s ∨ l ∨ r) ∧ ¬(s ∧ l) ∧ ¬(s ∧ r) ∧ ¬(l ∧ r))) .

Finally, LSR3
x̄(k) is defined as follows.

@x̄(∀w∀w′ diff-nom(w,w′, 1) ∧ ((@1
w(s) ∧@1

w′(r))∨

(@1
w(l) ∧@1

w′(s)))→ nb(w′)
k−d
< nb(w)).

The formula LSR3
x̄(k) states if v is a child of vd satisfying l

(resp. s) and v′ is another child of vd satisfying s (resp. r),
then nbT(v) < nbT(v′). The nodes v and v′ are obviously
of type k − d − 1 and their respective numbers belong to
[0, t(k−d, n)−1]. It is important to observe that nb(w′)

k−d
<

nb(w) is well-defined recursively as soon as k−d ≤ N −1.

Lemma 15. Let T be a tree model, v0 be a node of type
k ≥ 0, and x̄ be a (possibly empty) sequence of nominals
x1, . . . , xd for some d ∈ [0, k− 1] such that k− d ≤ N − 1,
T, v0 |= ̂̄x, x̄, and its witness branch is v0, . . . , vd. Then
M, v0 |= LSRx̄(k) iff the conditions below:
(a) For every child of vd, exactly one propositional vari-

able among {l, s, r} holds true.
(b) Exactly one child of vd satisfies s.
(c) If v is a child of vd satisfying l (resp. s) and v′ is a child

of vd satisfying s (resp. r), then nbT(v) < nbT(v′).

We come back to the question of defining formulae
expressing number comparisons. The formula nb(ȳ) k=
nb(x̄) + 1 (remember k − d = N − 1) is defined as

∃ l, s, r LSRx̄(k)∧LSRȳ(k)∧φleft(k)∧φselect(k)∧φright(k).

The conjunction φleft(k) ∧ φselect(k) ∧ φright(k) takes care
of the arithmetical constraints. φselect(k) states that the
unique vd’s child satisfying s (whose number is the pivot
bit i) does not satisfy val, and the unique v′d’s child satis-
fying s (whose number is also the pivot bit i) satisfies val:
φselect(k) def= @x̄ (AX(s→ ¬val)) ∧ @ȳ (AX(s→ val)).
The formula φright(k) states that for all the children of vd
satisfying r (and therefore with bit number strictly smaller
than i), the bit value is 1, and for all the children of v′d
satisfying r (and therefore with bit number strictly smaller
than i), the bit value is 0.

φright(k) def= @x̄ (AX(r→ val)) ∧@ȳ (AX(r→ ¬val)) .

φleft(k) states that the children of vd satisfying l induce a
set of bit numbers equal to the set of bit numbers induced

9

by the children of v′d satisfying l. This entails also that the
unique respective children of vd and v′d satisfying s have
the same (bit) number. Moreover, we require that children
with the same bit number satisfying l (taken from vd and
from v′d) have the same bit value witnessed by the truth
value of val. The formula φleft(k) is equal to φx̄,ȳleft(k) ∧
φȳ,x̄left(k) with φx̄,ȳleft(k) defined below:

∀w @x̄(nom(w, 1)∧@1
w(l))→ ∃w′ @ȳ(nom(w′, 1)∧@1

w′(l))∧
nb(x̄, w) k= nb(ȳ, w′) ∧ (@x̄,wval ↔ @ȳ,w′val).

Note that nb(x̄, w) k= nb(ȳ, w′) is well-defined as k − (d+
1) < N − 1. Below, we define the formula nb(x̄)

k
< nb(ȳ)

with k − d = N − 1, x̄ = x1, . . . , xd and ȳ = y1, . . . , yd.
Based on previous developments and on standard arith-
metical properties of numbers encoded in binary with k−d
bits, we define the formula nb(x̄)

k
< nb(ȳ) as the expression

∃ s, l, r LSRx̄(k) ∧ LSRȳ(k) ∧ φleft(k) ∧ φselect(k).
To conclude, first(N) def= AX(¬val) and last(N) def=

AX(val).

Lemma 16. Let T be a tree model and v be one of its nodes
such that v satisfies ̂̄x, ȳ and, vd/v′d are of type k − d.
(I) T, v |= nb(ȳ) k= nb(x̄) + 1 iff nbT(v′d) = 1 + nbT(vd).
(II) T, v |= nb(x̄)

k
< nb(ȳ) iff nbT(vd) < nbT(v′d).

