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Abstract

Whereas direct numerical simulation (DNS) have reached a high level of description in the field of atomization pro-
cesses, they are not yet able to cope with industrial needs since they lack resolution and are too costly. Predictive
simulations relying on reduced order modeling have become mandatory for applications ranging from cryotechnic to
aeronautic combustion chamber liquid injection. Two-fluid models provide a good basis in order to conduct such simu-
lations, even if recent advances allow to refine subscale modeling using geometrical variables in order to reach a unified
model including separate phases and disperse phase descriptions based on high order moment methods. The simulation
of such models has to rely on dedicated numerical methods and still lacks assessment of its predictive capabilities. The
present paper constitutes a building block of the investigation of a hierarchy of test-cases designed to be amenable to
DNS while close enough to industrial configurations, for which we propose a comparison of two-fluid compressible
simulations with DNS data-bases. We focus in the present contribution on an air-assisted water atomization using a
planar liquid sheet injector. Qualitative and quantitative comparisons with incompressible DNS allow us to identify and
analyze strength and weaknesses of the reduced-order modeling and numerical approach in this specific configuration
and set a framework for more refined models since they already provide a very interesting level of comparison on aver-
aged quantities.

Introduction

Engines safety and efficiency are two of the main priorities given to the aeronautical and space industries. In the com-
bustion chamber, the multi-scale and multi-physics phenomena are very complex and their interaction still animate the
research domain. The primary atomization plays a crucial part in the way the engines work, thus must be thoroughly
studied to understand its impact on high frequencies instabilities and on the generation of droplets evaporating and
eventually reacting with the gaseous flow field. The former have been encountered in the past and can lead to critical
damages of rockets. The latter is nowadays a key concern in the aeronautic industry since facing strong restrictions from
the International Civil Aviation Organization norms [1]. Even though experimentations must be conducted to enable
simulation validation and to understand the observed physical phenomena, predictive numerical simulations are manda-
tory, at least as a complementary tool to understand the physics but even more to conceive new combustion chambers
and predict instabilities and droplet size distributions they may generate in a given configuration.

In sub-critical condition, downside an air-assisted coaxial injector, three two-phase flow topologies are to be found.
At the injector exit, the two phases are separated by a smooth interface. Downstream a polydisperse spray of droplets is
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Fig. 1: Description of the various regimes and flow topologies in jet atomization for cryotechnic injectors in subcritical
conditions.

carried by the gaseous phase. In between, shear stress caused by strong velocity gradients tears the liquid core apart and
ligaments are formed. This process is called primary atomization. The ligaments get thinner and thinner until they break
into droplets during the secondary atomization process. In this mixed region, the subscale physics and the topology of the
flow are very complex. The typical range of flow numbers in sub-critical cryogenic cylindrical jet in real configuration
are, for the liquid Reynolds number, ReL = 105, for the hydrodynamic Weber number, WeH = 105. In the aeronautical
simplex atomizers employed on mid-range engines, the typical liquid Reynolds number of the liquid sheet flowing out
from the atomizer is of the order of ReL = 103, while the hydrodynamic Weber number is WeH = 10−100. Experimental
test benches such as Mascotte, operated by the French Aerospace Lab (ONERA) for cryogenic combustion, offer some
experimental data but usually at lower flow numbers and are very expensive to operate and to instrument. As a result,
numerical simulations are adequate to increase our understanding of the physics and perform early-stage optimizations,
thus accelerating developments while reducing the costs.

Direct numerical simulations (DNS) in real configuration of such engines are still out of reach, CPU needs being too
high due to the high Reynolds and Weber numbers. Therefore predictive numerical tools using reduced-order models
must be developed. However great care must be taken on the choices of these models in order to both have solid
mathematics properties and to lead to predictive simulations after a validation process.

The strategy retained at ONERA is to perform numerical simulations of the primary atomization from the injection
to the combustion of the spray by coupling reduced-order models. One leading course of action consists in coupling
Eulerian models, more specifically Kinetic-Based-Moment Methods (KBMM) to describe the disperse flow (see [2–
4]) and diffuse interface models1 (DIM) to reproduce the separated phases and the mixed region. These models are
implemented in the industrial CFD code CEDRE [6]. While the predictiveness of KBMM solvers in dispersed flow have
already been demonstrated, it is not yet the case for the diffuse interface models (DIM) which are meant to handle the
challenging mixed region.

