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cCNRS LIX, École Polytechnique, 91128 Palaiseau, France

Abstract

This paper presents the theoretical properties of an algorithm to find a re-
alization of a (full) n × n Euclidean distance matrix in the smallest possible
embedding dimension. Our algorithm performs linearly in n, and quadratically
in the minimum embedding dimension, which is an improvement w.r.t. other
algorithms.
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1. Introduction

Euclidean distance matrices and sphere intersection have a strong mathe-
matical importance [1, 2, 3, 4, 5, 6], in addition to many applications, such
as navigation problems, molecular and nanostructure conformation, network
localization, robotics, as well as other problems of distance geometry [7, 8, 9].5

Before defining precisely the problem of interest, we need the formal defini-
tion for Euclidean distance matrices. Let D be a n× n symmetric hollow (i.e.,
with zero diagonal) matrix with non-negative elements. We say that D is a
(squared) Euclidean Distance Matrix (EDM) if there are points x1, x2, . . . , xn ∈
RK (for a positive integer K) such that

D(i, j) = Dij = ‖xi − xj‖2, i, j ∈ {1, . . . , n},

where ‖ · ‖ denotes the Euclidean norm. The smallest K for which such a set of
points exists is called the embedding dimension of D, denoted by dim(D). If D
is not an EDM, we define dim(D) =∞.
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We are concerned with the problem of determining dim(D) for a given sym-
metric hollow matrix D, which is known as the EDM recognition problem. If10

dim(D) = K <∞, we also want to determine a sequence x = (x1, . . . , xn) of n
points in RK such that D is the EDM of x (x is called a realization of D). We
emphasize that D is a full matrix: this strikes a difference with much of the Dis-
tance Geometry literature, which is concerned with the problem of completing
partial EDMs in a given embedding dimension [4].15

The best known algorithm for solving the EDM recognition problems is
classic Multidimensional Scaling (MDS) [10]. Given a symmetric hollow matrix
D, compute G = − 1

2JDJ (where J = I− 1
n1

t1, I is the identity matrix and 1 is
the all-one vector) and its spectral decomposition G = PΛP t, where Λ = diag(λ)
and λ is the vector λ = (λ1, . . . , λn) of eigenvalues of G in decreasing order. If20

there is i ≤ n with λi < 0 then D is not an EDM, otherwise it is. In this case
a realization is given by x = P

√
Λ, and the minimum embedding dimension is

given by the index K̄ ≤ n such that λK̄ is the smallest nonzero eigenvalue. Other
methods (e.g. [11, 5]), appear to be variants of the idea behind MDS, which is
actually due to Schoenberg [12]. Since it requires matrix decomposition, all25

these methods are O(nω) (with 2 < ω < 2.376) by [13], though the consensus
seems to be that they are O(n3) “in practice”.

This paper presents the theoretical background of the algorithm proposed
in [14], where it was just described and illustrated with computational results.
This algorithm solves the EDM recognition problem in O(n dim(D)2). Since30

usually EDMs correspond to fixed embedding dimensions, our algorithm could
be regarded as O(n).

2. A new EDM recognition algorithm

This section presents the theoretical basis for the algorithm. While some of
the results leading up to our main Theorem 1 are part of the standard distance35

geometry and linear algebra literature, we list them to make our treatment self-
contained. In particular, our main theorem depends on Lemmata 2-3; in turn,
Lemma 3 depends on Prop. 2 which depends on Lemma 1 which depends on
Prop. 1.

Let In = {1, . . . , n} and In1,n2
= {n1, n1 + 1, ..., n2 − 1, n2}. Furthermore,40

if U, V ⊆ In such that V = {v1, . . . , vn1
}, U = {u1, . . . , un2

} and D is a n × n
matrix, then D(V,U) = (dij) is the submatrix of D such that dij = D(vi, uj)
with i ∈ In1 and j ∈ In2 . Given a positive integer n, we define {xi}ni=1 =
{x1, x2, ..., xn−1, xn}.

The following is a well-known result that provides an upper bound on the45

embedding dimension of a given EDM as a function of its order.

Proposition 1. Let D be a n× n EDM. Then dim(D) ≤ n− 1.

