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Abstract We present several mathematical-optimization formulations for a
problem that commonly occurs in geometry processing and specifically in the
design of so-called smooth direction fields on surfaces. This problem has di-
rect applications in 3D shape parameterization, texture mapping, and shape
design via rough concept sketches, among many others. A key challenge in
this setting is to design a set of unit-norm directions, on a given surface, that
satisfy some prescribed constraints and vary smoothly. This naturally leads
to mixed-integer optimization formulations, because the smoothness needs to
be formulated with respect to angle-valued variables, which to compare one
needs to fix the discrete jump between nearby points. Previous works have
primarily attacked this problem via a greedy ad-hoc strategy with a spe-
cialized solver. We demonstrate how the problem can be cast in a standard
mathematical-optimization form, and we suggest several relaxations that are
especially adapted to modern mathematical-optimization solvers.
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Introduction

Design and analysis of generalized vector fields on surfaces is an active area of
research in computer graphics and geometry processing (see [21] for a recent
overview). A common problem in this domain is to design tangent vector
fields that vary smoothly on the shape surface and are aligned with some
prescribed directions, such as the directions of principal curvature (see [6,
5,12]). One key application of vector-field design is in the context of shape
parameterization, where the goal is to compute mappings between 3D surfaces
and the 2D plane, and which is used for mesh generation, texture synthesis,
and other applications (see, for example, [17] and [1] for an overview). In this
context, one is often required to design generalized direction fields, rather than
the classical tangent vector fields. The main distinction between direction and
vector fields is that the former might have multiple directions at every point,
and moreover the labeling of each direction at a point is irrelevant, so that at
a given point the different directions can be relabeled without changing their
geometric meaning (see Section 2 of [21] for an overview of common direction
fields). The most basic and commonly used type of direction fields are called
unit cross-fields (or 4-RoSy fields) which consist of four unit-length, orthogonal
directions at every point of the surface, and which are used especially in shape
remeshing (see [2]).

Designing smooth direction fields has been addressed with two classes of
approaches: either by considering each direction as a complex number and
using this representation for enforcing smoothness and alignment (see e.g.
[17] and Section 5.2 of [21] for an overview) or by representing each direction
via an angle with respect to some fixed reference direction at each point.
The advantage of the former representation is that under certain conditions
it allows us to compute a globally-optimal direction field (see [12]), at the
expense of removing the unit-norm constraint at every point. On the other
hand, the angle-based representations (see [2]) enforce the unit-norm condition
as a hard constraint, but lead to potentially difficult optimization problems.
The key difficulty arises in enforcing the smoothness of the sought direction
field, which requires comparing the angles across different points, and thus
requires solving for additional integer variables that resolve the cyclical angle
ambiguity (i.e., multiples of 2π) . Nevertheless, it has been shown in recent
works (see [21]) that removing the unit-norm constraints can lead to undesired
singularities in the computed direction fields, and therefore the angle-based
representation and resulting optimization schemes are commonly used despite
the computational burden.

Previous works have primarily attacked the resulting optimization problem
via an ad-hoc greedy strategy implemented as a specialized solver (see [2,3]).
Our goal in what follows is to demonstrate how the problem can be cast in a
standard mathematical-optimization form, and we suggest several relaxations
that are especially tailored to modern mathematical-optimization solvers.

As the basis for our formulation, we use the problem suggested in [10],
where the direction-field design is used for inference of 3D shapes based on
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rough 2D concept sketches. Despite the specialized application domain, the
key optimization problem (see Section 6 and especially Eq. (5) in [10]) shares
the properties of the difficulties in designing smooth direction fields in general.
Therefore, we first present the optimization problem as it is stated in [10], and
then we describe several reformulations, with emphasis on linearization and
suitability for modern mathematical-optimization solvers.

We also note that the problem formulation in [10] is particularly simple
because the direction field is optimized on the 2D (image) domain, which
reduces some of the difficulties associated with dealing with curved surfaces.
As a result, below we refer to direction fields defined on “pixels” rather than
more generic points and assume that the underlying domain is a fixed 2D grid.

1 The optimization problem

Our goal in this section is to precisely set out a mathematical-optimization
formulation for the problem. The formulation is the one implied in [10], and
so we follow their terminology; also see [9].