Among the hierarchy of DIM, well-known models such as the multi-species compressible Navier-Stokes, referred
as the four equation model have been massively adopted in the industry [7] but have shown their limitations as they
neglect the fluids thermodynamics disequilibrium in the mixing zones. Therefore, recent efforts have been done to in-
crease the disequilibrium description of the phases by implementing and testing the so-called five equation model [8]
accounting for two temperatures [9] or even the Baer-Nunziato model [10], also called seven equation model, whereby
two temperatures, two pressures and two velocities are solved. Stemming from rational thermodynamics or Least Action
Principle, the complexity of these models are three-folds: 1) the macroscopic set of equations of these models often in-
clude non-conservative terms, 2) these models can not be derived from physics at small scale of interface dynamics, thus
require closure of interfacial quantities such as the interfacial velocity or the interfacial pressure, 3) the thermodynam-
ics has to be postulated and requires assumptions. The mathematical properties of the Baer-Nunziato model have been
studied in [11–13] for instance and many closure have been proposed for the interfacial terms based on wave-type con-
siderations and the entropy inequality. In [14], a theoretical framework for the derivation of supplementary conservation
laws for systems of partial differential equation including first-order non-conservative terms has been proposed, thus ex-
tending the Godunov-Mock standard approach for systems of conservation laws [15, 16]. The theory has brought about
entropy supplementary conservative equations together with constraints on the interfacial quantities and the definition
of the thermodynamics for non-miscible fluids and also when accounting for some level of mixing of the two phases.
Nonetheless, this study has also emphasized the risk of inconsistency between the system and the associated postulated
thermodynamics when accounting for non-ideal effects. Indeed most multi-fluids thermodynamics approaches are based
on the assumption of no interactions between the fluids, resulting in equipping each fluid with its own thermodynamics
and then defining mixing thermodynamics quantities by taken arithmetic average of each phase contribution. However
in many industrial configurations, such as in jet atomizations, the fluids face non-ideal effects such as compaction or
surface tension, questioning the validity of having an isolated phase thermodynamics approach. In [17], the authors pro-
pose to build a multi-fluid thermo- dynamics starting from a single fundamental thermodynamics differential equation

1 Since the signification of diffuse interface models vary in the scientific community, DIM refer in the present paper to any averaged model
which allows locally the presence of each phase. These models can be obtained by a statistical averaging process for instance [5].
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of the mixture and a set of pressure laws. The derivation exhibits a natural decomposition of thermodynamics quantities
into an isolated phase contribution and mixing terms, expressed in terms of the stated pressure laws. Thus, given any
pressure law including non-ideal effects, the method yields the consistent thermodynamics variables as well as the asso-
ciated extended system of equations. A strongly connected question for such systems is the ability to derive an entropic
symmetrization in the sense of Godunov-Mock and the related constraints on the decomposition, as well as the study of
the spectrum and hyperbolicity. The proposed framework introduced in [14] allows to shed some light on these ques-
tions. Nevertheless, in the case of Baer-Nunziato model, the lack of strict convexity of the proposed entropies prevents
its Godunov-Mock symmetrization. Based on the new developments in [17], we envision equipping the Baer-Nunziato
system with an extended thermodynamics closure will lead to a strictly convex entropy and thus to its symmetrization
in the sense of Godunov-Mock. This is the subject of current research. Besides, next generation two-phase flow models
adding sub-scale effects emerge [18, 19] and add again some mathematical challenges.

As a result, while the mathematical properties of these Eulerian models are still under current investigation, even
the most basic element of the hierarchy of models, that is the Bear-Nunziato model, gives rise to numerical challenges.
First, the models require numerical schemes that are in adequacy with the closures of the interfacial terms. Second, the
presence of non-conservative terms in the system of equations complexifies the definition of weak solutions in the sense
of distributions, and Rankine-Hugoniot jump conditions, which allow to solve accurately the local Riemann problems,
can not be unambiguously defined. No general theory exists for these reduced-order models, making the derivation of
efficient numerical schemes challenging. The most simplest way to handle the non-conservative terms is to assume local
constancy of the interfacial pressure and velocity on each interface at each time integration [20–22] allowing a simple
discretization. Various other numerical strategies exist such as exact Riemann solvers [23–25] or approximate Riemann
solvers [20,26,27] including correction techniques based on mixture conservative equations. In addition, exact solver of
the linearized Riemann problem have been also developped since they are able to include the non-conservative terms into
the discretization [13,28,29]. Finally, an entropy-satisfying relaxation scheme has been proposed for the Baer-Nunziato
model in [30, 31] for which a discrete entropy inequality is proven, guarantying the nonlinear stability of the numerical
method. Furthermore the applications we are seeking are characterized by strong gradients and discontinuities, thus the
numerical schemes employed must be robust and accurate enough. They need to be assessed to highlight their promising
predictiveness before being widely deployed in the industry. In this study, we thus focus on the Bear-Nunziato seven
equation model [10] equipped with a simple numerical strategy as in [20–22], which constitutes a relevant first candidate
for numerical strategy formulation and reduced-order simulations before tackling more recent and refined models.