(III) T, v |= nb(x̄) k= nb(ȳ) iff nbT(vd) = nbT(v′d).

Mainly, this allows us to prove Lemma 17(I).

Lemma 17. Let N ≥ 2, T be a tree model and v be one
of its nodes.
(I) T, v |= type(N) iff v is of type N ,
(II) Assuming that v satisfies type(N), we have T, v |=

first(N) iff nbT(v) = 0.
(III) Assuming that v satisfies type(N), we have T, v |=

last(N) iff nbT(v) = t(N + 1, n)− 1.

Consequently, for all k ≥ 0, type(k), first(k) and last(k)
characterise exactly the discussed properties, and similarly
for the formulae of form nb(ȳ) k= nb(x̄)+1, nb(x̄)

k
< nb(ȳ),

nb(x̄) k= nb(ȳ) where x̄ and ȳ are of length d in [1, k]
and k ≥ 1. It is natural to wonder what is the size of
type(k), using a reasonably succinct encoding for formulae.
As the definition of type(k) requires the subformulae
type(k−1), nb(x̄) k= nb(ȳ) and nb(ȳ) k= nb(x̄)+1 (the other
subformulae are of constant size), and type(1) is quadratic
in n, one can show that type(k) is of size 2O(k+n).

D. Uniform reduction leading to Tower-hardness
Let P = (T ,H,V), c = t0, t1, . . . , tn−1 be an instance

of Tilingk. Let us reduce the existence of a tiling τ :
[0, t(k, n) − 1] × [0, t(k, n) − 1] → T respecting the initial
condition to the satisfiability of a formula φ in QCTLtX.

To encode the grid [0, t(k, n) − 1] × [0, t(k, n) − 1], we
consider a root node ε of type k + 1, and we distinguish
t(k, n) children among the totality of t(k + 1, n) children.

Each child of ε has exactly t(k, n) children as it is a node of
type k. In order to identify the t(k, n) first children of ε, we
use an lsr-partition so that the unique child satisfying s has
precisely the number t(k, n). This guarantees that exactly
the children of ε whose numbers are in [0, t(k, n)−1] satisfy
r. So, the lsr-partition is used in a new context.

Below, we define nb k= t(k, n) that expresses that the
number of a node of type k is t(k, n) (k ≥ 1). We recall
that a node of type k takes its values in [0, t(k+ 1, n)−1].
Let us provide an inductive definition for nb k= t(k, n).
nb 1= t(1, n) def= AX(val ↔ Xn = n), where Xn = n
is an abbreviation for the formula stating that the truth
values for pn−1, . . . , p0 encode n in binary. For k ≥ 2, nb k=
t(k, n) def= AX(val ↔ (nb k−1= t(k − 1, n))).

Lemma 18. Assume that T, v |= type(k), we have
nbT(v) = t(k, n) iff T, v |= nb k= t(k, n).

The formula φ is defined as type(k+1)∧∃ l, s, r LSRε(k+
1)∧EX(s∧nb k= t(k, n))∧φcov∧φinit∧φH∧φV . Definitions
and explanations for φcov, φinit, φH and φV follow but
observe that an lsr-partition is performed for a node of
type k + 1 and exactly t(k, n) children satisfy r thanks to
EX(s∧ nb k= t(k, n)). The formula φcov states that every
position in [0, t(k, n)−1]× [0, t(k, n)−1] has a unique tile:

∀ x, y nom(x, 1) ∧@1
xr ∧@1

xnom(y, 1)→

@x,y(
∨
t∈T

t ∧
∧

t 6=t′∈T
¬(t ∧ t′)).

The tile types in T are understood as propositional vari-
ables. In order to access from the root node ε to a node
encoding a position of the grid, one needs first to access
to a child v of ε satisfying r (and this is done with the
help of the local nominal x) and then to access to any
child v′ of v (done with the local nominal y). Then, to
reason propositionally on v′, it is sufficient to consider
subformulae of the form @x,yψ. This principle is applied
for all the formulae below. The formula φH defined below
encodes the horizontal matching constraints.

