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Modeling Variability in Populations of Cells
using Approximated Multivariate Distributions

Matthieu Pichené, Sucheendra K. Palaniappan, Eric Fabre, and Blaise Genest

Abstract—We are interested in studying the evolution of large homogeneous populations of cells, where each cell is assumed to be
composed of a group of biological players (species) whose dynamics is governed by a complex biological pathway, identical for all cells.
Modeling the inherent variability of the species concentrations in different cells is crucial to understand the dynamics of the population. In
this work, we focus on handling this variability by modeling each species by a random variable that evolves over time. This appealing
approach runs into the curse of dimensionality since exactly representing a joint probability distribution involving a large set of random
variables quickly becomes intractable as the number of variables grows. To make this approach amenable to biopathways, we explore
different techniques to (i) approximate the exact joint distribution at a given time point, and (ii) to track its evolution as time elapses.

We start with the problem of approximating the probability distribution of biological species in a population of cells at some given
time point. Data come from different fine-grained models of biological pathways of increasing complexities, such as (perturbed) Ordinary
Differential Equations (ODEs). Classical approximations rely on the strong and unrealistic assumption that variables/species are
independent, or that they can be grouped into small independent clusters. We propose instead to use the Chow-Liu tree representation,
based on overlapping clusters of two variables, which better captures correlations between variables. Our experiments show that the
proposed approximation scheme is more accurate than existing ones to model probability distributions deriving from biopathways.

Then we address the problem of tracking the dynamics of a population of cells, that is computing from an initial distribution the evolution
of the (approximate) joint distribution of species over time, called the inference problem. We evaluate several approximate inference
algorithms (e.g. [14], [17]) for coarse-grained abstractions [12], [16] of biological pathways. Using the Chow-Liu tree approximation, we
develop a new inference algorithm which is very accurate according to the experiments we report, for a minimal computation overhead.
Our implementation is available at https://codeocean.com/capsule/6491669/tree.

Index Terms—Biological pathways, population of cells, multivariate distributions.
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1 INTRODUCTION

MULTI-SCALE biological systems are challenging to
model and analyze (see [10] for an overview). In this

paper, we are interested in the dynamics of a population of
tens of thousands of cells, where each cell is characterized
by the concentration of biological species, and governed
by the dynamics of a given biological pathway. In this
context, capturing the variability among the cells w.r.t to
the concentrations of species in the pathway is crucial
to understand how the population will evolve [8]. For
instance, consider the process of apoptosis [1] affecting a
population of cells: Assume that half of the cells have high
concentration of anti-apoptotic molecules and the other half
have low concentration of anti-apoptotic molecules. Under
an apoptotic drug, this population will not behave in the
same way as a population where every cell is assumed to
have an average concentration of anti-apoptotic molecules: in
one case, almost all cells die (because average concentration
of anti-apoptotic molecules is usually not enough to make
the cell survive), while in the other case, around half of the
cells survive. A naive approach to study such populations
would be to track the concentrations of species in every single
cell, but this obviously leads to extremely large models, and
hence to very intensive computations.
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In order to model a population of cells in a tractable
manner, we propose to use multivariate probability distri-
butions, where random variables represent the concentra-
tions of species in the pathway, one variable per species.
Handling such a joint probability distribution exactly is
usually intractable, due to the curse of dimensionality:
biological pathways usually have tens of variables. To make
this approach tractable, we explore different techniques to
approximate the original joint distribution by meaningful
and tractable ones. The idea is to consider families of joint
probability distributions on large sets of random variables
that admit a compact representation, and then select within
this family the one that best approximates the desired
intractable one.

In this paper, we consider several approximate representa-
tions of multivariate distributions, and explore their interest
in the particular context of populations of cells governed by
a biological pathway. Our approximation scheme consists in
imposing conditional independence properties to the multi-
variate distribution: the more conditional independence, the
more compact is the representation of this joint distribution.
For instance, in the extreme fully factored (FF) case where one
assumes that all variables are unconditionally independent,
the joint distribution is simply the product of marginals on
every single variable. The key to our approach is thus to
select the most relevant correlations between variables and
assume the rest to be conditionally independent. In order to
measure correlation strength, we use Mutual information (MI)
which naturally measures correlations between pairs of vari-

https://codeocean.com/capsule/6491669/tree


2

ables. This orients us towards Information Theory to measure
the approximation accuracy on probability distributions.

Classical approximations such as the fully factored
approximation can be used to model the dynamics of a
biopathway, but it leads to unsatisfactory results as it drops
every correlation between species, in particular meaningful
ones such as those that result from invariants of chemical
reactions. Similarly, we can use disjoint clusters representa-
tions which partitions variables into clusters: within each
cluster, variable correlations are preserved, but clusters are
assumed independent. One can think of it as an FF approach
by blocks.

In this paper, we go further and drop the assumption
that clusters should be disjoint (and thus independent).
Specifically, we consider clusters of variables organized into
a tree-shape structure. In the case where clusters are pairs of
variables, this tree is obtained by taking random variables
as nodes, and placing an edge between any pair of variables
that form a cluster. A tractable algorithm [5] allows one to
compute the optimal approximation of any distribution by
a tree of clusters of two variables, called the tree-clustered
approximation (TCA). The approximated joint distribution is
fully determined by the marginals over each selected cluster
of two variables, which offers a very compact encoding of this
joint distribution (less than 800 values in our experiments).

The expression of the joint probability distribution of
a TCA is more complex than classical approximations,
because clusters are not disjoint. Nevertheless, we show that
computations involving the TCA can be performed directly
and efficiently over its compact representation. In particular,
we show that any marginal over k out of n total variables
can be computed with time complexity O(n · vk), where v is
the number of values each variable can assume.

We experiment on populations of cells modeled by sev-
eral fine-grained population models of pathways. Population
models are not so frequent, as usually a generic ”average cell”
model is used, assuming that every cell in the population
follows this model. However, there are cases where the
population does not behave as a copy of a cell. For instance,
in the TRAIL-induced apoptosis pathway [1], some cells die
and others do not: no average cell model could be used. In
this work, we use three biological models of populations:
we consider the hybrid Stochastic-Deterministic model [2]
of the TRAIL-induced apoptosis pathway, and perturbed
ODE models [12] of the EGF-NGF pathway [4] and of a
simple catalytic reaction. In our experiments, TCA succeeds
in capturing most correlations between pairs of variables
involved in these biopathways, unlike with disjoint clusters.

Beyond modeling a population of cells at a given time
point by the (approximate) distribution of species concentra-
tions in cells, we also explore the interest of such approximate
distributions for analyzing how a population will evolve
when driven by a certain pathway. One solution would be
to randomly generate tens of thousands of configurations
according to the initial distribution, numerically integrate
the ODEs from these configurations, compute the clusters
of interest from the obtained configurations, and statistically
compute the probabilities to be in each cluster configuration.

Instead, we use coarse-grained abstractions of the biolog-
ical pathways [9], [12], [16], and more precisely Dynamic
Bayesian Networks (DBNs). Compared to ODEs that require a

fine time scale, DBNs allow us to focus on relevant (subsam-
pled) time points. In [16], it has been shown that simulating
a DBN is much faster than simulating the fine-grained
model it abstracts, for comparable prediction performances.
DBNs are attractive since computing distributions reached
at time t from an initial distribution at time 0 can be done
efficiently through inference algorithms. While it is intractable
to perform inference exactly, one can resort to approximate
inference algorithms, such as Factored Frontier (FF1) [14] and
Hybrid Factored Frontier (HFF) [17]. In short, FF represents
the probability distribution in a fully factored form in order
to perform very fast computations. HFF preserves a small
number of joint probabilities of high value (called spikes),
plus an FF representation of the remaining of the distribution.
The more spikes, the more accurate the approximation, and
the slower the HFF inference.

Our last contribution is an approximated inference algo-
rithm, using TCA to represent the joint distribution at each
time point. We developed a very efficient version of this
algorithm, and we provide an error analysis for it. Over the
biological pathways we considered, inference using TCA is
very accurate, while HFF generates sizable errors, even with
a considerable number of spikes (32k). Further, inference
using TCA is faster than HFF, even with few spikes (3k).
Both FF and disjoint-clusters are fast but quite inaccurate.

The paper is organized as follows. The next section
recalls basic results about the Chow-Liu approximation of
multivariate distributions. Section 4 introduces our model
of dynamic Bayesian networks to model the evolution of
species concentrations over time. It explains how the true
multivariate distribution at each time step can be recursively
approximated, in the Chow-Liu formalism. Section 5 presents
the biological pathway considered in our experimental set-
ting, and Section 6 reports the performances of our approach
and compares them to alternate approaches previously
proposed in the literature.