Therefore, a hierarchy of specific test cases aiming at reproducing real engine configurations has been selected and
reproduced with DNS in order to build an assessment tool to validate sophisticated reduced-order models such as the
seven equation model. In [32], we have started with an air-assisted water atomization using a coaxial injector, which in
addition provides experimental results from the LEGI test bench. The comparison has shown good agreements in terms
of liquid core length and important CPU gains between the seven equation model implemented in the CEDRE code
and the incompressible DNS results obtained with the ARCHER code. It has also shown the limits of diffuse interface
models to capture complex liquid structures such as ligaments, rings or deformed droplets and has encouraged to add
a sub-scale description of the interface dynamics through geometric variables such as the interfacial area density or the
mean and Gaussian curvatures as proposed in [19].

In the present work, we carry on the construction of a hierarchy of DNS test-cases to validate this reduced-order
DIM. We propose a complementary second test case, an air-assisted water atomization using this time a planar injector
rather than a co-axial injector. This planar injector reproduces in terms of Weber and Reynolds number the liquid sheet
flowing out a swirling atomizer used in agricultural applications [33], ReL = 1.5103 and WeR = 4.0102 and p = 1bar.
The Reynolds and Weber numbers are also typical from the mid-range aeronautical engines. As analyzed in the present
contribution, this test case offers also an atomization regime with different flow features, which makes this second test
case complementary with the first one in order to eventually validate our reduced-order models on a cryogenic coaxial
injection.

This paper is organized as followed. In the first Section 1, we introduce the mathematical properties of the reduced-
order model and the governing equations solved in the DNS. Then in Section 2, the numerical methods implemented in
the two codes, CEDRE and ARCHER are presented. In Section 3, the investigated configuration is described. Finally in
Section 4, we present the results obtained in both simulations and provide a qualitative and quantitative comparisons.
We finally conclude on the reduced order model assessment.

1 Mathematical modelling

At the top of the hierarchy of diffuse interface models [34] stands the Baer-Nunziato model [10], also called the seven
equation model, accounting for full disequilibrium of the phases. This first-order non-linear non-conservative system
of partial differential equations is composed of a mass, momentum and energy equation for each phase and a seventh
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equation on the volume fraction α to reconstruct the interface. The extended form proposed in [20] introduces an
interfacial pressure, pI, and an interfacial velocity, vI , that need to be closed. The quasi-linear form of the system in the
one-dimensional case takes the form

∂tq+A (q)∂xq = r(q), (1a)

with A (q) = ∂qf(q)+N (q) and

∂qf(q) =

0 0 0
0 ∂q2 f2(q2) 0
0 0 ∂q1 f1(q1)

 , N (q) =

vI 0 0
n2 0 0
n1 0 0

 , (1b)

qk =

 αkρk
αkρkvk
αkρkEk

 , fk(qk) =

 αkρkvk
αk(ρkv2

k + pk)
αk(ρkEk + pk)vk

 , nk(q) = εk

 0
pI

pIvI

 , (1c)

where the column vector q ∈ R7 is defined by qt = (α2, qt
2, qt

1), the conservative flux f : q ∈ Ω 7→ R7 reads f(q)t =
(0, f2(q2)

t, f1(q1)
t) and N : q ∈ Ω 7→ R7×7 is the matrix containing the non-conservative terms. Furthermore we have

εk = (−1)k+1. Then, αk is the volume fraction of phase k ∈ [1,2], ρk the partial density, vk the phase velocity, pk the
phase pressure, Ek = ek + v2

k/2 the total energy per unit of mass and ek the internal energy. Concerning the relaxation
source term, r(q), it decomposes into

r = λ rv +µrp, rv =

0
rv
2

rv
1

 , rp =

pd
rp
2

rp
1

 , (2a)

(rv
k)

t =−εk (0,vd ,vIvd) , (r
p
k )

t =−εk (0,0, pI pd) , (2b)

where we have introduced the pressure difference pd = p2− p1 and the slip velocity vd = v2− v1. An expression for
the relaxation parameters λ and µ have been derived for example using the DEM technic in [35]. Hereafter, we will
consider the phase 1 to be the gaseous phase and the phase 2 to be the liquid phase. We will thus explicit the subscripts
by using g and l.

From this seven-equation model, the instantaneous relaxation of the pressures and the velocities leads to the five-
equation model [8] and relaxing also instantaneously the temperatures, one obtains the compressible multi-species
Navier-Stokes equations referred as the four-equation model. These three models define a hierarchy of diffuse interface
model and each of them are hyperbolic and appropriate for reactive two-phase flow or interface problems.