We let I denote the set of pixels. We have continuous cross variables αi, βi
for each pixel i ∈ I, which we constrain as follows:

0 ≤ αi ≤
π

2
, for i ∈ I ; (1)

−π
4
≤ βi ≤

π

4
, for i ∈ I . (2)

Next for each pixel i ∈ I, we let Ni comprise the upper and right neighbors
of pixel i (when those neighbors exist). Then, for each pixel i ∈ I and j ∈ Ni,
we define variables pij ∈ Z.

Over these variable domains, we consider minimizing the energy function

Eangle := Esmooth + Estrokes + Eβ .

We have

Esmooth :=
∑
i∈I

∑
j∈Ni

Eijsmooth , (3)

where

Eijsmooth := 2

[(
αi − αj +

π

2
pij

)2
+ ((−1)pijβi − βj)2

]
. (4)

Note the integer variables pij as the exponent of −1 in (3); we will return to
this issue in the next section.

For a subset Sc ⊂ I , we have target angles θi, for i ∈ Sc , and so we define

Estrokes :=
∑
i∈Sc

wi (αi + βi − θi)2 , (5)

where the weights wi are chosen in a complicated manner (see [10]).
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Next,

Eβ := wβ
∑
i∈I

β2
i , (6)

where wβ is a weight coefficient.
Finally, typical values for the remaining constants are wstrokes = 1 (which

could rather be absorbed into the wi) and wβ = 10−6 .

2 Reformulation

It was observed in [10] that the manner in which the integer pij variables arise

in Eijsmooth is vexing:

“The additional difficulty in our case is that the integers pij contribute nonlin-
early due to expressions (−1)pij , which additionally make continuous relaxation
impossible without switching to complex numbers.”

Of course complex numbers are quite troublesome in optimization (see [16],
for example), and so we propose a reformulation, essentially by replacing each
variable pij ∈ Z by a pair of variables

pij,1 ∈ {0, 1} and pij,2 ∈ Z, for i ∈ I, j ∈ Ni . (7)

We do this by letting pij,1 be an indicator variable for the event that pij is odd,
and we let 2pij,2 be the “even part” of pij . Note that variations of this tech-
nique have been used before, but in completely different contexts (see e.g. [14,
13]). There is obviously a trade-off between increasing the number of variables
and reducing the number of nonlinear terms. Because of the current techno-
logical gap in solvers for linear versus nonlinear optimization problems, we
prefer doubling the number of integer variables in order to achieve a reduction
in nonlinearity.

Specifically, we write

pij = pij,1 + 2pij,2 ,

Note that this correspondence between pij ∈ Z and pairs pij,1 ∈ {0, 1}, pij,2 ∈
Z is bijective between Z and {0, 1} × Z.

Considering now (4), we replace

αi − αj +
π

2
pij

with

αi − αj +
π

2
(pij,1 + 2pij,2)

and we replace

(−1)pij

with

1− 2pij,1 .
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The first substitution preserves the linearity that is there, but the second one
linearizes a very troublesome term. Because pij,1 is the indicator function for
pij being odd, we can easily see that the substitution is an exact reformulation.
So, we have recast (4) as

Eijsmooth := 2

[(
αi − αj +

π

2
(pij,1 + 2pij,2)

)2
+ ((1− 2pij,1)βi − βj)2

]
. (8)

Next we take further advantage of the binary variables, reducing nonlin-
earity. The expression

((1− 2pij,1)βi − βj)2

expands to

β2
i + β2

j − 2βiβj −4β2
i pij,1 + 4βiβjpij,1 +4β2

i p
2
ij,1 .

But because pij,1 is a {0, 1} variable, we may replace p2ij,1 with pij,1 , and
the two above-underlined terms cancel, reducing the degree-4 polynomial to a
degree-3 polynomial with only a single cubic monomial.

Similarly, the expression(
αi − αj +

π

2
(pij,1 + 2pij,2)

)2
expands to

α2
i + α2

j − 2αiαj + παipij,1 − παjpij,1 + 2παipij,2 − 2παjpij,2

+
(π

2

)2
p2ij,1 + π2pij,1pij,2 + π2p2ij,2 .