2 REPRESENTING MULTIVARIATE DISTRIBUTIONS

In this section, we consider a joint probability distribution
over a set X = {X1, ..., XN} of N random variables (for
instance concentrations of N molecules at some given
time point). We assume that these variables can assume
discrete values in the same set V (for instance, V =
{low,medium,high}). In our case, the size |V | of V will be
small, typically around 5, while the sizeN = |X| ofX would
be larger, typically around 30. We assume that continuous
random variables (e.g. V = R+) are already discretized: there
exist many quantization schemes to discretize continuous
random variables with minimal distortion, for instance the
Lloyd-Max algorithm (see [16] for a discussion).

Notation. Let I = 1, 2, ..., N be the index set of the
variables in X , and let J ⊆ I . We denote by XJ the tuple of
variables (Xi, i ∈ J), and with a slight abuse of notation we
identify X with XI . For partition I = J ]K, we also write
X = XI = (XJ , XK). We denote by x = xI = (xi, i ∈ I)
a tuple of values in V I , that is a possible value for random
vector X . Similarly, we denote by xJ = (xi, i ∈ J) ∈ V J
a possible value for XJ . Let P be a joint distribution on X .

1. Factored Frontier uses the Fully Factored approximation. Both have
the same acronym FF
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It is fully defined by the set of (joint) likelihoods P (x) for
x ∈ V I . The marginal distribution over XJ is defined by the
likelihoods P (xJ) =

∑
xK∈V K P (xJ , xK) for all values xJ

assumed by the random variable XJ . We use notation P (x)
instead of P (X = x) when it is unambiguous.

Encoding a probability distribution on X by the list of its
joint likelihoods requires |V |N values. Throughout the paper,
we use the distribution P = ∆0 for X = {X1, X2, X3} and
V = {0, 1}, with the following joint likelihoods:

• P (X1 = 0, X2 = 0, X3 = 0) = 0.1
• P (X1 = 0, X2 = 0, X3 = 1) = 0.03
• P (X1 = 0, X2 = 1, X3 = 0) = 0.3
• P (X1 = 0, X2 = 1, X3 = 1) = 0.17
• P (X1 = 1, X2 = 0, X3 = 0) = 0.1
• P (X1 = 1, X2 = 0, X3 = 1) = 0.1
• P (X1 = 1, X2 = 1, X3 = 0) = 0.1
• P (X1 = 1, X2 = 1, X3 = 1) = 0.1

Clearly, the joint likelihoods representation quickly be-
comes intractable as the number of variables grows. We
explore below approximations of such distributions that
admit more compact representations.

2.1 Approximate Representations
There exist numerous approaches to approximate a proba-
bility distribution P over a large set of random variables
X = {X1, ..., XN}. The first obvious one consists in assum-
ing that all random variables are independent. In this family
of distributions, the closest to the original P is simply the
product of the marginal distributions of each single variable,
also called the fully factored approximation PFF:

PFF(x) =
N∏
i=1

P (xi) (1)

PFF is naturally represented by the list of individual like-
lihoods for each variable, resulting in N · |V | values to
store. For our running example P = ∆0, this yields the
representation:

• P (X1 = 0) = 0.6
• P (X1 = 1) = 0.4
• P (X2 = 0) = 0.33
• P (X2 = 1) = 0.67
• P (X3 = 0) = 0.6
• P (X3 = 1) = 0.4

• PFF (X1 = X2 = X3 = 0) = 0.6 · 0.33 · 0.6 = 0.1188

The main drawback of the PFF approximation is to discard
potentially important correlations between variables, such
as those deriving from mass preservation principles in the
chemical reactions of a biological pathway. To circumvent this
difficulty, some authors have suggested to group correlated
random variables into clusters that would be considered
as a single random variable. This amounts to requesting
the PFF factorization by blocks. Formally, given a partition
I = K1 ] ... ] Kc of the indices, one defines the disjoint
clusters approximation as:

Pcluster(x) =
c∏
j=1

P (xKj
) (2)

If each cluster is of size m (with c = N
m ), Pcluster needs

|X|
m ·|V |

m values to be fully defined. On our running example,

assuming two clustersK1 = {1, 2} andK2 = {3}, this yields
the representation:

• P (X1 = 0, X2 = 0) = 0.13
• P (X1 = 0, X2 = 1) = 0.47
• P (X1 = 1, X2 = 0) = 0.2
• P (X1 = 1, X2 = 1) = 0.2

• P (X3 = 0) = 0.6
• P (X3 = 1) = 0.4

In general, however, any pair of random variables
(species) involved in a biological pathway exhibits mean-
ingful correlation (see the experimental work in Section 6).
The independence between variables or between clusters of
variables imposed by the two approximations above is thus
inappropriate, as it discards some important information.
We propose an alternate approach that relies on non-disjoint
clusters I = K1 ∪ ... ∪Kc, which will better approximate the
correlations between species. This approximation requires
c · |V |m values, that is |V |m values for each of the c clusters
of m variables. Notice that the number c of clusters will now
be larger than N

m as clusters are non-disjoint. For our running
example again, with clusters K1 = {1, 2} and K2 = {2, 3},
this yields the list

• P (X1 = 0, X2 = 0) = 0.13
• P (X1 = 0, X2 = 1) = 0.47
• P (X1 = 1, X2 = 0) = 0.2
• P (X1 = 1, X2 = 1) = 0.2
• P (X2 = 0, X3 = 0) = 0.2
• P (X2 = 0, X3 = 1) = 0.13
• P (X2 = 1, X3 = 0) = 0.4
• P (X2 = 1, X3 = 1) = 0.27

In such a setting, the closed-form expression of the ap-
proximate distribution PNDC (for non-disjoint clusters) differs
much from (2), as some variables appear in several clusters,
but must only be accounted once for their contribution. For
our running example, as variable X2 appears in two clusters,
one has:

PNDC(x) =
P (x1, x2)P (x2, x3)

P (x2)
(3)

or equivalently using conditional probabilities:

PNDC(x) = P (x1, x2)P (x3|x2) (4)

This amounts to requiring that X1 and X3 are conditionally
independent given X2, but it does not cancel out the
correlation between X1 and X3. We show below how this
expression generalizes.

2.2 Cluster Tree Distributions
The distributions we consider in this paper rely on a choice of
(non-disjoint) clusters I = K1 ∪ ... ∪Kc that cover the index
set I of random variables (Xi, i ∈ I). It is further required
that these clusters organize into a tree. For simplicity, from
now on we will only consider clusters of size at most 2. An
overview of the general case can be found in Appendix 1.

Formally, let T = (V,E) be the undirected graph with:
• V = I , the set of indices of variables, and
• E = {K1, ...,Kc}, the set of clusters of size at most 2,

where each cluster Ki is a pair {u, v} ⊆ I . We require that T
is a tree: there is no cycle, that is no sequence i1, ..., ik ∈ I
with k ≥ 3 s.t. ∀j ≤ k, {ij , ij+1} ∈ E and {ik, i1} ∈ E.
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For such trees, the approximated probability distribution,
denoted PNDC (for non-disjoint clusters), is the following:

PNDC(x) =

∏c
j=1 P (xKj )∏N

i=1 P (xi)Ci−1
(5)

where Ci is defined as the number of clusters Kj containing
index i: Each variable Xi separates the tree T into Ci
branches which are conditionally independent given Xi for
distribution PNDC. This expression directly generalizes (3).
Also, it is easy to check that this expression defines a
probability distributions, by considering an asymmetric
formula using conditional probability, generalizing (4), which
considers edges of the tree in postorder.

Another essential observation is that PNDC coincides with
P on each cluster Kj . Specifically, one has PNDC(XKj

) =
P (XKj

), for all cluster Kj . This is clearly visible in (4): one
gets PNDC(x1, x2) = P (x1, x2) by marginalizing out x3.

2.3 Obtaining Optimal Clusters

A central issue in building clustered approximations of P
(disjoint or not) is to select optimal clusters, that is clusters for
which PNDC will best approximate the real joint probability
distribution P . In this paper, we use the simple Chow-Liu
algorithm [5] given in Algorithm 1 to select non disjoint
clusters of size 2 forming a tree. Put informally, it quantifies
the strength of correlations using Mutual Information (MI)
between two variables X1, X2, defined as

MI(X1, X2) =
∑
x1,x2

P (x1, x2) log
P (x1, x2)

P (x1)P (x2)

Intuitively, it selects the most strongly correlated pairs of
variables first, and drops a pair when it would create a cycle.
For our running example, one has MI(X1, X2) ≈ 0.0625,
MI(X2, X3) ≈ 5.44 ∗ 10−5 and MI(X1, X3) ≈ 0.02. The
Chow-Liu procedure would thus select edges K1 = {1, 2}
and K2 = {1, 3}, creating a tree with root 1 and two
children 2 and 3. The direct correlation between X2 and
X3 is thus dropped, as it would create cycle (1, 2, 3, 1).
Notice however that an indirect correlation between X2 and
X3 does exist, through variable X1. Indeed, variables X2

and X3 are not independent for PNDC: PNDC(X2, X3) =∑
x1
P (X2|x1)P (X3|x1)P (x1) 6= P (X2)P (X3). We will

actually discuss in detail the efficient derivation of all such
pairwise marginals PNDC(X2, X3) in Section 3.

