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Abstract

We propose a methodology, based on machine learning and optimization, for selecting a solver
configuration for a given instance. First, we employ a set of solved instances and configurations
in order to learn a performance function of the solver. Secondly, we solve a mixed-integer
nonlinear program in order to find the best algorithmic configuration based on the performance
function.

1 Introduction

In this work we address the configuration of general-purpose Mathematical Programming (MP)
solvers.

Most solvers have long lists of user-configurable parameters; tweaking them influences how the
available algorithmic components work and how they interact with each other, and it can conse-
quently have a significant impact on the quality of the obtained solution and/or on the efficiency
of the solution process. Good solvers have effective default parameter configurations, carefully se-
lected to provide “good” performances in most cases. Furthermore, solvers may embed heuristics
that try to automatically adapt the parameter configuration to the characteristics of the instance
at hand. However, default/automatic parameter configurations may still be highly suboptimal with
specific instances, which require a manual search for the best parameter values. The motivation for
this work lies in the fact that, due to the large amount of available parameters [10], manual tuning
is highly nontrivial and time-consuming. This setting is an instance of the Algorithm Configuration
Problem (ACP) [7].

Our approach for addressing the ACP on MP solvers is based on a two-fold process:

(i) in the Performance Map Learning Phase (PMLP), supervised Machine Learning (ML) tech-
niques [13] are used to automatically learn a performance function which maps some features
of the instance being solved, together with a given parameter configuration, into some measure
of solver efficiency and effectiveness;

(ii) the formal properties defining the ML methodology underlying the PMLP are translated
into MP terms; the resulting formulation, together with constraints encoding the compatibil-
ity of the configuration parameter values, is called the Configuration Space Search Problem
(CSSP), a Mixed-Integer Nonlinear Program (MINLP) which, for a given instance, finds the
configuration providing optimal performance w.r.t. the performance function.

The main novelty of our approach lies in the fact that we explicitly model and optimize the CSSP
using the mathematical description of the ML technique used to learn the performance function.
This is in contrast to most of the existing algorithmic configuration approaches, which instead



employ heuristics such as experimental design methods [1], local searches [8], genetic algorithms
[2], evolutionary strategies [5] and other methods [3, 12].

We remark that, differently from many other approaches, we define the performance of the
target algorithm as a function of both features and controls. In this way, we account for the fact
that the best configuration of a solver may vary among instances belonging to the same class of
problems (“per-instance” ACP, see e.g. [3, 9]), whereas some literature works assume instead that
the solution to the ACP is invariant over instances pertaining to a given problem (for example,
[1, 8, 14]).

The idea of using the components of a ML predictor to define a MP formulation has been
already explored and a generalisation of this research can be found, say, in [11]. The proposed
approach is in fact suitable for many other applications, besides MP solvers [7], where the outcome
of executing some action (e.g., run a target algorithm) depends upon the features of the problem
instance and the possible action controls by the user (e.g., the parameters of the target algorithm).

2 The PMLP and the CSSP

Let A be the target algorithm, and:

• CA be the set of feasible configurations of A; we assume that (a) each configuration c is a
vector of binary and/or discrete values representing categorical and numerical parameters
and that (b) CA can be described by means of linear constraints;

• Π be the problem to be solved, consisting of an infinite set of instances, and Π′ ⊂ Π be the
(finite) set of instances used as the training set for the PMLP phase;

• FΠ be the set of features used to describe instances, encoded by vectors of continuous or
discrete/categorical values (in the latter case they are labelled by reals);

• pA : FΠ × CA −→ R be the performance function (evaluated using solver performance indi-
cators within a given time limit), which maps a pair (f, c) (instance feature, configuration)
to the outcome of an execution of A, typically in terms of the integrality gap reported by
the solver, i.e. the relative discrepancy between an optimal objective function bound and the
best feasible solution found so far (but other measures are possible).

2.1 Performance Map Learning Phase

In the PMLP phase we use a supervised ML predictor, e.g., Support Vector Regression (SVR), to
learn the coefficient vector θ̄ providing the parameters of a prediction model p̄A(·, ·, θ) : FΠ×CA → R
of the performance function pA(·, ·). The training set for the PMLP is

S =
{

(fi, ci, pA(fi, ci)) | i ∈ {1 . . . s}
}
⊆ FΠ′ × CA × R, (1)

where s = |S| and the training set labels pA(fi, ci) are computed on the training vectors (fi, ci).
Our training includes a phase for determining the hyperparameters of the ML methodology by
nested cross-validation [17]. We also assess the generalization error of the fully-trained predictor
configured with the best hyperparameter setting.