Here again we may replace p2ij,1 with pij,1 , replacing a quadratic monomial
with a linear term.

So, we have our final form:

Eijsmooth :=2
[
α2
i + α2

j − 2αiαj + παipij,1 − παjpij,1 + 2παipij,2 (9)

−2παjpij,2 +
(π

2

)2
pij,1 + π2pij,1pij,2 + π2p2ij,2

+β2
i + β2

j − 2βiβj + 4βiβjpij,1
]
,

which we use in (3).
To be completely clear, we state the full model. We minimize

Eangle := Esmooth + wstrokesEstrokes + wβEβ ,

where wstrokesEstrokes + wβEβ has been defined, and we use (9) for the sum-
mands of Esmooth. Our variables are (1),(2),(7).

To compute, because we have products of two and three variables, we need
a nonconvex MINLO (mixed-integer nonlinear-optimization) solver like Baron

(see [20,18]). Also see [19] for recent guidance on handling triple products.
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3 A related formulation with more linearity

Another possibility is to use a 1-norm definition of Eij . This could well make
the optimization problem more tractable/scalable. But this might lead to some
anomalies in the solution, due to its well-known sparsity-inducing effect.

For this, we return to (8), and we instead consider

Eijsmooth := 2
[∣∣∣αi − αj +

π

2
(pij,1 + 2pij,2)

∣∣∣+ |(1− 2pij,1)βi − βj |
]
. (10)

This buys us a lot of linearity, at the cost of some additional variables and
constraints. As is standard, we let variable

sij ∈ R , i ∈ I , j ∈ Ni , (11)

stand in for ∣∣∣αi − αj +
π

2
(pij,1 + 2pij,2)

∣∣∣ ,
and variable

tij ∈ R , i ∈ I , j ∈ Ni , (12)

stand in for
|(1− 2pij,1)βi − βj | .

Then we have
Eijsmooth := 2 [sij + tij ] , (13)

with now the additional side constraints

sij ≥αi − αj +
π

2
(pij,1 + 2pij,2) ; (14)

sij ≥− αi + αj −
π

2
(pij,1 + 2pij,2) ; (15)

tij ≥(1− 2pij,1)βi − βj ; (16)

tij ≥(−1 + 2pij,1)βi + βj . (17)

This has drastically less nonlinearity than (9), with only the bilinear products
pij,1βi of (16) and (17) . Of course there is also the purely continuous convex
nonlinearity of (5) and (6), but this is unlikely to be very troublesome for
solvers.

To be completely clear, we state the full model. We minimize

Eangle := Esmooth + wstrokesEstrokes + wβEβ ,

where wstrokesEstrokes + wβEβ has been defined, and we use (13) for the sum-
mands of Esmooth. Our variables are (1),(2),(7),(11),(12), and we have the side
constraints (14),(15),(16),(17).

Finally, in a similar manner, we could also make 1-norm versions of Estrokes

and/or Eβ . That is, we let

γi ∈ R , i ∈ I , (18)
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stand in for |αi + βi − θi| and

ψi ∈ R , i ∈ I , (19)

stand in for |βi| , leading to the use of the 1-norm versions

Estrokes :=
∑
i∈Sc

wiγi (20)

and
Eβ :=

∑
i∈I

ψi , (21)

with the additional side constraints

γi ≥αi + βi − θi ; (22)

γi ≥− αi − βi + θi ; (23)

ψi ≥βi ; (24)

ψi ≥− βi . (25)

4 And even more linearity

Internally, nonconvex MINLO solvers (like Baron) attack the terms pij,1βi of
(16) and (17) via the well-known McCormick relaxation (see [15]). This would
replace occurrences of the product pij,1βi by new variables zij . Then, they
would (initially) convexify by employing the McCormick (linear) inequalities,
which manifest here as

zij ≥ −
π

4
; (26)

zij ≤ βi −
π

4
pij,1 +

π

4
; (27)

zij ≤
π

4
pij,1 ; (28)

zij ≥ βi +
π

4
pij,1 −

π

4
. (29)

These inequalities capture the tetrahedron that is the convex hull of the four
extremal points that satisfy the product equation. That is (βi , pij,1 , zij) =
(−π/4, 0, 0), (π/4, 0, 0), (−π/4, 1,−π/4), and (π/4, 1, π/4).