∀ x, x′, y, y′ (nom(x, 1) ∧@1
xr ∧ nom(x′, 1) ∧@1

x′r∧

@1
xnom(y, 1) ∧@1

x′nom(y′, 1) ∧ nb(x′) k+1= nb(x) + 1∧

nb(x, y) k+1= nb(x, y′))→
∨

(t,t′)∈H

@x,yt ∧@x′,y′t
′

The formula φV for vertical matching constraints is defined
similarly. It remains to express the initial conditions. It
is sufficient to identify the n first children of the first
child of ε (identified by the satisfaction of first(k)). For
example, to express that the jth child of the first child
of ε (say v is this first child of ε) satisfies tj , perform an
lsr-partition on v, enforce that the unique child satisfying
s also satisfies tj and express that there are exactly j − 1
children of v satisfying r. This is a condition from graded

10

modal logic that is easy to express. Let EX=i ψ be
the formula below stating that exactly i ≥ 1 children
satisfy ψ: ∃ q1, . . . , qi diff-nom(q1, . . . , qi, 1) ∧ AX((q1 ∨
· · · ∨ qi) ↔ ψ), where q1, . . . , qi are fresh variables.
By convention EX=0 ψ is defined as AX¬ψ. The for-
mula φinit is defined as ∀ x (nom(x, 1) ∧ @1

x(first(k))) →
@1
x(

∧
i∈[0,n−1] ∃ l, s, r LSRε(k)∧EX=i r∧EX(s∧ ti)). The

correctness of the reduction is stated below.

Lemma 19. P = (T ,H,V), c = t0, t1, . . . , tn−1 is a
positive instance of Tilingk iff φ is satisfiable in QCTLtX.

Here is one of the main results of the paper.

Theorem 20. SAT(QCTLtX) is Tower-complete.

Theorem 20 improves the Tower lower bound from [13,
Cor. 5.6] by considering as only temporal operator, the (lo-
cal) modality EX. Tower-hardness can be also obtained
with arbitrary countable trees. In Section V, we show that
this entails more Tower-hardness results for other frag-
ments of QCTLtX and for modal logics with propositional
quantification under appropriate tree semantics.

V. A harvest of Tower-complete logics
Now, we capitalise on the Tower-hardness of

SAT(QCTLtX), by showing Tower-hardness of other frag-
ments of QCTLt that involve only EF or its strict variant
EXEF (Section V-A). Tower-hardness is obtained by
reduction from SAT(QCTLtX) by introducing propositional
variables that enforce layers from the root in the tree
model and therefore this allows us to simulate EX. In
Section V-B, we consider well-known modal logics that
are complete for classes of tree-like Kripke structures, and
we show that their extension with propositional quantifi-
cation for such classes is decidable in Tower, but more
importantly Tower-hard. Some of such classes involve
finite trees and therefore, we take also the opportunity
to study QCTLftX and QCTLftXF that happen, for instance,
to be closely related to the modal logics K and GL.

A. SAT(QCTLtF) and SAT(QCTLtXF) are Tower-hard!
The fragment QCTLtF of QCTLt is defined according to

φ ::= p | ¬φ | φ∧ φ | EFφ | ∃p φ. We recall the standard
semantics for EF-formulae: T, v |= EFφ def⇔ there is j ≥ 0
such that vEjv′ and T, v′ |= φ, and AGφ

def= ¬EF¬φ.
In order to show that SAT(QCTLtF) is Tower-hard,

we design a logspace reduction from SAT(QCTLtX). Let
φ be in QCTLtX with md(φ) = k. W.l.o.g., we assume
that φ may contain occurrences of EX and no occurrences
of AX. Let us define trans(k, φ) ∧ shape(k) in QCTLtF,
where shape(k) enforces a discipline for layers (explained
below) and trans(k, φ) admits a recursive definition, by
relativising the occurrences of EX. Let us consider the set
of propositional variables Yk = {layer i | i ∈ [−1, k]} with
the intended meaning that a node satisfying layer i is of
“layer i”, the root node being of layer k. Indeed, there
is a need for such propositional variables, as unlike with

QCTLtX, we have to enforce that moving with EF leads to
a lower layer. The formula shape(k) is the conjunction of
the following formulae:
• Every node satisfies exactly one propositional variable

from Yk (layer unicity): AG((layer−1 ∨ layer0 ∨ · · · ∨
layerk) ∧

∧
−1≤i 6=j≤k ¬(layer i ∧ layerj)).