2.2 Configuration Space Search Problem

For a given instance f and parameter vector θ, CSSP(f, θ) is the problem of finding the configuration
with best estimated performance p̄A(f, c, θ):

CSSP(f, θ) ≡ min
c∈CA

p̄A(f, c, θ) . (2)

The actual implementation of CSSP(f, θ) depends on the MP formulation selected to encode p̄A,
which may require auxiliary variables and constraints to define the properties of the ML predictor.

If p̄A yields an accurate estimate of pA, we expect the optimum c̄ of CSSP(f, θ) to be a good
approximation of the true optimal configuration c∗ for solving f . However, we remark that not
only CSSP(f, θ) can be hard to solve, it also needs to be solved quickly (otherwise one might as
well solve the instance f directly). Achieving a balance between PMLP accuracy and CSSP cost is
one of the challenges of this research.

3 Experimental setup

In this paper we report results where the ML predictor of choice was SVR [16]. Its advantages are:
(a) the PMLP for training an SVR can be formulated as a convex Quadratic Program (QP), which
can be solved efficiently; (b) even complicated and possibly nonlinear performance functions can
be learned by using the “kernel trick” [15], which reduces problematic nonlinear transformations of
feature vectors to the much simpler computation of inner products; (c) the solution of the PMLP
for SVR provides a closed-form algebraic expression of the performance map p̄A, which allows an
easier formulation of CSSP(f, θ).

instance bestFeasCD bestFeasCSSP optVal bestRelaxCD bestRelaxCSSP

i0001 0 0 1,193E+04 1,211E+04 1,202E+04
i0002 0 0 4,567E+03 4,791E+03 6,619E+06
i0003 0 0 1,155E+04 9,250E+06 1,285E+07
i0004 9,593E+03 0 1,117E+04 1,144E+04 1,140E+04
i0005 7,091E+03 0 8,960E+03 9,255E+03 9,322E+03
i0006 3,083E+03 3,135E+03 3,491E+03 3,609E+03 3,597E+03
i0007 6,921E+03 0 8,955E+03 9,060E+03 9,028E+03
i0008 0 0 1,539E+04 1,553E+04 1,552E+04
i0009 5,182E+03 0 8,778E+03 8,897E+03 8,894E+03
i0010 2,520E+03 0 7,721E+03 7,790E+03 1,209E+07
i0011 0 0 1,692E+04 1,705E+04 1,704E+04
i0012 0 0 5,691E+03 5,885E+03 5,984E+03
i0013 3,372E+03 0 3,372E+03 3,374E+03 9,527E+06
i0014 3,748E+03 0 3,832E+03 3,964E+03 1,061E+07
i0015 0 0 2,192E+03 2,449E+03 1,070E+07
i0016 2,377E+03 8,523E+02 2,382E+03 2,437E+03 2,423E+03
i0017 3,491E+03 0 3,781E+03 3,838E+03 4,809E+06
i0018 1,570E+02 0 6,084E+03 6,471E+03 6,465E+03
i0019 2,804E+03 0 4,055E+03 4,237E+03 4,402E+03
i0020 0 0 4,576E+03 4,646E+03 9,600E+06
i0021 0 0 4,245E+03 4,354E+03 1,343E+07

Table 1: lower and upper bounds (resp. “bestFeas” and “bestRelax”) obtained using CPLEX’s default configuration
and the CSSP solution (resp. “CD” and “CSSP”) to configure the solver

We used a Gaussian kernel during SVR training, which is the default choice in absence of any
other meaningful prior [6]. This choice makes the CSSP a MINLP with a nonconvex objective
function p̄A. More precisely, our CSSP is:

min
c∈CA

s∑
i=1

αi e
−γ‖(fi,ci)−(f̄ ,c)‖22 (3)



where, for all i ≤ s, (fi, ci) belong to the training set, αi are the dual solutions of the SVR, γ is
the scaling parameter of the Gaussian kernel used in Eq. (3).

We tested our approach on 21 instances of the Hydro Unit Commitment problem [4]. Its
purpose is to find the scheduling of a pump-storage hydro power station maximizing the revenue
given by electricity selling. Each instance was encoded by 54 continuous features, representing
hourly electricity prices, hourly inflows, initial and target water level of the considered reservoir. We
configured 11 parameters of the IBM ILOG CPLEX MP solver [10]. Our preliminary computational
experiments use CPLEX’s default configuration and the CSSP solution to solve the instances.
Table 1 shows that, in a number of cases, the proposed approach is capable of providing stronger
relaxations than CPLEX’s default. However, it still fails to find good feasible solutions, which
yields overall larger integrality gaps than the solver’s default. In order to tackle this issue and
improve the general efficacy of the approach, we plan to test variants in the near future. We will
most importantly test different features for the instances, employ alternative performance metrics
for pA and conduct experiments with other techniques than SVR.
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