In cryogenic applications, the pressure of the phases may be considered to relax instantaneously, but due to the
strong velocity and temperature gradients at the interface, it is unrealistic to assume hydrodynamic and thermal instanta-
neous relaxations. Whereas single velocity models are sufficient in the separated zone with an adapted resolution mesh,
it is not the case in the mixed region and thus fail at predicting the atomization process. Therefore the Baer-Nunziato
model (1) appears as the best candidate for the present study.

Nonetheless, stemming from rational thermodynamics, the macroscopic set of equations can not be derived from
physics at small scale of interface dynamics and thus require closure of interfacial pressure and velocity as well as
to postulate the thermodynamics. The theory on the existence of a supplementary conservative equation to first-order
order system of partial differential equation including non-conservative terms [14] has brought about supplementary
conservative equations together with constraints on the interfacial quantities and the definition of the thermodynamics
of the mixture. In the present work, we use a non-miscible fluid thermodynamics, where the mixture entropy is defined
by the mass averaged sum of the phasic entropies with no mixing effect, together with a closure proposed in [22] obtained
through a discrete element method approach [35]. Only mechanical and hydrodynamic relaxations are accounted for in
the present study. They are modeled as in [22] through a pressure difference term and a drag term as in Equation (2). Each
term is driven by a characteristic time, which can be finite to account for disequilibrium. In the limit of an instantaneous
relaxation, any disequilibrium disappear. As described in Section 2, we have used an instantaneous pressure relaxation
but a finite velocity relaxation.

The direct numerical simulation solves the incompressible Navier-Stokes equations and takes into account surface
tension. Then, the interface is implicitly derived by the zero of a Level Set of a scalar function and its motion is captured
by the transport of the Level Set function at the hydrodynamic speed, combined with a projection technique [36]. To
guarantee the conservation of mass, we also transport the volume-of-fluid function (VOF), defined as the liquid volume
fraction expressed in terms of the level set function. The benefits of a VOF formulation coupled with a Level Set function
are to conserve mass and to have access to geometrical properties of the interface.
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2 Numerical methods

2.1 CEDRE Solver

The numerical methods employed to solve the Baer-Nunziato model (1) are implemented in the multiphysics computa-
tional fluid dynamics software CEDRE [6] working on general unstructured meshes and organized as a set of solver [6]
developed at the french aerospace lab ONERA. The solver SEQUOIA is in charge of the diffuse interface model.

The Strang splitting technique applied on a HLLC solver proposed in [22] has been successfully implemented
in the solver SEQUOIA of the CEDRE CFD code. Second-order extension is achieved using a second-order Runge-
Kutta scheme for the time discretization of each sub-system together with a multislope MUSCL second-order space
discretization [37]. The technique consists in computing two dedicated slopes for each face of each mesh cell. It uses the
vertex neighbors and ensures the L∞ norm stability on the scalar advection. The issue encountered when discretizing the
non-conservative terms is tackled in [22] by assuming (1) the interfacial quantities pI and vI to be local constants in the
Riemann problem, (2) the volume fraction to vary only across the interfacial contact discontinuity vI . As a result, the
non-conservative terms vanish, vI and pI are determined locally by Discrete Equation Method (DEM) [35] at each time
step and stay constant during the update. Thus, phases are decoupled, the system splits into two conservative sub-systems
to which we apply the multi-slope HLLC with hybrid limiter solver.

Depending on the application, the relaxations are assumed either instantaneous or finite in time. In the present test
case, it is reasonable to assume a instantaneous pressure relaxation, µ →+∞, but one need to consider a finite velocity
relaxation since the interface dynamic is mainly driven by the shear stress induced by a high velocity difference between
the phases at the injection.

To obtain the relaxed pressure, since the characteristic time is taken to be infinitely small, the problem reduces
to apply an iterative procedure as a Newton method to solve a second order ordinary differential equation (ODE). The
iterative procedure returns a single equilibrium pressure. Detailed equations can be found in [22]. As for the velocities,
since we want to account for finite relaxation time, the associated ODE takes the form

∂tvd−
Ao

εv
vd = 0, with Ao =

ρo

αo
l ρo

l αo
g ρo

g
, (3)

where εv is the characteristic relaxation time, εv = 1/λ , superscript o denotes the state before relaxation and ρ is the
mixture density, ρ = αlρl +αgρg. A first numerical approach is to fix a remaining slip velocity ratio target at each
computational time step ∆ t. It defines the characteristic relaxing time as

εv

Ao = ln
(

vd(∆ t)
vo

d

)
∆ t. (4)

An instantaneous velocity relaxation is in practice also possible and manipulating the ODE leads to a unique relaxed
velocity, which is the mass weighted average of the two velocities before relaxing. In the present simulation, we have
however been using the finite velocity relaxation.