One may wonder how good the choice of non-disjoint
clusters given by the Chow-Liu algorithm is. In Section 6, we
will see that it provides twice as much information as disjoint
clusters on several biological pathways. Theoretically, one
can show that this choice is optimal over trees of non-disjoint

Algorithm 1: Chow-Liu Algorithm.
Computes an optimal tree of clusters.

For each pair {Xi, Xj} in X , compute MI(Xi, Xj).
Sort edges {i, j} by decreasing value of MI(Xi, Xj).
Starting with an empty graph as tree T , repeat:

- consider the next edge {i, j} in the list
- if {i, j} does not close a cycle in T , add it to T

clusters of size 2, when considering the Kullback-Leibler
divergence of two distributions P,Q, defined as:

KL(P,Q) =
∑
x∈V X

P (x) log
P (x)

Q(x)
(6)

KL(P,Q) is always positive and vanishes iff Q = P .
Proposition 1. Let PTNDC the probability distribution derived

by (5) and associated with clusters from a tree T = (I, E).
Let T be the Chow-Liu tree. It satisfies:

KL(P, PTNDC) = min
T ′

KL(P, PT
′

NDC) (7)

Proof: Given criterion (6), and for clusters I = K1 ∪
... ∪Kc defining a cluster tree, one can readily observe that
the optimal Q must satisfy Q(xKi

) = P (xKi
) for every value

xKi
and any cluster Ki. Which corresponds to the implicit

choice made in all approximations of Section 2.1. Moreover,
one has:

KL(P, PFF) = KL(P, PT
′

NDC) +KL(PT
′

NDC, PFF) (8)

The proof of the first point can be found in [5]. The second
point derives from [6]. Observe that it holds for all cluster tree
approximations of P , which proves that PNDCT ′ is always a
better approximation of P than PFF. �

Notice that it is possible to define PNDC for structures
more complex than trees (e.g. triangulated graphs with
clusters of size 3, see Appendix 1). Starting from the Chow-
Liu tree and adding edges can only improve the resulting
approximation of P . However, there is no simple procedure
that would give the optimal triangulated graph: this problem
was proved to be NP-complete. Nevertheless, generalization
of the Chow-Liu algorithm can perform well [7].

3 HANDLING PNDC WITH LOW COMPLEXITY

Cluster-tree distributions enjoy a compact encoding as they
are fully determined by their marginals on clusters (Ki)1≤i≤c
(see Sec. 2.2). However, to fully benefit from the closed-
form expression (5) and reduce the complexity of standard
computations, on needs carefully designed algorithms.

In this section, we examine the derivation of the marginal
PNDC(XJ) on a subset of variables XJ , for J ⊆ I . This
operation will be instrumental in the sequel. If each variable
Xj can assume |V | values, there are |V ||J| values to compute.
However, brute forcing computing them using the full
distribution PNDC(X) over all variables would results to
|V ||I| intermediate computations, which is not affordable in
practice and would kill any interest for (5). We show here
that a careful use of (5) can actually avoid this complexity
explosion.

Let P be a cluster tree distribution on X = (Xi, i ∈ I),
where clusters have size 2. In other words, the graph T =
(I, E) associated to these clusters is a tree, and P is fully
determined by its marginals P (Xi, Xj) on the edges {i, j}
of this tree, see (5).

Consider a partition I = J ] K of indices. We are
interested in computing the marginalization of P on XJ ,
that is

P (xJ) =
∑
xK

P (xJ , xK)
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for all values xJ ∈ V |J| of XJ . Computing the P (x) for all x
and deriving P (XJ) as a marginal is clearly not an option.
One should rather perform clever marginalization in the
product form (5). This takes the form of a classical message
passing algorithm along the edges of T , that we describe
below.

Let r be a node of J , that we will fix as the root of tree
T . From there, one can easily define a parent relation (r has
no parent, and every other node i has exactly one parent j
with {i, j} a cluster). For a node i, we denote by S(i) its set
of children. Leaves are nodes i such that S(i) = ∅. We also
denote by D(i) the set of descendants of node i, that is the
set of children of i union the children of children of i, etc. We
will proceed in a bottom-up fashion on the tree.

We define the message from i to j on edge {i, j} as

Mi,j(Xj) = P (XJ∩D(i)|Xj) (9)

As a conditional distribution, this is a function of
(XJ∩D(i), Xj), but we only materialize it as a function of
Xj for simplicity of notations.

We now define a bottom-up message passing algorithm.
It is initiated on the leaves of tree T and progresses towards
r, thanks to the following forwarding rule. Let i ∈ I be a
vertex in T that has received a message from each of its
children in S(i). Let j be the parent of i. If i ∈ J , then

Mi,j(Xj) = P (Xi|Xj) ·
∏

k∈S(i)

Mk,i(Xi) (10)

otherwise

Mi,j(Xj) =
∑
xi

P (xi|Xj) ·
∏

k∈S(i)

Mk,i(xi) (11)

In other words, if i ∈ J , Xi is preserved as one of the free
variables in the message, otherwise Xi is marginalized out.
In both cases, the operation introduces the new variable Xj .
These expressions rely on the fact that variables sitting in
different subtrees around i are conditionally independent
given Xi for distribution P . Observe also that the message
propagation rule (10,11) only requires P (Xi, Xj), i.e. it
operates on the compact representation (5) of P by its
marginals on clusters (edges of T ).

The algorithm terminates when the root r has received
messages from all its children, thanks to the following merge
rule:

P (XJ) = P (Xr) ·
∏

k∈S(r)

Mk,r(Xr) (12)

As all nodes in I must be visited once and messages have
size bounded by |V ||J| (as r ∈ J), this yields the following
result.
Proposition 2. Let P (XI) be a cluster tree distribution where

all clusters have size 2. Let J ⊆ I . One can compute the
marginal distribution P (XJ), i.e. |V ||J| values, in time
O(|I| · |V ||J|).

4 INFERENCE FOR STOCHASTIC DISCRETE AB-
STRACTIONS OF BIOLOGICAL PATHWAYS

This section describes a specific stochastic abstraction of a
biological pathway, under the form of a Dynamic Bayesian

Network (DBN) which can model the dynamics of biological
species along time (see next section). We then demonstrate
how the approximate representation of distributions devel-
oped in Section 2 can be used to perform approximate
inference on these DBN models. Comparing the results
of the different approximations for inference is a good
way to quantify how accurate these approximations are for
conveying important information about the population over
time, beyond raw mutual information numbers.

4.1 Dynamic Bayesian Networks
Our objective is to model the evolution of variables
(Xi, i ∈ I) along time, for time ranging over discrete values
{0, 1, ..., T}. We denote by Xt = (Xt

i , i ∈ I) the (vector of)
random variables at time t.

P (Xt|X0 . . . Xt−1) = P (Xt|Xt−1) (13)

The transition probability is then requested to factorize as

P (Xt|Xt−1) =
∏
i∈I

P (Xt
i |Xt−1) (14)

which captures the fact that the variables (Xt
i , i ∈ I) at time

t are independent given Xt−1. Notice that these individual
transition probabilities P (Xt

i |Xt−1) may depend on time t.
Terms P (Xt

i |Xt−1) are still involving too many variables
(|I|+ 1) for practical computations (|V ||I|+1 entries). To
mitigate that, DBNs further require that each Xt

i only
depends on a small subset of variables Xt−1

ı̂ from time
point t− 1, that is:

P (Xt
i |Xt−1) = P (Xt

i |Xt−1
ı̂ ) (15)

The index set ı̂ ⊆ I is called the parent set of each index i.
By extension, Xt−1

ı̂ = (Xt−1
j , j ∈ ı̂) are the parents of Xt

i .
Notation ı̂ in (15) implicitly captures the assumption that
parent sets do not depend on time t. In the sequel, we either
use notation P (Xt

i |X
t−1
ı̂ ) or P t(Xi|Xı̂) for (time-varying)

transition probabilities. In practice, values P t(xi|xı̂) are
stored in so-called Conditional Probability Tables (CPT).

The initial distribution P 0(X) = P (X0) assume indepen-
dent variables, i.e.

P 0(X) =
∏
i∈I

P 0(Xi) (16)

The distribution P t(X) = P (Xt) of variables at time t then
satisfies the following recursion:

P t(X) =
∑
x

P t−1(x) ·
∏
i∈I

P t(Xi|xı̂) (17)

The inference problem consists in computing marginal
distributions P (Xt

i ) = P t(Xi) for each variable index i ∈ I
and each time instant 1 ≤ t ≤ T . The main difficulty is that
the independence assumed at time t = 0 in (16) no longer
holds at successive time instants. Even for small parent sets
in (15), correlations propagate in space and variables in Xt

quickly become all correlated to one another. Consequently,
recursion (17) can not be performed exactly, and one needs to
replace all P t−1(X) by approximations. While the Factored
Frontier (FF) method imposes factorization (16) to hold at any
time step, we rather elaborate on the results of Section 2 to
better preserve meaningful correlations.
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4.2 A Generic Approximate Inference Algorithm

The inference problem relies on recursion (17), which re-
quires an integration over values of Xt−1. For complexity
reasons, this integral can not be directly performed on any
distribution P t−1, just like P t can not be fully determined.
We therefore replace each P t by an approximation Bt, called
the belief state at time t.