Proof. If D is a n × n EDM, then exists {xi}ni=1 ⊆ Rm for any m ≥ dim(D)
which realizes D. Let k be the dimension of the linear subspace generated by
the vectors {xi − x1}ni=2 ⊆ Rm. Since this space is a k-dimensional subspace
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of Rm, then it is isomorphic to Rk by a linear isometry Q. Let y1 = 0 and
{yi = y1 +Q(xi − x1)}ni=1. Thus,

‖yi − yj‖ = ‖y1 +Q(xi − x1)− y1 −Q(xj − x1)‖ = ‖Q(xi − xj)‖ = ‖xi − xj‖

for all i, j ∈ In. From this, we have that {yi}ni=1 ⊆ Rk also realizes D. Therefore
dim(D) ≤ k ≤ n− 1.

In order to present our main result (Thm. 1), we need some preliminary50

results. Lemma 1 and Prop. 2 state the well known fact that two different
realizations of an EDM are isometric.

Lemma 1. Let D be a n × n EDM and {xi}ni=1, {yi}ni=1 ⊆ Rm, for any m ≥
dim(D), sets of points which realize D. For i, j, k ∈ In, we have:

(xi − xj)t(xk − xj) = (yi − yj)t(yk − yj).

Proof. Without loss of generality, let us assume that i < j < k. Let D′ be
the EDM realized by the subset of points {xi, xj , xk} and {yi, yj , yk}. From
Proposition 1, there exist {x̄i, x̄j , x̄k}, {ȳi, ȳj , ȳk} ⊆ R2 which realize D′. We55

notice that, by the isometry used in Proposition 1, (xi − xj)t(xz − xj) = (x̄i −
x̄j)

t(x̄z − x̄j) and (yi − yj)t(yz − yj) = (ȳi − ȳj)t(ȳz − ȳj). Since

‖x̄i − x̄j‖ = ‖ȳi − ȳj‖

‖x̄i − x̄k‖ = ‖ȳi − ȳk‖

‖x̄j − x̄k‖ = ‖ȳj − ȳk‖,

we have that the triangles obtained are similar. Therefore,

(x̄i − x̄j)t(x̄k − x̄j) = (ȳi − ȳj)t(ȳk − ȳj).

Thus,
(xi − xj)t(xk − xj) = (x̄i − x̄j)t(x̄k − x̄j)

= (ȳi − ȳj)t(ȳk − ȳj)
= (yi − yj)t(yk − yj).

We say that two subsets of points {xi}ni=1, {yi}ni=1 ⊆ Rm for any m ≥ dim(D)
are orthogonally similar if there is an orthogonal operator Q on Rm, such that60

Q(xi − xj) = yi − yj , for i, j ∈ In. We denote the subspace spanned by vectors
v1, . . . , vn by [vi]

n
i=1.

Proposition 2. Let D be a n × n EDM and {xi}ni=1, {yi}ni=1 ⊆ Rm, for any
m ≥ dim(D), be sets of points which realize D. Then, {xi}ni=1 is orthogonally
similar to {yi}ni=1.65
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Proof. We define the sets of vectors {vi1 = xi−x1}ni=2, {ui1 = yi−y1}ni=2 ⊆ Rm.
Let T : [vi1]ni=2 −→ [ui1]ni=2 be a linear transformation such that T (vi1) = ui1,
with i ∈ I2,n. If v =

∑n
i=2 aivi1, then

T (v)tT (v) =

n∑
i=2

n∑
j=2

aiaju
t
i1uj1.

From Lemma 1, we have uti1uj1 = vti1vj1. Thus,

T (v)tT (v) =

n∑
i=2

n∑
j=2

aiaju
t
i1uj1 =

n∑
i=2

n∑
j=2

aiajv
t
i1vj1 = vtv.

Therefore, T is a linear isometry, i.e., an isomorphism. This implies that
there is a linear isometry T̄ : ([vi1]ni=2)⊥ −→ ([ui1]ni=2)⊥, so we can define
Q : Rm −→ Rm such that, if v = v1 + v2 ∈ Rm, where v1 ∈ [vi1]ni=2 and
v2 ∈ ([vi1]ni=2)⊥, then Q(v) = T (v1) + T̄ (v2) and we have that Q is linear and

Q(v)tQ(v) = T (v1)tT (v1) + T̄ (v2)tT̄ (v2) = vt1v1 + vt2v2 = vtv,

implying that Q is an orthogonal operator.