2.2 ARCHER Solver

As for the DNS, we have used the High-Performance-Computing code ARCHER developed at the CORIA laboratory. It
was one of the first code worldwide, undertaking the simulation of liquid-jet atomization under a realistic diesel injection
configuration [38]. For in depth information about the ARCHER solver, the reader can also refer to e.g. [38–41].

2.2.1 Navier-Stokes equations

It solves on a Cartesian mesh the one-fluid formulation of the incompressible Navier-Stokes equation, viz.

∂t(ρ~v)+∇ · (ρ~v⊗~v) =−∇p+∇ ·
(

2µ~T
)
+σHδs~n, (5)

where~v is the hydrodynamical velocity vector, p is the pressure field,~T the strain rate tensor, µ the dynamic viscosity,
ρ the density, σ the surface tension, ~n the unit normal vector to the liquid-gas interface, H its mean curvature and δs
is the Dirac function characterizing the locations of the liquid gas interface. For solving Equation (5), the convective
term is written in conservative form. The mixture density is calculated from the Volume Of Fluid approach as ρ =
ρlαl +ρg(1−αl).
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For transporting the interface, use is made of a coupled Level Set and volume-of-fluid (CLSVOF) solver, in which
the Level Set function accurately describes the geometric features of the interface (its normal and curvature) and the
VOF function ensures mass conservation. A detailed description of the interface capturing methods used is proposed
hereafter.

2.2.2 Interface capturing method

The interface is captured using a Coupled Level Set/Volume Of Fluid (CLSVOF) algorithm. This method allows an
accurate representation of the interface with the Level Set function and the mass conservation with the VOF method.
The general algorithm is based on the one presented in Menard et al. [38]. The volume of fluid transport equation is
defined as

∂tαl +∇ · (αl~v) = 0. (6)

Equation (6) is derived from the continuity equation by considering ρ = αlρl +αgρg.

In the incompressible CLSVOF algorithm, the liquid volume fraction and Level Set transport equations have the
same formulation and are split in the three space directions. To improve the splitting algorithm accuracy, the divergence
correction proposed in [42] has been applied to each splitting step. Consequently, the liquid volume fraction equation
becomes

∂tαl +∇ · (αl~v) = αl∇ ·~v. (7)

For the sake of clarity, only the discretized VOF transport equation on a (i, j,k) indexed cartesian grid is shown below
α̃l−αn

l
∆ t +

(αn
l u)i+ 1

2
−(αn

l u)i− 1
2

∆x = α̃l

u
i+ 1

2
−u

i− 1
2

∆x ,

α̂l−α̃l
∆ t +

(α̃lv) j+ 1
2
−(α̃lv) j− 1

2
∆y = α̂l

v
j+ 1

2
−v

j− 1
2

∆y ,

ᾱl−α̂l
∆ t +

(α̂lw)k+ 1
2
−(α̂lw)k− 1

2
∆z = ᾱl

w
k+ 1

2
−w

k− 1
2

∆z

, (8)

where u, v and w are respectively the x−, y− and z− coordinates of the velocity vector~v evaluated at the interfaces of a
cell. The cell center is indexed (i, j,k) and the cell faces (i±1/2, j±1/2,k±1/2). The grid size is ∆x×∆y×∆z and
∆ t is the time step. Intermediate volume fractions α̃l , α̂l and ᾱl are introduced to calculate the liquid volume fraction at
time step n+1, α

n+1
l , from its value at time step n, αn

l . A final equation couples the three directions to update the liquid
volume fraction

α
n+1
l − ᾱl

∆ t
=−ᾱl

wk+ 1
2
−wk− 1

2

∆z
− α̂l

v j+ 1
2
− v j− 1

2

∆y
− α̃l

ui+ 1
2
−ui− 1

2

∆x

+α
n+1
l

(
wk+ 1

2
−wk− 1

2

∆z
+

v j+ 1
2
− v j− 1

2

∆y
+

ui+ 1
2
−ui− 1

2

∆x

)
.

(9)

The Level Set transport equation is defined as

∂tG+~v.∇G = 0, (10)

where G is the level set function.

As mentioned earlier, the level transport equation is solved in the same way (splitting) as the liquid volume fraction
to maintain consistency. However, since the function G no longer remains a distance when solving Equation (10) due to
velocity gradients, a reinitialization step of the Level Set function is performed at each time step [43, 44]. The reinitial-
ization step allows to keep the Level Set function as a proper signed distance function, i.e. |∇G|= 1. All the geometrical
information of the interface are obtained with the Level Set function G. The mean curvature H is calculated by H = ∇.~n
with~n = ∇G/|∇G|, the normal to the interface.