We have a lot of moving parts now, and it is worth highlighting some good
options. We would apply this McCormick relaxation to the 1-norm version
of Esmooth, enforcing still pij,1 ∈ {0, 1} and pij,2 ∈ Z. In doing so, we would
get a relaxation that is a convex MINLO problem, which should scale bet-
ter than a nonconvex one; here, software like Bonmin (see [4]) could well be
more appropriate than Baron. Further, if we also employed 1-norm versions of
Estrokes and Eβ , then we would get a relaxation that is a MILO (mixed-integer
linear-optimization) problem, which should scale even better; here, software
like Cplex (see [11]) or Gurobi (see [8]) may be more appropriate. In both of
these scenarios, we are only solving a relaxation, so it remains to be seen if that
produces good solutions or whether a more demanding approach is needed.
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5 Toward computing

Practical application of our ideas must be sensitive to scaling. Therefore, we
recommend initially staying in the realm of MILO and NLO (nonlinear opti-
mization) as this has the best immediate chance of scaling to the size needed
for practical use.

Our MILO model is then as follows.

minimize
∑
i∈I

∑
j∈Ni

2(sij + tij) + wstrokes

∑
i∈Sc

wiγi + wβ
∑
i∈I

ψi ,

subject to:

sij ≥ αi − αj +
π

2
(pij,1 + 2pij,2) , for i ∈ I, j ∈ Ni ;

sij ≥ −αi + αj −
π

2
(pij,1 + 2pij,2) , for i ∈ I, j ∈ Ni ;

tij ≥ βi − 2zij − βj , for i ∈ I, j ∈ Ni ;

tij ≥ −βi + 2zij + βj , for i ∈ I, j ∈ Ni ;

γi ≥ αi + βi − θi , for i ∈ I ;

γi ≥ −αi − βi + θi , for i ∈ I ;

ψi ≥ βi , for i ∈ I ;

ψi ≥ −βi , for i ∈ I ;

zij ≥ −
π

4
, for i ∈ I, j ∈ Ni ;

zij ≤ βi −
π

4
pij,1 +

π

4
, for i ∈ I, j ∈ Ni ;

zij ≤
π

4
pij,1 , for i ∈ I, j ∈ Ni ;

zij ≥ βi +
π

4
pij,1 −

π

4
, for i ∈ I, j ∈ Ni ;

0 ≤ αi ≤
π

2
, for i ∈ I ;

− π

4
≤ βi ≤

π

4
, for i ∈ I ;

pij,1 ∈ {0, 1} and pij,2 ∈ Z, for i ∈ I, j ∈ Ni .

We wish to emphasize that we have relaxed the nonlinear constraints zij =
pij,1βi . Therefore, a prudent approach might be to solve this MILO relaxation
(using Cplex or Gurobi) for the purpose of getting good values for the discrete
variables pij,1 , pij,2. Then, with those variables fixed, solve the following box-
constrained convex-quadratic optimization problem:

minimize
∑
i

∑
j∈Ni

2

[(
αi − αj +

π

2
(pij,1 + 2pij,2)

)2
+ ((1− 2pij,1)βi − βj)2

]
+ wstrokes

∑
i∈Sc

wi (αi + βi − θi)2 + wβ
∑
i∈I

β2
i ,
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subject to:

0 ≤ αi ≤
π

2
, for i ∈ I ;

− π

4
≤ βi ≤

π

4
, for i ∈ I .

There are many very-efficient approaches for this; see [7], for example. Alter-
natively, we could utilize a general-purpose NLO solver like Ipopt (see [22]).

6 Conclusions and outlook

We have presented a variety of principled optimization models for the problem
of extrapolating curvature lines in rough concept sketches. It remains to be
seen if any of these can find practical use. Our goal in this paper has been to
expose our ideas with the hope that some of the ideas may find their way into
computer-graphics software tools.

We believe that similar ideas to the ones we presented can be developed for
other problems in computer graphics. We are pursuing this direction ourselves,
and we hope that our work will inspire others as well.
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