• When a node satisfies layer i with i ≤ k, none of
its descendants satisfies some layerj with j > i
(monotonicity of layer numbers):

∧
i≤k AG(layer i →

AG(layer−1 ∨ layer0 ∨ · · · ∨ layer i)).
• When a node satisfies layer i with 0 ≤ i ≤ k, there

is a descendant satisfying layer i−1 (weak progress):∧
0≤i≤k AG(layer i → EF layer i−1).

• When a node satisfies layer i with 0 ≤ i ≤ k, it has no
(strict) descendant satisfying layer i (no stuttering):∧

0≤i≤k AG(layer i → ¬∃p (p∧EF(layer i∧¬p))). This
type of constraints does not apply to layer−1.

• The root node is at layer k: layerk.
Let T = 〈V,E, l〉 be a tree model for QCTLt with root

node ε. T is k-layered def⇔ the conditions below hold:
(a) For every node v ∈ V , card(l(v) ∩ Yk) = 1.
(b) For all v ∈ V s.t. layerj ∈ l(v) for some j ∈ [−1, k],

• if j ≥ 0, then there is v′ such that vEv′ and
layerj−1 ∈ l(v′) and,

• for all v′ such that vE+v′ and layerj′ ∈ l(v′), we
have j′ ≤ j.

(c) For all j ∈ [0, k], there are no v and v′ such that
vE+v′ and layerj ∈ l(v) ∩ l(v′).

(d) layerk ∈ l(ε).
This means that the only propositional variable from Yk

satisfied by a node reachable in j ∈ [1, k] steps from ε is
layerm for some m ≤ k−j, and the only propositional vari-
able from Yk satisfied by a node reachable in strictly more
than k steps from ε is layer−1. Moreover, once layer−1
holds true, it holds for all its descendants. Actually, the
formula shape(k) characterises k-layered structures.

Lemma 21. Let T = 〈V,E, l〉 be a tree model for QCTLt
with root node ε. T, ε |= shape(k) iff T is k-layered.

To define trans(k, φ), we define inductively trans(i, ψ)
where ψ is a subformula of φ and md(ψ) ≤ i.
• trans(i, p) def= p for all propositional variables p,
• trans is homomorphic for Boolean connectives and

trans(i,∃ p ψ) def= ∃ p trans(i, ψ),
• trans(i,EXψ) def= EF(layer i−1 ∧ trans(i− 1, ψ)).

trans(k, φ) has no occurrence of layer−1 (because md(φ) =
k, and translating an EX-formula decreases by exactly one
the index of the layer). Correctness of the reduction can
be now stated as follows.

Lemma 22. φ is satisfiable for QCTLtX iff trans(k, φ) ∧
shape(k) is satisfiable for QCTLtF.

As a conclusion, we obtain another important result.

11

Theorem 23. SAT(QCTLtF) is Tower-complete.

The complexity upper bound Tower is established for
QCTLt in [13] and in particular for QCTLtF. Theorem 23
admits a variant in which we only allow to move to proper
descendants, which amounts to replace EF by EXEF in
QCTLtF, leading to the variant QCTLtXF (with formulae
obtained from φ ::= p | ¬φ | φ ∧ φ | EXEFφ | ∃p φ).

Theorem 24. SAT(QCTLtXF) is Tower-complete.

As above, the complexity upper bound Tower for
SAT(QCTLtXF) is inherited from SAT(QCTLt) in [13].
By observing that in QCTLt, EFp is logically equivalent
to p ∨ EXEFp, this allows us to design an elementary
reduction from SAT(QCTLtF) into SAT(QCTLtXF), whence
the Tower-hardness of SAT(QCTLtXF).

B. Standard modal logics on trees
Now, we focus on modal logics that are complete for

classes of tree-like structures. For instance, the modal logic
K is complete for the class of finite trees [52], [35], and its
extension with propositional quantification corresponds to
QCTLftX . It is worth noting that a given modal logic can
be complete for different classes of Kripke models (e.g., K
is complete for the class of all the Kripke models, but also
complete for the class of finite Kripke models) and their
extension to propositional quantification may lead to dis-
tinct logics. Typically, K with propositional quantification
under the structure semantics is undecidable [2] whereas
it is Tower-complete under the finite tree semantics.

Theorem 25. The satisfiability problem for the modal
logic K with propositional quantification under the finite
tree semantics is Tower-complete.