2.2.3 Projection method

Then, to compute velocity and pressure, the momentum Equation (5) is solved using a standard projection method. This
method allows to decouple velocity and pressure. An intermediate velocity is first calculated without the pressure term
−~∇p and the surface tension term

~v∗ =
ρn~vn

ρ∗
−∆ t

∇ · ((ρ~v)n⊗~vn)

ρ∗︸ ︷︷ ︸
I

+∆ t
∇ ·
(

2µ~T
)

ρ∗︸ ︷︷ ︸
II

, (11)
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where ρ∗ corresponds to the density calculated with the new value of αl obtained after the interface resolution, ρ∗ =
α

n+1
l ρl +(1−α

n+1
l )ρg.

Regarding the convection term I, the method of Vaudor et al. [40] has been used ensuring consistent mass and
momentum fluxes computation. The mesh is an eulerian staggered grid so the velocity is computed on the faces of the
cells and the other variables (pressure, density, liquid volume fraction, ...) are computed in the center of the cells. This
method initially proposed in [45] consists in calculating the mass flux ρv in the center of the cell by using the continuity
equation. The mass flux has to be known in the center of the cell in order to have a second order centered scheme for
the divergence operator. This procedure allows mass and momentum to be transported in a consistent manner thereby
enabling flows with large liquid/gas density ratios to be simulated accurately. A detailed explanation of the algorithm
can be found in Vaudor et al. [40].

Following the procedure of Sussman et al. [46], The dynamic viscosity used in the viscous term II (µl or µg)
depends on the sign of the Level Set function. In mixed cells, a specific treatment is performed to evaluate the dynamic
viscosity. This method takes into account directly the viscous tensor jump across the interface.

Then, the momentum equation is discretized in the following way by using the intermediate velocity obtained
previously,

~vn+1 =~v∗−∆ t
∇P
ρ∗

(12)

By applying the divergence operator to Equation (12), an Helmholtz equation for the pressure is obtained

∇ ·
(

∇Pn+1

ρ∗

)
=

∇.~v∗

∆ t
. (13)

Equation (13) is solved using a MultiGrid preconditioned Conjugate Gradient algorithm (MGCG) [47]. The ∇ ·~v∗ term
is solved with a second order centered scheme. A Ghost Fluid Method (GFM) [48] is used to apply the pressure jump
due to the presence of surface tension [38]. The advantage of the GFM is a more realistic representation of the interface
(sharp, infinitely thin) : jump conditions are directly added at the interface position through a local modification of the
numerical scheme. The distance of the interface is provided by the Level Set function. The final velocity is computed
by Equation (12) using a second order centered scheme for the pressure gradient. A second order predictor-corrector
Runge Kutta scheme have been used for temporal integration.

Concerning the time step calculation, a CFL condition similar to the one used by [49] is used. For CFL = 1, the
CFL condition can be written as

∆ t

(Cc f l +Vc f l
)
+

√(
Cc f l +Vc f l

)2
+4
(
Sc f l
)2

2

≤ 1 (14a)

with

Cc f l =
max(|u|)

∆x
+

max(|v|)
∆y

+
max(|w|)

∆z
, (14b)

Vc f l =

(
2

∆x2 +
2

∆y2 +
2

∆z2

)
×max

(
µl

ρl
,

µg

ρg

)
, (14c)

Sc f l =

√
σ |H|

min(ρg,ρl)×min(∆x,∆y,∆z)2 . (14d)

3 Description of the configuration

To attest the reduced-order model introduced in Section 1 with direct numerical simulation, we propose the study of
the atomization of an air-assisted flat liquid sheet at high Reynolds and Weber number. The reason for choosing this
test case are two folds: first it makes a complementary test case to the air-assisted coaxial atomization analyzed in [32]
in terms of injection type while still offering an atomized regime, second while the Reynolds and Weber numbers are
farther away from cryogenic applications, they still are typical from the mid-range aeronautical engines.
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3.1 Air-assisted liquid sheet atomization

Atomization of air-assisted flat liquid sheets have been widely experimentally investigated such as in [50, 51] and [52].
The behavior of such flow is driven by several parameters. The ratio of the norm of the gas velocity and the liquid
velocity, vg/vl , and the momentum flux ratio M are predominant to determine the breakup regime. Then the width
of liquid injection, dl and the relative gaseous Weber number, WeR, influence also the breakup length, the breakup
frequency and the liquid sheet vibrating frequency [52]. M and WeR are defined as:

M =
ρgv2

g

ρlv2
l
, WeR =

ρg(vg− vl)
2dl

σ
. (15)

Other flow parameters, that are used for liquid atomization of cylindrical jet can be adapted as well, such as the
liquid Reynolds number, ReL = ρlvldl/µL, the liquid Weber Number, WeL = ρlv2

l dl/σ . However, they are less important
for air-blast atomizer because, for high momentum ratio M, the effect of the dynamics of the liquid jet is very limited.
The atomization process is then mostly driven by the shear that is induced by high gas velocity with respect to the liquid
velocity. On the contrary, the dynamics of the gaseous flow is determinant in particular in the vicinity of liquid-gas layer.
Thus, the gas longitudinal velocity profile normal to the issued liquid-gas surface is determinant for the development
of the first instabilities [50]. For experiments, it is of primary importance to characterize the gas boundary layer that
depend on the geometry of the air-blast injector upstream of the injection location.