Let B be a general probability distribution on X . We de-
note by App(B) an approximation of B under a simpler and
more manageable form. The Factored Frontier (FF) algorithm
[14] makes the choice App(B) = BFF, where BFF is fully
determined by the B(Xi), i ∈ I . In this paper, we refine
this approach using App(B) = BNDC assuming a cluster
tree defined by clusters K1 ∪ ... ∪Kc = I ; so BNDC is fully
determined by the B(XKi

), 1 ≤ i ≤ c, see (5). Recall that
these clusters are pairs {i, j} and form a tree Gt = (I, Et),
so c = |I| − 1. The tree Gt is computed off-line before the
inference algorithm, by using the Chow-Liu algorithm from
data obtained from some simulations of the DBN over time
using [15]. Observe that the tree Gt = (I, Et) may change
at each time point t. Each Bt is fully determined by the
marginals Bt(Xi, Xj) for {i, j} ∈ Et, see Sec. 2.2.

Recursion (17) then becomes

Qt(X) =
∑
x

Bt−1(x) ·
∏
i∈I

P t(Xi|xı̂) (18)

Bt(X) = App(Qt(X)) (19)

These relations can now be further simplified thanks to the
structural properties of the Bt. First, observe that Bt defined
by (19) is fully determined by the Bt(Xi, Xj) = Qt(Xi, Xj)
for {i, j} ∈ Et, therefore (18) should actually aim at deriving
these pairwise marginals instead of the full Qt(X). Further,
by specializing (18) one gets:

Bt(Xi, Xj)

=
∑
x

Bt−1(x) · P t(Xi|xı̂) · P t(Xj |x̂)

=
∑

xı̂∪̂,xJ

Bt−1(xı̂∪̂, xJ) · P t(Xi|xı̂) · P t(Xj |x̂)

=
∑
xı̂∪̂

Bt−1(xı̂∪̂) · P t(Xi|xı̂) · P t(Xj |x̂) (20)

where J = I \ (̂ı ∪ ̂), therefore the integration space reduces
to the values of parents of Xi and Xj . Finally, the marginal
distribution Bt−1(Xı̂∪̂) required by (20) can be derived with
reasonable complexity thanks to Prop. 2.

All these operations are summarized in Algorithm 2, that
approximately solves the inference problem.
Theorem 1. For App the approximation based on successive

trees Gt = (I, Et), Algo. 2 inductively computes BT

from B0 in time O(T · |I| · |V |p · (|I| + |V |2)), where
` = maxt,{i,j}∈Et |̂ı ∪ ̂|.

Proof: The maximum in the definition of ` is taken
over all clusters {i, j} that appear in Algo. 2, therefore over
edges of all trees Gt = (I, Et). The correctness of Algo. 2
comes directly from (20). The complexity follows from:
• Factor T comes from the induction over T time steps.
• The number of clusters (pairs of variables) at each time

step is upper bounded by |I|, which gives the first |I|.

Algorithm 2: Clustered Factored Frontier (CFF)

Input : Trees Gt = (I, Et), for each time point t ≤ T
Input : Parents Xı̂ for each variable Xi, i ∈ I
Input : Local transition probabilities P t(Xi|Xı̂)i,t
Input : Initial distributions P 0(Xi, Xj) for {i, j} ∈ E0

Init :B0(Xi, Xj) = P 0(Xi, Xj) for {i, j} ∈ E0

for t ∈ [1..T ] do
for {i, j} ∈ Et do

compute Bt−1(Xı̂∪̂) by the message passing
algorithm on Gt−1 of Section 3,

set Bt(Xi, Xj) =∑
xı̂∪̂

Bt−1(xı̂∪̂) · P t(Xi|xı̂) · P t(Xj |x̂)

• For each cluster {i, j}, (20) must compute |V |2 values
Bt(xi, xj), and each one requires an integration over
at most |V |` values Bt−1(xı̂∪̂), whence the complexity
|V |`+2. Then the computation of Bt−1(Xî∪̂) has com-
plexity upper bounded by |V |` · |I|, thanks to Prop. 2.

The overal cost for cluster {i, j} is thus |V |`(|V |2 + |I|). �
We show in the supplementary material (Appendix 2)

how to optimize the algorithm and obtain a complexity
exponential in max(|̂ı|, |̂|) instead of exponyential in |̂ı ∪ ̂|
for Theorem 1.

Practical considerations

In practice, the transition probabilities P t(Xi|Xı̂) are matri-
ces of dimension |V |×|V ||̂ı|. They derive from data produced
by fine grain models, and thus may exhibit singularities, such
as zero rows in the case where the conditioning value xı̂ was
never observed in the data (see [15] for a discussion). In
addition, an expression like

Bt(Xi) =
∑
xı̂

P t(Xi|xî)B
t−1(xı̂) (21)

and a fortiori (20) involves a large number of small values,
and may thus suffer from rounding errors. We thus introduce
a renormalization in (21) to ensure that it yields a proper
probability distribution on variable Xi, which takes the form

B̃t(Xi) ∝
∑
xı̂

P t(Xi|xî)B
t−1(xı̂) (22)

In the same way, the central relation of Algo. 2

Bt(Xi, Xj) =
∑
xı̂∪̂

Bt−1(xı̂∪̂) · P t(Xi|xı̂) · P t(Xj |x̂) (23)

may not sum to one and furthermore, when marginalizing
out Xj in Bt(Xi, Xj) and Xk in Bt(Xi, Xk), one may
not get the same marginal Bt(Xi). We therefore rely on
(22) (renormalized) to compute the expected marginals
B̃t(Xi) and B̃t(Xj) at time t, and then require from the
term Bt(Xi, Xj) to satisfy both of these marginals. This
is performed by the standard Iterative Proportional Fitting
Procedure (IPFP). In our experiments, convergence (up to
numerical noise) took place in 5 to 6 iterations of IPFP.



7

5 POPULATIONS GOVERNED BY BIOPATHWAYS

In this section, we present the pathways on which we
will perform our experiments, both for representing the
distribution (see Section 2) and for tracking the dynamics
of the system (see Section 4). We consider two types of
population models: We use one mathematical model [2]
specifically developed for populations of biological cells,
involving the generation of native proteins, which thus gives
different results on different cells because of stochasticity
of gene activation. We also use perturbed ODE models
from [12], using slightly different reaction speeds and initial
concentrations in each cell, around nominal values. We start
by explaining how to obtain a DBN abstraction from a
population model, independent on its exact formalization.

5.1 DBN Models as Abstractions of Biological Systems
Liu et al. developed a DBNs abstraction method [11], [12]
that we extended in [16], from models describing biopathway
dynamics. Its main features are illustrated by a simple
enzyme kinetics system shown in Fig. 1.

We consider a generic model for the dynamics of a
pathway using a system of equations xt+dt = f(xt) (e.g.
ODEs), where f can exhibit stochastic behaviors to model
randomness. Usually, the concentration xt+dti of molecular
species i at time t+ 1 only depends on few other molecular
species at time t, the ones producing or reacting directly with
i. These molecular species are called the parents ı̂ of i, and
we have xt+dti = fi(x

t
ı̂). Different cells of the population

can use (slightly) different functions f to model (slightly)
different behaviors (e.g. perturbed ODEs), but the parent
relation is assumed to be fixed over the population of cells.

The dynamics of the system is assumed to be of interest
only for discrete time points up to a maximal time point.
Let us assume that time points are denoted as {0, 1, . . . , T}.
There is random variable Xi corresponding to the concentra-
tion of every molecular species. The range of each variable
Xi is quantized into a set of intervals, with |V | the number
of intervals (discretized values) for variable Xi (typically
|V | = 5). The quantized dynamics is intrinsically stochastic,
as even for deterministic dynamics (e.g. of an ODE system),
it is possible that two distinct deterministic configurations
correspond to the same quantized configuration, but their
successors are in distinct quantized configurations.

Initial concentrations of the population follow a distri-
bution, to model the variability of cells in the population
- usually in a product form if the native species evolve
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Fig. 1. a) The enzyme catalytic reaction network (b) The (perturbed)
ODEs model (c) The DBN approximation for 2 successive time points,
that reproduces the dependencies within the ODEs.

independently before the pathway starts kicking in. The
distribution is obtained by sampling initial configurations of
the population models.