The satisfiability problem in Theorem 25 is exactly
SAT(QCTLftX). Besides, the modal logic KD (K with se-
riality) is known to be complete for the class of finite-
branching trees for which all the maximal branches are
infinite (the models of QCTLt). Hence, the satisfiability
problem for KD with propositional quantification under
the tree semantics is Tower-complete as it corresponds
exactly to SAT(QCTLtX). Similarly, the modal logic GL
is known to be complete for the class of finite transitive
trees (GL is complete with respect to finite irreflexive
transitive Kripke models [53]), i.e. the class of Kripke
structures 〈V,E+, l〉 such that 〈V,E, l〉 is a finite tree
model, see e.g. [35]. Hence, the modal logic GL with
propositional quantification under the finite transitive tree
semantics is equivalent to QCTLftXF. Adding propositional
quantification to GL is studied in [40], where a fragment
is shown decidable by translation into WS1S [39]. The-
orem 26 provides a new decidability result by reduction
into SAT(QCTLt) and a complexity characterisation with
a remarkable lower bound.

Theorem 26. The satisfiability problem for the modal
logic GL with propositional quantification under the finite

transitive tree semantics is Tower-complete.

The proof of Theorem 26 amounts to show that
SAT(QCTLftXF) is Tower-complete. Furthermore, the
modal logic K4 is complete for the class of Kripke struc-
tures 〈V,E+, l〉 such that 〈V,E, l〉 is a finite-branching tree
model (some branches may be infinite, some others not).
So, K4 with propositional quantification under the general
tree semantics is equivalent to QCTLgtXF, understood as
the variant of QCTLtXF in which the tree models are (only
required to be) finite-branching.

Theorem 27. The satisfiability problem for the modal
logic K4 with propositional quantification under the general
tree semantics is Tower-complete.

S4 (resp. D4) is also known to be complete for the class
of Kripke structures 〈V,E∗, l〉 (resp. 〈V,E+, l〉) such that
〈V,E, l〉 is a finite-branching tree model with all branches
infinite. Consequently, S4 (resp. D4) with propositional
quantification under the tree semantics is equivalent to
QCTLtF (resp. QCTLtXF). So, the satisfiability problem for
S4 (resp. D4) with propositional quantification under the
tree semantics is Tower-complete (see Theorem 23 and
Theorem 24). By [2], S4 with propositional quantification
under the structure semantics is undecidable whereas S4
with propositional quantification under the class of finite
trees (resp. under the class of trees) is shown decidable
in [16] by invoking Rabin’s Theorem [33]. Though our
upper bound for S4 leads to a similar upper bound, our
Tower-hardness result is significantly different for S4.

VI. Conclusion
We have shown that the satisfiability problems for

QCTLtX, QCTLtF and QCTLtXF are Tower-complete, and
for N ≥ 2, SAT(QCTLtX,≤N) is AExppol-complete.
Whereas AExppol-hardness is established by reducing
the alternating multi-tiling problem recently introduced
in [31], the Tower-hardness of SAT(QCTLtX) required to
be able to express that a node has a number of children
equal to some tower of exponentials of height k. Section V
deals with the Tower-completeness of SAT(QCTLftX) and
SAT(QCTLftXF), as well as Tower-completeness for the
modal logics K, KD, GL, K4, D4 and S4 with propositional
quantification but with adequate classes of tree-like struc-
tures. All our Tower-hardness results significantly im-
prove what was known so far for fragments of QCTLt and
for the above-mentioned well-known modal logics. This
work can be continued in several directions, for instance to
characterise the expressiveness of QCTLtX along the lines
of [14] or to analyse whether our results can be lifted to
modal separation logics where separating conjunction can
encoded by propositional quantification, see e.g. [54], [55].

Acknowledgements
B. Bednarczyk was supported by the Polish Ministry

of Science and Higher Education program ”Diamentowy
Grant” no. DI2017 006447.

12

References
[1] R. Bull, “On modal logic with propositional quantifiers,” JSL,

vol. 34, no. 2, pp. 257–263, 1969.
[2] K. Fine, “Propositional quantifiers in modal logic,” Theoria,

vol. 36, pp. 336–346, 1970.
[3] D. Kaplan, “S5 with quantifiable propositional variables,” JSL,

vol. 35, no. 2, p. 355, 1970.
[4] G. Antonelli and R. Thomason, “Representability in second-

order propositional poly-modal logic,” JSL, vol. 67, no. 3, pp.
1039–1054, 2002.