From these initial Kelvin-Helmholtz instabilities, if the liquid thickness is small, a coupling occurs between in-
stabilities on both sides of the liquid sheet leading to the flag effect. From this feature shared by most of liquid sheet
atomization systems based on air blast, several processes are involved in the disintegration of the liquid sheet. For in-
stance, the liquid sheet flapping induces variation of the liquid thickness. In the stretched part, this thinness can induce
perforation of the liquid sheet leading to the emergence of a hole surrounded by a liquid rim. The accumulation of liquid
within these rims or in other part of the liquid sheet under the effect of surface tension can create ligaments, which are
finally destabilized by Rayleigh-Plateau instabilities. In many industrial applications, to reach high injection rate with
an efficient atomization, the flow conditions are such that turbulence is induced at least in the gas flow. The turbulent
nature of the two-phase flow complicates then the previously described instabilities, adding a transient stretching effect
and a possible collision between liquid elements. This is where the numerical simulation of the entire flow is supposed
to help the design of injection systems. Accordingly, the numerical test case has been designed to be as close as possible
of these typical conditions. The limitation comes from the mesh resolution that should be fine enough to capture most
of these phenomena but still limited to offer an accessible CPU time.

To design the appropriate test case we refer to previous study that have classified break-up mechanism with respect
to velocity ratio [50, 51]. At low speed ratio, the liquid sheet oscillates with a potential low amplitude growth of the liq-
uid core. Moreover the atomization happens following streamwise and spanwise ligament break-up and the spray angle
is particularly low. It is called the cellular breakup regime. This regime would be very challenging for computation re-
quiring a very long computational domain together with high mesh resolution to capture the decreasing liquid thickness.
Then at medium ratio, vorticity becomes more important and the breakup is controlled by streamwise liquid structure
detaching from the principal liquid core. The high amplitude of the sinusoidal wave induces a high spray angle. This is
the streamwise ligaments breakup [53]. Finally, very high vg/vl brings to a complete and immediate disintegration of the
liquid sheet. In [52], the authors also observed that high relative velocity usually leads to strong sinusoidal oscillations
of the liquid flow inducing a high spray angle and short sheet breakup length, called flag-effect [52].

These last two observations indicate that a high velocity ratio is suitable to promote an efficient atomization with
a quite large spray angle in order to reduce the required length of the computational domain. High velocity ratio also
increases the momentum ratio which is beneficial to reduce the liquid core length at least in cylindrical liquid jet atom-
ization [54–56]. In addition, having high velocity and momentum ratio will lead to simulations closer to most industrial
application. The limitation comes from the turbulence that leads to smaller length scale as the Reynolds increases. Sim-
ilarly, it is expected that the final droplet size decreases as the velocity ratio increases, leading to higher Weber number.
It has been chosen not to inject turbulent fluctuations of velocity at the inlet, though this may seem less realistic for real
applications, it allows for more deterministic comparison between numerical approaches and postpones slightly the cre-
ation of small length scales. Finally, the density ratio has to be high enough to ensure a realistic representation of a liquid
and a gas phase, typically of a thousandth for air and liquid water at atmospheric pressure. The lower is the density ratio,
the less is the interaction between phases again leading to a less efficient atomization. In engines, the gas is very often
pressurized leading to a density ratio of the order of a hundredth. Based on these principles, the present configuration
has been set by adjusting flow parameters in order to promote a fast atomization and limit the liquid core penetration,
while having a density ratio realistic for aircraft engines. A reasonably high momentum M = 18.7 is obtained with a
moderately high speed ratio, vg/vl = 43 and a density ratio ρg/ρl = 1/100. To reduce the role played by the surface
tension, since it is not solved by the diffuse interface model, we have chosen a high relative gaseous Weber number,
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WeR = 403. As we will see in Section 4, we obtain a regime resembling the streamwise ligaments breakup, with a short
liquid core, ligaments and an atomized spray.

3.2 Geometry and description of various meshes

The simulation domain described in Figure 2a shows the boundary conditions of the simulation. 1 is the liquid injec-
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2
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z
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(a) Limits and initial boundary conditions.

vl

vg

0

dl

2

dg

2

z

x
(b) Injector schematic and velocity profiles.