The following corollary states that the embedding dimension is unique.

Corollary 1. Let D be a n×n EDM and {xi}ni=1 ⊆ Rm, for any m ≥ dim(D),
a set of points which realizes D. Then, the dimension of [xi− x1]ni=2 is equal to
dim(D).70

Lemmata 2-3 are new (as far as we know) and crucial for our main theorem.
Given a EDM of order n, the following result establishes that the embedding
dimension of the given EDM is greater than the embedding dimension of any
of its (n− 1)-th principal submatrices by at most one. We denote by D(In, In)
the n-th principal submatrix of D.75

Lemma 2. Let D be a (n + 1) × (n + 1) EDM. If dim(D(In, In)) = K, then
dim(D) ∈ {K,K + 1}.

Proof. Let {xi}n+1
i=1 be a set of points in RK+1 that realizes D and the set of

vectors {vi1 = xi − x1}n+1
i=2 . We have that [vi1]ni=2 is a linear K-dimensional

subspace, since {xi}ni=1 realizes D(In, In) and dim(D(In, In)) = K. Therefore,80

we have

[vi1]ni=2 ⊆ [vi1]n+1
i=2 = [vi1]ni=2 + [vi(n+1)]

⇒ dim([vi1]ni=2) ≤ dim([vi1]n+1
i=2 ) ≤ dim([vi1]ni=2) + dim([vi(n+1])

⇒ dim(D(In, In)) ≤ dim(D) ≤ dim(D(In, In)) + 1
⇒ K ≤ dim(D) ≤ K + 1.
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The next lemma ensures that, given a set S ⊂ Rm of n points that realizes
the n-th principal submatrix of a EDM of order n+1 with embedding dimension
at most m, S can be augmented into a realizing set for the full matrix without85

any change on the space dimension.

Lemma 3. Let D be a (n+ 1)× (n+ 1) EDM and dim(D) ≤ m. Additionally,
let {xi}ni=1 ⊆ Rm be a set of points that realizes D(In, In). Then, there exists
xn+1 ∈ Rm such that {xi}n+1

i=1 realizes D.

Proof. Let {yi}n+1
i=1 ⊆ Rm be a set of points that realizes D and let {xi}ni=1 be90

a set of points that realizes D(In, In). By Proposition 2, we have that {yi}ni=1

and {xi}ni=1 are orthogonally similar, i.e., there is a linear operator Q on Rm

such that Q(yi− yj) = xi− xj , for i, j ∈ In. If xn+1 = x1 +Q(yn+1− y1), then,
for i ∈ In,

‖xn+1 − xi‖ = ‖x1 − xi +Q(yn+1 − y1)‖
= ‖Q(y1 − yi) +Q(yn+1 − y1)‖
= ‖Q(y1 − yi + yn+1 − y1)‖
= ‖Q(yn+1 − yi)‖
= ‖yn+1 − yi‖.

Therefore, {xi}n+1
i=1 realizes D.95

The following theorem establishes necessary and sufficient conditions for a
n×n symmetric hollow matrix with nonnegative elements to be a EDM. If this
matrix is a EDM with dim(D) = K, then there exists a set of points which
realizes D such that K + 1 of them form the columns of a triangular matrix.

Theorem 1. Let K be a positive integer and D be a n × n symmetric hollow
matrix with nonnegative elements, with n ≥ 2. D is a EDM with dim(D) = K if
and only if there exist {xi}ni=1 ⊆ RK and an index set I = {i1, . . . , iK+1} ⊆ In
such that  xi1 = 0

xij (j − 1) 6= 0, j ∈ I2,K+1

xij (i) = 0, j ∈ I2,K , i ∈ Ij,K ,

where {xi}ni=1 realizes D.100

Proof. Let K be a positive integer and D be a n×n EDM such that dim(D) = K.
We want to show that there is a realization {xi}ni=1 ⊆ RK and an index set
I = {ij}K+1

j=1 ⊆ In with K + 1 elements such that xi1 = 0
xij (j − 1) 6= 0, j ∈ I2,K+1

xij (i) = 0, j ∈ I2,K , i ∈ Ij,K ,

where {xi}ni=1 realizes D (recall that xij is the j-th component of the vector
xi).
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We remark that, since K is a positive integer, then D 6= 0. We proceed by
induction on n. For n = 2, we have

D =

(
0 D(1, 2)

D(1, 2) 0

)
.