The parent relations of the DBN can be obtained in
different ways. In [11], [12], the parents of a species are
simply the variables producing or reacting directly with it. In
[16], information theoretic tools can be used to automatically
infer a more adequate set of parents.

CPT entries are evaluated through classical enumeration
over many simulated trajectories of the model. To simulate
a trajectory, an initial configuration is sampled from the dis-
tribution of initial concentrations, and function f describing
the model dynamics is applied iteratively to cover all time
points. For instance, among the generated trajectories, the
number of simulations where the value of Yj falls in the
interval uj at time t − 1 for each j ∈ ı̂ is recorded, say J~u.
Next, among these J~u trajectories, the number of these where
the value of Yi falls in the interval x at time t is recorded. If
this number is Jx then the empirical probability p is set to be
Jx
J~u

. We refer interested readers to Liu et al.’s work [11], [12]
for the details.

5.2 Hybrid Stochastic Deterministic Model

To model populations, we will first consider the Hybrid
Stochastic Deterministic (HSD) model of [2] specifically
developed to model populations of biological cells governed
by the apoptosis pathway. This HSD model matches experi-
mental data on populations of cells from [1]. It involves the
generation of native proteins, and thus gives different results
on different cells because of stochasticity of gene activation.

More precisely, the apoptosis pathway it models is the one
triggered by TNF-related apoptosis-inducing ligand (TRAIL)
for HeLa cells. TRAIL is an apoptosis inducing protein in
cancer cells, considered as a target for anti-cancer therapeutic
strategies. Biological observations on HeLa cells suggest that
in a population of cells, TRAIL application only leads to
fractional killing of cells. Further, there is a time dependent
evolution of cell resistance to TRAIL. These phenomena
are modeled in the HSD model of [2], with a stochastic
part linked to gene activation triggering the production of
native proteins, and a deterministic part describing the effect
of TRAIL on the cells. In particular, whether apoptosis is
triggered or not, depending on the initial concentrations of
pro- and anti-apoptotic proteins and their productions in
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Fig. 2. Apoptosis pathway
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the early stage of the pathway. This model explains well
experimental data from [1] both on the de-correlation with
time of the death of sister cells and on the raw percentage of
cells of the population dying after several repeated treatment.

Out of the hundred variables of the system, we focus
on the abstraction from [16], consisting of the 10 most
important protein variables (see Figure 4). To produce the
initial distribution modeling the variability between cells, the
stochastic model explaining the production of native proteins
is executed for few hours [2]. A DBN is built on a 10 variable
system, with 4 parents per variable. The time horizon is the
first 90 minutes period after injection of TRAIL, which was
divided into 22 time points. Both stochastic and deterministic
part are simulated from initial configurations, generating 105

trajectories used to fill up the CPTs entries.

5.3 Perturbed ODE models:
We test our algorithms with two other pathways of varying
size: one smaller, a simple enzyme catalytic pathway with
4 variables, and one bigger, the EGF-NGF pathway with
52 variables. In order to obtain models of populations, we
use the perturbed ODE method of [11], [12]: each cell is
associated with the same ODE model, but with slightly
different reaction speeds and initial configurations, taken
randomly in a small interval around nominal values from
the BioModels database.

Enzyme Catalysis: The simple enzyme catalytic sys-
tem is shown in Fig. 1 (a). It describes a typical mass
action based kinetics of the binding (ES) of enzyme (E)
with substrate (S) and its subsequent catalysis to form the
product (P). The value space of each species (variable) is
divided into 5 equal intervals. The time scale of the system
is 10 minutes which was divided into 100 time points. The
parents relations for the DBN are obtained using [11], [12].
Conditional probability tables were populated by drawing
105 simulations from the underlying ODE model.

EGF-NGF Pathway: The EGF-NGF pathway describes
the behavior of cells to EGF or NGF stimulation [4]. The ODE
model of this pathway is available in the BioModels database
and consists of 32 differential equations. The value domains
of the 32 variables were divided into 5 equal intervals. The
time horizon of each model was assumed to be 10 minutes
which was divided into 100 time points. The parents relations
for the DBN are obtained using [11], [12]. To fill up the CPTs,
105 ODE trajectories were generated.

Fig. 3. EGF-NGF pathway

6 EXPERIMENTAL RESULTS

We developed implementations of all algorithms in Python,
freely available at https://codeocean.com/capsule/6491669/
tree. All experiments were performed on an Intel i7-4980HQ
processor (2,8 GHz quad core Haswell with SMT) with 16
GB of memory. For each of the pathway case study discussed
in the previous section, we consider the following:
• the exact and approximated probability distributions at

a arbitrarily chosen time point. As one cannot compute
the exact joint probability for large systems, we evaluate
them considering the mutual information between any
pair of variables (computed from 10.000 simulations of
the system), to understand where correlations are lost.
We use Prop. 2 to compute MI values for the Tree Cluster
representation. Results can be found in Fig. 6.

• the approximated inference algorithm, compared with
statistical simulations of the DBNs using the algorithm
from [15]. Results can be found in Fig. 7. We report mean
error over marginals normalized to FF (with FF =
100%), as the raw numbers are not meaningful - most
marginals being irrelevant and thus diluting the raw
error tremendously).

We explain these numbers in more detail in the following:

6.1 How correlated are species in biopathways?
We first discuss the correlations between species in popula-
tions governed by biopathways. The question is to evaluate
these correlations, using MI to quantify them.

First, consider the bottom left diagram (labeled ”Real”)
in Figure 5. Around 40 species (the ones on the top right
part) show some kind of correlations with one another after
5 minutes of the start of the pathway.

More generally, over the 3 pathways we consider, we also
find correlations between many species (Figure 6 a),b),c)).
Consider the line ”Exact” and column ”mean MI”: the
average MI between two species is relevant. Notice that
the mean MI number decreases with the number of species
(0.278 with 4 species, 0.12 with 10 species, 0.026 with 52
species), which is to be expected as species far away in a
pathway are not as correlated as species next to each other.
One can also consider line ”FF” and column ”max MI error”
to see the maximal correlations between two different species,
which is very large in all 3 cases: 0.27 for 4 species, 0.32
for 10 species, 0.6 for 52 species. Indeed, ”FF” assume that
the species are not correlated, hence the MI error of ”FF”
wrt ”Exact” is exactly this maximal correlation. Considering
line ”Disjoint Cluster” and column ”max MI error”, we can
also understand that there are chains of correlations which
cannot be broken in disjoint clusters, with correlations of
MI = 0.11, , 0.2, 0.2 lost in the 3 pathways respectively.

6.2 Do these correlation matter?
While the correlations have tangible MI numbers, those
numbers are not always very large. One important question
is then how these raw MI numbers translates in practice.

To understand that, let us consider the three different
inference approximation techniques, which only differ in
the correlations between species they take into account. We
consider the effect fogetting some correlations have on the

https://codeocean.com/capsule/6491669/tree
https://codeocean.com/capsule/6491669/tree
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Fig. 5. Comparison of Mutual Information between the 3 different probability distribution approximations at minute 5 (top). The bottom 2 diagrams
show the exact mutual information and the difference between exact and the approximations using clusters associated with the tree.

(a) Enzyme catalytic reaction, probability distribution at 2 minutes:
Representation Mean MI max MI Error Max P error KL diverg.
FF 0.22 0.27 0.22 0.31
Disjoint Cluster 0.26 0.11 0.05 0.12
Tree Cluster 0.277 0.04 0.005 0.001
Exact 0.278 0 0 0

(b) Apoptosis pathway, probability distribution at 30 minutes:
Representation mean MI max MI Error Size of representation
FF 0.06 0.32 50
Disjoint Cluster 0.08 0.2 125
Tree Cluster 0.1 0.12 225
Exact 0.12 0 107

(c) EGF-NGF pathway, probability distribution at 5 minutes:
Representation mean MI max MI Error Size of representation
FF 0.016 0.6 160
Disjoint Cluster 0.019 0.2 400
Tree Cluster 0.023 0.07 775
Exact 0.026 0 1022

Fig. 6. Tables representing the error of the approximations w.r.t. the real distribution for various pathways.
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concentrations of each molecules (effect on joint distribution
is expected to be much worse - but we would evaluate it
using MI again, which we put in question here).

Figure 8 is the most visual example: on the left, we display
the evolution of species ”cleaved PARP” (marker of cell
death) in the apoptosis pathway, while on the right, we
display the evolution of protein ErkAct in the EGF-NGF
pathway, which shows the most obvious mistakes due to
forgetting correlations. We can see that the evolutions of
both species is quantitatively altered when forgetting all
correlations (FF) or most correlations (Disjoint Clusters).

More generally over all species, we can consider Figure
7 a),b),c), line ”FF” and column ”Nb. Error > 0.1”, which
shows that there are many time points and species where
forgetting the correlations between species eventually leads
to a tangible error in the concentrations of the species.