[5] K. Engelhardt, R. van der Meyden, and Y. Moses, “Knowledge
and the logic of local propositions,” in TARK’98. Morgan
Kaufmann, 1998, pp. 29–41.

[6] S. Kuhn, “A simple embedding of T into double S5,” NDJFL,
vol. 45, no. 1, pp. 13–18, 2004.

[7] M. Kaminski and M. Tiomkin, “The expressive power of second
order propositional modal logic,” NDJFL, vol. 37, no. 1, pp.
35–43, 1996.

[8] P. Kremer, “Propositional quantification in the topological se-
mantics for S4,” NDJFL, vol. 38, no. 2, pp. 295–313, 1997.

[9] B. ten Cate, “Expressivity of second order propositional modal
logic,” JPL, vol. 35, no. 2, pp. 209–223, 2006.

[10] A. Sistla, “Theoretical issues in the design and verification of
distributed systems,” Ph.D. dissertation, Harvard University,
1983.

[11] A. Sistla, M. Vardi, and P. Wolper, “The complementation
problem for Büchi automata with applications to temporal
logic,” TCS, vol. 49, pp. 217–237, 1987.

[12] A. Meyer, “Weak second order theory of successor is not
elementary-recursive,” MIT, Tech. Rep. MAC TM-38, 1973, 26
pages.

[13] F. Laroussinie and N. Markey, “Quantified CTL: expressiveness
and complexity,” LMCS, vol. 10, no. 4, 2014.

[14] A. David, F. Laroussinie, and N. Markey, “On the expressiveness
of QCTL,” in CONCUR’16, ser. LIPIcs, vol. 59. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 28:1–
28:15.

[15] S. Schmitz, “Complexity hierarchies beyond elementary,”
TOCT, vol. 8, no. 1, pp. 3:1–3:36, 2016.

[16] R. Zach, “Decidability of quantified propositional intuitionistic
logic and S4 on trees of height and arity ≤ω,” JPL, vol. 33, no. 2,
pp. 155–164, 2004.

[17] F. Laroussinie and N. Markey, “Augmenting ATL with strategy
contexts,” IC, vol. 245, pp. 98–123, 2015.

[18] A. Patthak, I. Bhattacharya, A. Dasgupta, P. Dasgupta, and
P. Chakrabarti, “Quantified computation tree logic,” IPL,
vol. 82, no. 3, pp. 123–129, 2002.

[19] T. French, “Quantified propositional temporal logic with repeat-
ing states,” in TIME-ICTL’03. IEEE Computer Society, 2003,
pp. 155–165.

[20] L. Bozzelli, H. van Ditmarsch, and S. Pinchinat, “The complex-
ity of one-agent refinement modal logic,” TCS, vol. 603, pp. 58–
83, 2015.

[21] F. Belardinelli and W. van der Hoek, “A semantical analysis of
second-order propositional modal logic,” in AAAI’16. AAAI
Press, 2016, pp. 886–892.

[22] F. Belardinelli, W. van der Hoek, and L. Kuijer, “Second-order
propositional modal logic: Expressiveness and completeness re-
sults,” Artificial Intelligence, vol. 263, pp. 3–45, 2018.

[23] S. Riedweg and S. Pinchinat, “Quantified mu-calculus for con-
trol synthesis,” in MFCS’03, ser. LNCS, vol. 2747. Springer,
2003, pp. 642–651.

[24] O. Kupferman, “Augmenting branching temporal logics with
existential quantification over atomic propositions,” JLC, vol. 9,
no. 2, pp. 135–147, 1999.

[25] C. Areces, P. Blackburn, and M. Marx, “Complexity of hybrid
temporal logics,” Logic Journal of the IGPL, vol. 8, no. 5, pp.
653–679, 2000.

[26] ——, “Hybrid logics: characterization, interpolation and com-
plexity,” JSL, vol. 66, no. 3, pp. 977–1010, 2001.

[27] M. Marx, “Narcissists, stepmothers and spies,” in Workshop on
Description Logics (DL’02), ser. CEUR Workshop Proceedings,
vol. 53, 2002.

[28] V. Weber, “Hybrid branching-time logics,” CoRR, vol.
abs/0708.1723, 2007.

[29] V. Goranko and S. Passy, “Using the universal modality: gains
and questions,” JLC, vol. 2, no. 1, pp. 5–30, 1992.