Therefore, dim(D) = 1, {x1 = 0, x2 =
√
D(1, 2)} ⊂ R1, I = {1, 2}, and the

statement is true.
As induction hypothesis, suppose that the statement is true for some n ≥ 2.

Let D be a (n+ 1)× (n+ 1) EDM such that dim(D) = K. Thus, D̄ = D(In, In)
is a EDM such that, by Lemma 2, dim(D̄) = k, with k = K or k = K − 1.
From the induction hypothesis, there exist {xi}ni=1 ⊆ Rk which realizes D̄ and
an index set I = {ij}k+1

j=1 ⊆ In with k + 1 elements such that xi1 = 0
xij (j − 1) 6= 0, j ∈ I2,k+1

xij (i) = 0, j ∈ I2,k, i ∈ Ij,k.
(1)

Without loss of generality, we can assume {xi}ni=1 ⊆ Rk+1, by defining the105

(k+1)st coordinate of each vector to be zero. Since dim(D) ≤ (k+1), by Lemma
3, there exists a vector y = (y1, y2, · · · , yk+1) in Rk+1 such that {xi}ni=1 ∪ {y}
realizes D.

This means that y belongs to the intersection of the spheres centered in
{xi}ni=1 ⊆ Rk+1, each one with radius

√
D(i, n+ 1). Therefore, y is the solution

of the following non-linear system:
‖x1 − y‖2 = D(1, n+ 1)
‖x2 − y‖2 = D(2, n+ 1)

...
‖xn − y‖2 = D(n, n+ 1).

Reordering the equations in such a way that the j-th equation is ‖xij − y‖2 =
D(ij , n+ 1), for j ∈ Ik+1, we have

‖xi1 − y‖2 = D(i1, n+ 1)
‖xi2 − y‖2 = D(i2, n+ 1)

...
‖xik+1

− y‖2 = D(ik+1, n+ 1)
...

‖xj1 − y‖2 = D(j1, n+ 1)
‖xj2 − y‖2 = D(j2, n+ 1)

...
‖xjn−k−1

− y‖2 = D(jn−k−1, n+ 1),

where {ji}n−k−1
i=1 = In \ I. Applying the induction hypothesis, we know the

points {xij}k+1
j=1 . Using this information and subtracting the first equation from
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the others, we obtain: 

‖y‖2 = D(i1, n+ 1)
xti2y = bi2

...
xtik+1

y = bik+1

...
xtj1y = bj1
xtj1y = bj2

...
xtjn−k−1

y = bjn−k−1
,

where

bi =
‖xi‖2 −D(i, n+ 1) +D(i1, n+ 1)

2
,

for i ∈ Inr{i1}. Let B be the (n−1)×k matrix associated with the linear part
of the non-linear system and let b be the corresponding solution vector, both of
them ordered according to the system above. Then, we can rewrite the system
of equations as follows: {

‖y‖2 = D̄(i1, n+ 1)
By(Ik) = Pb,

where P is a permutation matrix that defines the order used in the previous
equations.110

By construction, we have that B is a lower triangular matrix without null
elements in the diagonal. Therefore, the linear part of the system has only
two possible outcomes: a unique solution, or no solution. If the system has no
solution, then the set generated by the intersection of the spheres in Rk+1 is
empty, and thus, D is not a EDM, which is an absurd. Therefore, the linear115

part of the system has a unique solution y∗.
Substituting this solution from the linear system into ‖y‖2 = ‖y(Ik)‖2 +

y2
k+1 = D(i1, n+ 1), we obtain

y2
k+1 = D(i1, n+ 1)− ‖y∗‖2.

If D(i1, n+ 1)− ‖y∗‖2 is negative, then the system has no solution, i.e., the
intersection of the spheres in Rk+1 is empty, and thus, D is not a EDM. Again,120

an absurd. Therefore, the difference is not negative. If the difference is null,
then K = k and the last entry of each point is unnecessary and the index set of
the induction hypothesis remains valid and the statement is true.