We now discuss results for each of the example pathways:

6.3 Enzyme Catalysis
The system is very simple with only 4 variables. The tree
obtained using the Chow-Liu algorithm is the same over
all time points, with {{E,S}, {E,P}, {E,ES}} as set of
non-disjoint clusters. To compare with a disjoint cluster
representation, we chose the set of disjoint clusters with
highest mutual information, that is {{E,S}, {ES,P}}. On
this example, in addition to computing the largest difference
in MI, we provide the maximum difference of the probability
of joints and the Kullback-Leibler divergence as the system
is small enough to compute them.

Fig.6 (a) shows the measures at an arbitrarily chosen time
point (corresponding to 2 minutes) of the system. It can be
seen that our Tree Cluster representation manages to preserve
most of the mutual information (of the original distribution,
0.277 of 0.278) between variables, which translates to mini-
mal error on computed probabilities (< 0.005). It is important
to note that the case of Disjoint Clusters while better than FF,
is still short of capturing all the dependencies faithfully in
the distributions: it considers independent a pair (out of only
16) variables with MI = 0.11 (the maximum correlations
between two different variables have MI = 0.27). This
results in a probability error 10 times higher (0.05) than
using Tree Cluster, which is significant for a small system.

In terms of inference, as evident in Fig.7(a), our method
is the most accurate: 20 times less errors overall than Disjoint
clusters, and 30 times less maximal error, while being only
20% slower. On the other hand, even though Disjoint Clusters
capture most correlations for each distribution (Fig.6 (a) 0.26
out of 0.278), it produces sizable errors (0.12).

6.4 Abstracted Apoptosis Pathway
Fig.6 (b) shows the statistics for an arbitrary time point
(corresponding to 30 minutes). Our Tree Cluster approach
captures most of the mutual information between variables
(0.1 out of 0.12), and the maximum error on the MI is the
least (0.12) compared to FF or Disjoint Clusters (0.2, 0.32).
Also, the size of the representation does not increase too
much (225 values vs 125 or 50).

Fig. 4 shows the two sets of clusters computed by algo-
rithm 1 [5] at the arbitrarily chosen time of 20 and 90 minutes.
Most links of the tree follow direct correlations, except for

the link Bid-cPARP at 90 minutes. Our interpretation is that
at 90 minutes, Bid does not play much of a role anymore,
and its correlation is not meaningful. Further, Bax, Bcl2c
and Mcl1, which are highly correlated, and which transduce
or inhibit the signal are connected towards the downstream
only through R∗. The reason is that the correlation with R∗ is
higher than the direct correlations, and the direct correlations
are removed by the algorithm. Notice that this interaction
graph can change in time (compare at time 20 and 90 when
Bid swaps from one side of the tree to the other side).

In terms of inference, Fig.7(b) shows that our algorithm
based on Tree Cluster makes minimal error (≤ 0.06). In
terms of trade off, it makes half the errors compared with
Disjoint Clusters and takes only 1.5 times longer to compute.
Compared with FF, it improves accuracy by 7-8 times (FF
is very inaccurate on some variable), while being 6.3 times
slower. Fig. 8 (left) shows the dynamic of the marginal for
RAct over time as computed by the different algorithms:
Tree Cluster is extremely close to the simulative curve, while
Disjoint Cluster is considerably off and FF makes larger
errors.

6.5 EGF-NGF Pathway
In case of the EGF-NGF pathway, we consider a biologically
reasonable set of disjoint clusters, grouping a species with
its activated form, as their concentrations are very correlated.
We display on Fig. 5 the approximated correlations obtained
using the different approximations at time 5 minute of the
EGF-NGF pathway. Tree Cluster manages to keep some cor-
relations among almost every pair of variables, which is not
the case for FF or Disjoint clusters, assuming independence
of almost every pair of variables. The loss of information is
also minimal, as confirmed by Fig.6 c) (MI error ≤ 0.07).

We now consider inference. This pathway allows us to
compare the inference algorithms with another approximated
algorithm, called HFF (Hybrid FF) [17]. In short, HFF keeps
a small number of joint probabilities of high value (called
spikes), plus an FF representation of the remaining of the
distribution. The more spikes, the more accurate and the
slower the algorithm. As HFF has been implemented in
another language (C++) on a different data structure, we
report the error with FF as the baseline in order to draw
a fair comparison, in terms of errors (FF=100%) and time
(FF=1x). The superiority of our approach for inference is even
more evident in this case. Fig.7(b) shows that our method
produces 3 times less errors overall than the most accurate
method considered before. The maximal errors and number
of errors greater than 0.1 are also substantially reduced. FF
and disjoint clusters can be 2 to 4 times faster, but with very
large errors (see Fig. 8 right for an example of large error),
while HFF proposes worse results both for time and accuracy.

6.6 Discussion on the different approximations
We now compare the different representations of the distribu-
tions. We report statistics on all pathways on Fig. 6. FF cap-
tures only the auto-correlations of each variable with itself,
while it does not keep any correlation of 2 different variables.
This helps understand how much of correlations between
variables are lost by the approximations (doing MI real -
MI FF): as said above, by definition, all is lost by FF, while
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(a) Enzyme catalytic reaction:
Method Max. Error Mean Error (normalized) Nb. Error > 0.1 Comput. Time

FF 0.17 100% 49 0.2s
Disj. Cluster 0.12 65% 16 0.5s
Tree Cluster 0.004 3% 0 0.6s

(b) Apoptosis pathway:
Method Max. Error Mean Error (normalized) Nb. Error > 0.1 Comput. Time

FF 0.44 100% 124 2.2s
Disj. Cluster 0.12 24% 2 9.8s
Tree Cluster 0.06 14% 0 13.8s

(c) EGF-NGF pathway (normalized wrt FF for comparison with HFF):
Method Max. Error Mean Error Nb. Error > 0.1 Comput. Time

FF 100% 100% 100% 1x
HFF (3k) 62% 60% 50% 10x
HFF (32k) 49% 38% 35% 1100x

Disjoint Cluster 84% 79% 84% 1.9x
Tree Cluster 32% 14% 16% 4.2x

Fig. 7. Table representing the errors of the different inference algorithms.
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Fig. 8. Evolution of P (cPARP = 2) in the apoptosis pathway (left) and of P (ErkAct = 2) in the EGF-NGF pathway(right) as computed by the
inference based either on FF or Tree cluster approximations (broken lines), compared with the real value (solid line).

disjoint cluster keeps less than one third of correlations. On
the other hand, the Tree Cluster approximation keeps more
than two third of the correlations, while having almost the
same representation size (< 800 values) as disjoint clusters.
Further, there are pairs of variables highly correlated that
FF (resp. disjoint cluster) considers independent (MI > 0.3,
resp. MI = 0.2), which is not the case for the Tree Clustered
representation (MI < 0.12).

6.7 Discussion on Inference Algorithms
We compare the evolution of concentrations of each molecule
using the different inference algorithms (Fig. 7). Overall, per-
forming inference based on the tree clustered representation
is fast (less than 15 seconds), while being the most accurate
of all the inference algorithms we tested, included HFF with
a lot of spikes (32k). To visualize the errors incurred by
different approximations, we draw in Fig.8 the probability
that Erk∗ takes a medium concentration in the EGF-NGF
pathway and the probability that R∗ takes a medium
concentration in the apoptosis pathways. The tree cluster
approximation follows very closely the simulative curve (in
this examples as well as in every examples we considered),
while other algorithms are further away, sometimes being
far from what is computed by simulations.

It was not clear before the experiments whether using
Chow Liu algorithm would produce accurate results for

biopathways, and if yes, for which types of biopathways. On
Figure 8 with (a) 4, (b) 10 and (c) 52 variables, all showed
great accuracy while keeping a good computational time.

FF is the most widely used procedure in Inference so
far. While Disjoint clusters is more precise while not being
much slower, its main drawback is that there is no general
method to choose a good disjoint clustering, although it
has been used with ad hoc expert clustering. HFF is more
confidential, as accuracy improvement is obtained at a very
large computational price, and it cannot be used in practice.
Notice that MI is not used in any of these methods.

We use the Chow-Liu algorithm and MI in order to obtain
non-disjoint clusters: From few pre-computed simulations of
the systems, optimal trees of clusters of size 2 are computed
for each time point. Thus it can be used easily, without input
from an expert. Its accuracy is the best, and its computational
price very limited.We still expect FF to be used for fast
screening however as it is very efficient. When accuracy
matters, Tree Cluster inference should be used.

7 CONCLUSION AND PERSPECTIVES

In this paper, we reviewed several approximated represen-
tations of probability distributions. We also discussed how
these representations can be applied to perform inference in
discrete stochastic models. With different case studies, we
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show that the approximation based on non-disjoint clusters
of size two forming a tree structure offers a very good trade-
off between accuracy and tractability.