[30] S. Demri, V. Goranko, and M. Lange, Temporal Logics in
Computer Science. Cambridge University Press, 2016.

[31] L. Bozzelli, A. Molinari, A. Montanari, and A. Peron, “On
the complexity of model checking for syntactically maximal
fragments of the interval temporal logic HS with regular expres-
sions,” in GandALF’17, ser. EPTCS, vol. 256, 2017, pp. 31–45.

[32] A. Molinari, “Model checking: The interval way,” Ph.D. disser-
tation, University of Udine, Italy, February 2019.

[33] M. Rabin, “Decidability of second-order theories and automata
on infinite trees,” Transactions of the American Mathematical
Society, vol. 41, pp. 1–35, 1969.

[34] A. Emerson and P. Sistla, “Deciding full branching time logic,”
Information and Control, vol. 61, pp. 175–201, 1984.

[35] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic. Cam-
bridge University Press, 2001.

[36] E. Clarke and A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching time temporal logic,” in
Worshop on Logic of Programs, ser. LNCS, vol. 131. Springer,
1981, pp. 52–71.

[37] T. French, “Decidability of quantifed propositional branching
time logics,” in 14th Australian Joint Conference on Artificial
Intelligence, ser. LNCS, vol. 2256. Springer, 2001, pp. 165–176.

[38] W. Thomas, “Languages, automata, and logic,” in Handbook of
Formal Languages, Vol. 3: Beyond Words, G. Rozenberg and
A. Salomaa, Eds. Springer, 1997, pp. 389–455.

[39] J. Büchi, “On a decision method in restricted second-order
arithmetic,” in Logic, Methodology, and Philosophy of Science,
1960, pp. 1–11.

[40] S. Artëmov and L. Beklemishev, “On propositional quantifiers
in provability logic,” NDJFL, vol. 34, no. 3, pp. 401–419, 1993.

[41] M. Baaz, A. Ciabattoni, and R. Zach, “Quantified propositional
Gödel logics,” in LPAR’00, ser. LNCS, vol. 1955. Springer,
2000, pp. 240–256.

[42] P. van Emde Boas, “The convenience of tilings,” in Complexity,
Logic, and recursion Theory, ser. Lecture Notes in Pure and
Applied Logic, A. Sorbi, Ed., vol. 187. Marcel Dekker, Inc.,
1997, pp. 331–363.

[43] A. Chandra, D. Kozen, and L. Stockmeyer, “Alternation,” Jour-
nal of the ACM, vol. 28, no. 1, pp. 114–133, 1981.

[44] L. Berman, “The complexitiy of logical theories,” TCS, vol. 11,
pp. 71–77, 1980.

[45] J. Ferrante and C. Rackoff, “A decision procedure for the first
order theory of real addition with order,” SIAM Journal of
Computing, vol. 4, no. 1, pp. 69–76, 1975.

[46] K. Fine, “In so many possible worlds,” NDJFL, vol. 13, no. 4,
pp. 516–520, 1972.

[47] M. Fattorosi Barnaba and F. De Caro, “Graded modalities,”
Studia Logica, vol. 44, no. 2, pp. 197–221, 1985.

[48] S. Tobies, “PSPACE reasoning for graded modal logics,” JLC,
vol. 11, pp. 85–106, 2001.

[49] L. Stockmeyer, “The complexity of decision problems in au-
tomata theory and logic,” Ph.D. dissertation, Department of
Electrical Engineering, MIT, 1974.

[50] M. Vardi, “The complexity of relational query languages,” in
STOC’82, 1982, pp. 137–146.

[51] P. Schnoebelen, “The complexity of temporal logic model check-
ing,” in AiML’02. College Publications, 2003, pp. 437–459.

[52] K. Segerberg, “An essay in classical modal logic (three vols.),”
Uppsala Universitet, Tech. Rep. Filosofiska Studier nr 13, 1971.

[53] C. Smoryński, Self-reference and Modal Logic. Springer-Verlag,
1985.

[54] S. Demri and R. Fervari, “On the complexity of modal sepa-
ration logics,” in AiML’18. College Publications, 2018, pp.
179–198.

[55] S. Demri, “On temporal and separation logics (invited paper),”
in TIME’18, ser. LIPIcs, vol. 120. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018, pp. 1:1–1:4.

13