If the difference is strictly positive, then k = K−1, implying the existence of
two solutions, from which we must choose one (see Remark 3 in Sect. 2.1). If we
define xn+1 = y and Ī = I∪{n+1} as the index set, there exists {xi}n+1

i=1 ⊆ Rk+1
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which realizes D and an index set Ī = {ij}K+1
j=1 ⊆ In+1 with K + 1 elements,

such that  xi1 = 0
xij (j − 1) 6= 0, j ∈ I2,K+1

xij (i) = 0, j ∈ I2,K , i ∈ Ij,K .

This concludes the proof.

This induction process suggests an algorithm to verify whether or not a125

matrix D is a EDM. If this is true, the algorithm also determines an embedding
in the least possible dimension. The procedure is shown in Alg. 1, and we
refer to it as edmsph, from “EDM” and “sphere”. The pseudocode makes use
of a function expand(x) which endows point vectors in the sequence x with an
additional zero component. We denote the sphere centered in p ∈ RK+1 with130

radius r by SK(p, r).

Algorithm 1 K = edmsph(D,x)

1: I = {1, 2}
2: K = 1
3: (x1, x2) = (0,

√
D12)

4: for i ∈ {3, . . . , n} do
5: Γ =

⋂
j∈I

SK(xj , Dij)

6: if Γ = ∅ then
7: return ∞
8: else if Γ = {pi} then
9: xi = pi

10: else if Γ = {p+
i , p

−
i } then

11: xi = p+
i

12: x← expand(x)
13: I ← I ∪ {i}
14: K ← K + 1
15: else
16: error: dim aff(span(xI)) < K − 1
17: end if
18: end for
19: return K

2.1. Remarks

1. Given K spheres in RK , we assume that their centers are in general po-
sition, i.e. they span a (K − 1)-dimensional affine space. Then, we have
at most two points in the intersection of these spheres. More specifically,135

we have no point if the intersection is empty, one point if the intersec-
tion lies in the (K − 1)-dimensional affine space generated by the centers,
and two points if there are no points in the intersection in the (K − 1)-
dimensional affine space generated by the centers. We also remark that

8



requiring general positions is sufficient to ensure the ensuing property but140

not necessary. At present, we still do not know how to weaken our general
position requirements so that it is both necessary and sufficient to ensure
that the number of points in the intersection of K sphere is in {0, 1, 2}.

2. The error occurring in Line 16 of Alg. 1 is related to the remark above: if
dim aff(span(xI)) < K − 1 the points in xI cannot be in general position145

in RK .

3. Note that p−i is being ignored in Alg. 1: in fact its presence only serves
the purpose of recognizing the need for increasing the current embedding
dimension. The fact that we always just keep p+

i is arbitrary: other
valid realizations would result from taking any combination of + and −150

alternatives. By [15, Lemma 4.3], p+
i , p

−
i are reflections of each other

w.r.t. the hyperplane passing through preceding points x1, . . . , xk having
affine dimension k − 1, the embedding dimension of {x1, . . . , xi−1, p

+
i }.

Informally, every time the current embedding dimension is increased, there
is the possibility of a new reflection acting on the partial realization found155

so far. If dim(D) = K, then there will be 2K−1 realizations of D modulo
translations and rotations. Of course, there is only one realization modulo
congruences (i.e. rotations, translations and reflections).

2.2. Complexity of Alg. 1

Using trilateration on the appropriately indexed points guaranteed by Thm. 1,160

finding Γ in Alg. 1 requires solving a triangular linear system, which can be car-
ried out in time proportional to K̄2. This leads to a total time of O(nK̄2),
where K̄ is assumed to be a given upper bound to K (K̄ is bounded below by
the highest value taken by K during the edmsph algorithm).

3. Conclusion165

We presented the theoretical properties of a new algorithm which determines
whether a given symmetric hollow (i.e., with zero diagonal) matrix with non-
negative elements is a EDM. Additionally, if the matrix is indeed a EDM, the
algorithm computes the matrix’s embedding dimension, alongside an actual em-
bedding. This paper only addresses the case of exact distances; extensions to170

noisy or interval distances will be considered in subsequent works.
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