In future work, we aim at modeling and studying a
tissue, made of tens of thousands of cells, each subject to
the dynamics of a pathway. In this context, capturing the
inherent variability of the population of cells is crucial. First,
we would abstract the low level model of the pathway of
a single cell into a stochastic discrete abstraction, e.g. using
our tool DBNizer [16]. Secondly, we would use a model of
the tissue, which does not explicitly represent every cell
but qualitatively explains how the population evolves. We
plan to obtain such populations model from more common
agents based model of tissues (e.g. [18]). We will finally
use approximate representations of the distributions, as
discussed in this paper, to handle multilevel biological
systems.
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APPENDIX 1: PROBABILITY DISTRIBUTION DEFINED
BY A CLUSTER TREE

The main developments of the present paper focus on a
specific subclass of cluster tree approximations for a given
multivariate distribution, namely the class where clusters
have a maximum size of two. For the use-case addressed
here, the modeling of the dynamics of a population of cells,
this simple class already provides significant improvements
compared to the classical FF (fully factored) approach, for a
minimal computation overhead. In this appendix, we present
the general case, which enables even better approximations,
still for a reasonable overhead. All developments of the
paper can be extended to this more general setting. The main
idea is to allow for (overlapping) clusters of more than two
variables.

We start by defining the appropriate choices of clusters
to which our approximation scheme applies. Let I = K1 ∪
... ∪Kc be a decomposition of the index set I into c clusters.
Let us associate a graph G = (I, E) to this cluster covering
in the following manner: vertices are defined by I , and the
edge {j, k} is present in E iff there exists some cluster Ki

such that j, k ∈ Ki. In other words, each cluster Ki defines a
clique (complete subgraph) in G. We say that graph G is a
cluster tree (see Figure 9) iff

1) G is a triangulated graph, i.e. any cycle
(v0, v1, v2, ..., vk = v0) in G of length k > 3 contains a
chord, that is an edge {vi, vj} with j ≥ i+ 2,

2) each maximal clique in G coincides with some clus-
ter Ki.

Without loss of generality, one can assume that clusters
K1, ...,Kc are precisely the maximal cliques in G. When
clusters are limited to two variables, G is a cluster tree iff it
is a tree.

In a cluster tree, it is well known that maximal cliques
organize into a tree, hence the name (see Figure 9, where
maximal cliques have size 3). Such a tree of clusters can be
obtained by connecting clusters one at a time: when cluster
Ki is introduced, it can be attached to cluster Kj only if the
variables that Ki shares with previously attached clusters
all lie inside Kj . The sequence K1, ...,Kc forms an adequate
ordering of clusters iff it corresponds to an ordering in which
clusters can be attached to form a tree. The tree of clusters
is not unique, and for a given tree, there exist numerous
adequate orderings.

Our objective is now to approximate P by some distri-
bution PNDC (for non-disjoint clusters) in such a way that P
and PNDC coincide on all clusters, i.e. P (xKi) = PNDC(xKi)

6

4

1
2

3

5

Fig. 9. In a triangulated graph (left), maximal cliques can be organized
into a tree (right). Numbers indicate one possible adequate ordering.

for all values xKi
and 1 ≤ i ≤ c. It turns out that on a cluster

tree, knowing the marginals of PNDC on each cluster fully
determines the complete joint distribution PNDC. Assuming
K1, ...,Kc is an adequate ordering of clusters, PNDC can be
derived as follows

PNDC(x) =
c∏
i=1

P (xKi
)

P (xKold
i

)
(24)

where Kold
i = Ki ∩ (∪j<iKj) represents variables of Ki

already present in K1 ∪ ... ∪Ki−1. The generic term in the
product thus corresponds to P (xKi

|xKold
i

). This generic term
also coincides with P (xKi |xKi∩Kj ), where Kj is the cluster
to which Ki is attached in a cluster tree.

Clearly, (24) generalizes the disjoint cluster equation,
which in turn generalizes the fully factored equation.
Proposition 3. PNDC defined in (24) for a cluster tree

is a proper probability distribution over X , i.e.∑
x∈V X PNDC(x) = 1. Moreover, PNDC does not depend

on the adequate ordering of clusters used in (24). It
does not depend either on the cluster tree matching
clusters (Ki)1≤i≤c. PNDC coincides with P on each cluster
(Ki)1≤i≤c.

Proof: To prove the first point, simply observe that
each generic term in (24) is the conditional distribution
of XKi

given XKold
i

, P (XKi
|XKold

i
). By marginalizing out

variables in the reverse order of their introduction, one
obtains the desired result. We only sketch the proof of the
second point. For a given cluster tree, observe that two leaves
can be attached to the current tree in any order without
changing the final PNDC. Moreover, one can also invert the
first and second clusters in (24) and get the same result.
So, by recursion, this allows one to start with any cluster
as the root of the tree, i.e. with any cluster as K1. This
immediately yields the fourth and last point, as one has
PNDC(XK1) = P(XK1) from (24). Finally, for the third point,
we rely again on the fact that the generic term in (24) is
the conditional distribution P (XKi |XKold

i
), which does not

depend on the cluster Kj to which the new cluster Ki is
attached when building the cluster tree. �

For the specific case where cluster size is limited to two
variables, as it is the case in the main part of the paper,
(24) can be reformulated with a more symmetrical shape.
Specifically, one has

PNDC(x) =

∏c
i=1 P (xKi

)∏N
i=1 P (xi)Ci−1

(25)

where Ci is the number of clusters that contain variable Xi.
This expression can be easily derived by recursion from (24),
and it coincides with the equation that we adopted in the
paper. Notice that Proposition 3 becomes more obvious with
this new formulation.
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APPENDIX 2: IMPROVING COMPLEXITY OF ALGO-
RITHM 2
We now refine Algo. 2, that performs approximated inference,
in order to lower the exponential factor of |V | from |̂ı∪ ̂|+ 2
to max(|̂ı|, |̂|) + 2. The improvement can thus be significant.
Theorem 2. Given B0 = P 0, one can compute B1, . . . , BT

in time O(T · |I| · (|I| + |V |) · λ · |V |`+1), where ` =
maxt,{i,j}∈Et max(|̂ı|, |̂|).

Proof: In the original algorithm, the complexity factor
in |̂ı ∪ ̂| comes from the necessity of integrating over values
of Bt−1(xî∪̂). So we propose a technique to reduce the
complexity of this integration. Let us first simplify notations
for clarity (dropping in particular the time index): the aim is
to compute

B(yi, yj) =
∑
xı̂∪̂

B(xı̂∪̂)P (yi|xı̂)P (yj |x̂) (26)

where distribution B(X) is a tree distribution on G = (I, E),
which is thus defined by the tuple [B(Xu, Xv) ]{u,v}∈E .

As a first step of the proof, let us consider a separating
set K ⊆ I of nodes that separates nodes of ı̂ from those of ̂
on tree G = (I, E), i.e. any path from ı̂ to ̂ on G crosses K
(see Fig.10). Notice that one has ı̂ ∩ ̂ ⊆ K, and that taking
K = ı̂ or K = ̂ satisfies this separation property. So the size
of K can be upper bounded by min(|̂ı|, |̂|). The fact that K
separates ı̂ from ̂ entails that Xı̂ and X̂ are conditionally
independent given XK for distribution B. Therefore

B(xı̂∪̂) =
∑
xK

B(xı̂|xK)B(x̂|xK)B(xK) (27)

By plugging this expression into (26) one gets

B(yi, yj) =
∑
xK

P (yi|xK)P (yj |xK)B(xK) (28)

where

P (yi|xK) =
∑
xı̂

P (yi|xı̂)B(xı̂|xK) (29)

P (yj |xK) =
∑
x̂

P (yj |x̂)B(x̂|xK) (30)

Notice that in (29) – and similarly for (30) – the summation
over values xı̂ is actually a summation over values xı̂\K
as the values of xı̂∩K are imposed by the conditional
distribution P (xı̂|xK). Compared to (26), computing (28) for
all xK now has time complexity |V ||K| and the complexity of
deriving P (XK) also matches this exponent. This concludes
the proof if one can guarantee that |K| ≤ max(|̂ı|, |̂|) and
if the complexities of (29)-(30) are upper bounded in the
same manner. This is actually the delicate part, as a term like
B(Xı̂|XK) for example has |V ||̂ı|+|K| many entries, so we
cannot compute this term directly.

The second step of the proof considers a particular choice
for set K which guarantees that (29)-(30) can be computed
efficiently. First, for k ∈ K not a leaf of G, we define the
k-section of G as follows: it is the minimal subtree of G rooted
at k, containing at least 2 nodes, and such that its leaves are
either in K or are leaves of G. For instance, on Fig. 10, we
have r ∈ K , and the r-section has 6 nodes, including r and s.
It has three leaves, two being the children of s, plus another

K

î
ĵ

r

s

t

Fig. 10. A separating set K (nodes in gray) between ı̂ and ̂.

leaf in K. For k, k′ ∈ K not leaves of G, the intersection
between the k-section and the k′-section have either no node
in common, or only one, which is either k or k′. For k ∈ K
not a leaf of G, we define the strict k-section of G as the
k-section minus the leaves of the k-section which are in K .

We now define a separating set K such that every strict
k-section contains at least one node of ı̂ and one node of ̂.
The set K is built bottom-up, that is recursively starting from
leaves and progressing up towards the root of G. Each node
will be tagged by a number in {0, 1, 2, 3}. Nodes tagged 3
will be nodes of K . We first tag a leaf by:
• 0 if it is not in ı̂ ∪ ̂,
• 1 if it is in ı̂ \ ̂,
• 2 if it is in ̂ \ ı̂,
• 3 if it is in ı̂ ∩ ̂.
We then inductively tag a node by:
• 3 if it has a child tagged by 1 (or itself is in ı̂) and if it

has a child tagged by 2 (or itself is in ̂). Else:
• 1 if it is in ı̂ \ ̂ or as at least one child tagged as 1,
• 2 if it is in ̂ \ ı̂, or has one child tagged by 2
• by 0 otherwise.
At the end of the procedure, we set K as the set of nodes

tagged by 3. That is, a node k where at least one branch
of type i and one of type j meet is declared to belong to
K. The separating set K in Fig. 10 has been built using this
algorithm. Node s is tagged 2 as it has one child in ̂. Then r
is tagged 3 as it is itselfss in ı̂ and it has has a child (node s)
tagged by 2. It is easy to see that K is a separating set, and
that for all k ∈ K not a leaf of G, the strict k-section contains
at least one node of ı̂ and one node of ̂ (possibly, this is the
same node if it is in ı̂ ∩ ̂, and possibly, this is k itself). In
particular, |K| ≤ min(|̂ı|, |̂|).

The third step of the proof examines an efficient algo-
rithm that compute P (yi|xK) from P (yi|xı̂). It inductively
eliminates nodes in ı̂ \K , section by section, in a bottom-up
fashion, removing nodes in ı̂ \K and adding nodes from K .
We consider the properties of this procedure with respect to
ı̂, but the same holds with respect to ̂.

Let us define a set of nodes that will evolve in our
procedure :
• A ⊆ K ∪ ı̂ progressively introduces nodes of K in

replacement of nodes of ı̂, initialized to A = ı̂. At the
end of the procedure, A = K .

Let us start from deepest k-sections in the tree, for k ∈ K .
First, if k a leaf, there is nothing to do as k ∈ K ∩ ı̂. The set
A stays the same. Otherwise, for all k′ below k in the tree, k′

has already been considered by induction, that is k′ ∈ A. Let
C be the subset of nodes in the strict-k-section that are in ı̂.
We will explain how to perform an operation amounting to:

A := (A \ C) ∪ {k}
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At every step, |A| does not increase, as |C| ≥ 1 (in the
case where C = {k}, nothing happens). At the begining
of the procedure, we have P (yi|xı̂), that is P (yi|xA) as
A is initialized to ı̂. It is easy to inductively compute
P (yi|x(A\C)∪{k}) from P (yi|xA). Adapting (29), we obtain:

P (yi|x(A\C)∪{k}) =
∑

xC\{k}

P (yi|xA)B(xA|x(A\C)∪{k})

Let D be the set of nodes in K that are in the k-section,
and let E = A \ (C ∪ D). We have A ∪ {k} = C ∪ D ∪ E
and (A \ C) ∪ {k} = D ∪ E. Using (24), as E is separated
from C,D by D, we obtain:

B(xA|x(A\C)∪{k}) =
B(xC∪D∪E)

B(xD∪E)
=
B(xC∪D)

B(xD)

It thus suffices to set:

P (yi|x(A\C)∪{k}) :=
∑

xC\{k}

P (yi|xA) · B(xC∪D)

B(xD)

Let us now analyse the complexity of the algorithm. The
recursion step requires first to computeB(xC∪D) andB(xD).
This can be done in time O(|I| · V |C∪D|). We now show that
|C ∪D| ≤ |̂ı| + 1. Let us partition ı̂ into J1 ] J2 ] J3, with
J1 the set of nodes of ı̂ which are not below k, J2 = C
and J3 the rest, that is nodes below the strict k-section. By
construction, each strict k-section contains at least a node of
ı̂. It means that |D \ {k}| ≤ J3. Thus |C ∪D| ≤ 1 + |J2| +
|J3| ≤ 1 + |̂ı|. Then we need to perform the summation∑
xC\{k}

P (yi|xB) · B(xC∪D)
B(xD) . For that, we need to consider

a table with 1 + |A ∪ C ∪ D| = 1 + |A ∪ {k}| variables.
As |A| ≤ |̂ı|, it gives a tables with at most |V ||̂ı|+2 entries.
Computing the sum is linear in the number of entries. We
then need to repeat this process for all k ∈ K, which is less
than |̂ı| times. Hence one can compute P (yi | xK) for all
yi, xK in time O(|̂ı|(|I|+ |V |)|V |1+|̂ı|).

To conclude the proof, let us gather all elements. We have
T time points and |I| clusters (as they form a tree). For each
pair of values (yi, yj), one must derive P (yi|xK), P (yj |xK)
and then perform (28). The latter has complexity O(|V |K)
with |K| ≤ min(|̂ı|, |̂|), which is clearly dominated by the
computation of P (yi|xK), P (yj |xK). This results in a total
complexity of O(T · |I| · (|I|+ |V |) · ` · |V |`+1). �

Notice that it is a crude upper bound on the worst case
complexity, and the actual complexity will be almost always
better than that by a factor |V | to |V |2. If further there is a
node in |̂ı ∩ ̂| for all (i, j) ∈ Et, it suffices to set it as the
root of G to obtain an immediate improvement of factor
|V |. Also, when removing nodes from ı̂, one can remove
branches of k-sections which does not contain nodes in ı̂. We
obtained improvement of an order of magnitude using it,
and no slowdown.

APPENDIX 3: ERROR ANALYSIS

We can analyze the error ∆t = |P t − Bt| obtained at time
t, w.r.t. the one step error ε0 = maxt |Qt −Bt|, when using
Algo. 2.

Following [3], [17], this scheme ensures that, denoting by
β ≤ 1 the contraction factor associated with the DBN:
Proposition 4. ∆t ≤ ε0

∑t
j=0 β

j . Further, if β < 1, we have
∆t ≤ ε0

1−β .

Proof: By definition, we have that after applying the
CPTs to two distributions P, P ′, the results P̃ , P̃ ′ will be at
distance at most |P̃ − P̃ ′| ≤ β|P −P ′|. In particular, we have
that |P t −Qt| ≤ β|P t−1 −Bt−1|.

Now, we shall show that ∆t can be bounded by
ε0(

∑t
j=0 β

j). By definitions and triangular inequality, we
have:

∆t = |Bt − P t|
≤ |Bt −Qt|+ |Qt − P t|
≤ ε0 + β∆t−1

Then by recursively computing the second factor, we
obtain,

∆t ≤ ε0 + βtε0 + ββε0 + . . .+ (ββ · · ·β)ε0

≤ ε0(
t∑

j=0

βj)

Further if β < 1, we have:

∆t ≤ ε0(
t∑

j=0

βj) ≤ ε0(
∞∑
j=0

βj) =
ε0

1− β

�
We can further analyze on the fly the one step error ε0

made at each step. For that, it suffices to consider the result
of [5] for the Chow Liu approximation: we have that the
one step error at step k is εk = |Bt − Qt| =

∑
iH

t(xi) −
Ht(X) −

∑
(i,j)clusters H

t(xi, xj), where Ht stands for the
entropy (at time t), defined as follows:

Ht(X) = −
∑

xX∈V X

Qt(xX) logQt(xX)

Now, H(xi, xj) and H(xi) are already computed by our
algorithm for all i and all clusters (i, j). Computing Ht(X)
exactly is however more complex, as Qt is a multivariate
distribution over tens of variables. Nevertheless, it suffices to
under-approximate it in order to over-approximate the one
step error εk.
Under-approximating the entropy: One easy under-
approximation is H(X) ≥ 0. To improve it, one can compute
better values by computing a subset S of tuples for which
Q(x) is large, and under-approximate Q(x) for these tuples.
This can be done in a way very similar to the computation of
spikes in [17]:

It suffices to use Bt(xi, xj) and Bt+1(yi, yj) for clusters
in order to select thousands of tuples x at time t and y
at time t + 1 with potentially large B(x) and Q(y) (ones
which have the largest projection on clusters). Let St and
St+1 be these two sets of tuples. For x ∈ St, the probability
Bt(x) is computed exactly from values of Bt(xi, xj) for the
clusters. For y ∈ St+1, we under-approximate Qt+1(y) ≥∑
x∈St Bt(x)

∏
i CPT

t
i (yi | xı̂).

We then use the following to under-approximate
Ht+1(X):

Ht+1(X) ≥ −
∑

y∈St+1

Qt+1(y) log(Qt+1(y))
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