Fig. 2: Geometry, limits and boundary conditions of the configuration.

tion plan, 2 is the gas injection plan, 3 and 3 are periodic plans, 4 , 5 . 6 are exit boundary conditions, which are
implemented differently in CEDRE and ARCHER. For CEDRE, they are compressible subsonic outflow plans where
the atmospheric pressure is imposed. Since no reliable theory of non-reflecting subsonic outflow boundary conditions
for compressible two-phase flow exists in the spirit of compressible single phase flow [57], reflecting waves can occur
at the outflow plans. Nonetheless, as we will see in the next paragraph, the computational domain for the compressible
solver has been extended and coarsened to impede these reflecting waves. For the ARCHER code, an outflow boundary
condition has been applied on all the variables with a zero normal gradient condition except for the pressure, which is
set to the constant atmospheric value. Moreover, for the incompressible solver, to confirm that the outflow boundary
conditions we apply on the exit planes do not produce any bias on the results presented in the paper, supplementary
computations on twice as long computational domain in the x direction have been conducted and no noticeable modifi-
cation of the results were to be found. The liquid injection height, dl , the gas injection height, dg, the x-y-z length of the
box, Lx, Ly, Lz, are given in Table 1. Dimensionless lengths x∗, y∗, z∗ are defined as x∗ = x/dl , y∗ = y/dl z∗ = z/dl .

units dl dg Lx Ly Lz

(mm) 1 16 16 4 16

(a) Dimensions

Phase ρ (kg/m3) p (MPa) σ (N/m) µ (Pa.s)

Liquid 100 0.1 0.01 0.0001

Gas 1 0.1 0.01 0.0001

(b) Fluids physical properties

Table 1: Dimensions and physical properties of the configuration.

Figure 2b defines the velocity profile of the gas and the liquid, which are symmetric with respect to the x-axis and
y-invariant. The gas velocity profile vg given in Equation (16) is typical for turbulent pipe flow [58].

vg = vavg
g

7
6

(
2|z|−dl

dg−dl

) 1
6
+ vl . (16)

The average gas velocity vavg
g is 65m/s. An offset equal to vl = 1.5m/s ensures the continuity of the velocity profile at

the injection plan. The domain is initially filled with a liquid sheet in the x− y plan, as thick as the liquid slit as shown
in Figure 2a. Table 1b states the fluid properties in terms of density ρ , surface tension coefficient, σ , and viscosity, µ .
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The ARCHER simulations are performed on a Cartesian mesh 512 × 128 × 512 with a cell size equal to ∆x =
3.12510−5 m, so a total of 101M faces, 33.6M cells and 32 cells in the liquid slit. In terms of degrees of freedom, which
is defined as the product of the number of variables solved and the number of cells, ARCHER solves 42.0M. CEDRE
simulations have been performed on two meshes composed of tetrahedral cells. The first, referred later on as CEDRE
(MR), proposes a medium refinement level with 148k faces, 71.7k cells and 788k degrees of freedom, and the second,
referred later on as CEDRE (HR), a high refinement level with 1.11M faces, 546k cells, thus 6.01M degrees of freedom.
CEDRE (MR) has only 10 cells in the slit, while CEDRE (HR) has 20 cells. The data are summarized in Table 2 and 3. In

Face number Cell number min(∆x)/dl

CEDRE (MR) 0.148M 71.7k 10

CEDRE (HR) 1.11M 546k 20

ARCHER 101M 33.6M 32

Table 2: Mesh statistics of the three simulations.

terms of degrees of freedom, there is a factor 7.6 between the two CEDRE simulations, and similar factor, 7.0, between
the high refined CEDRE simulation and the DNS. The three simulations all together encompass thus a large level of
refinements.

In order to compare the results of the DNS to the results obtained with CEDRE, one must consider the fact that the
DNS solver is incompressible, thus there is no acoustic impacting the liquid sheet and its density is constant. To restrain
the acoustic role in the CEDRE compressible solver, we have enlarged the computational domain by a factor 5 in the x
and z direction and meshed it with a very coarse mesh to avoid any reflecting waves as shown in Figure 3. The minimum

(a) CEDRE mesh overview. (b) Zoom on the refined DNS box.

Fig. 3: Clip of the CEDRE mesh on the plane y = 0 but keeping whole elements.

cell size is located along the liquid slit as one notices on Figure 3b.

Furthermore the use of a compressible thermodynamics in CEDRE through the Stiffened-Gas equation of state
makes it impossible to maintain the liquid density constant. The temperature of the phases have been modified to obtain
the same initial pressure and density conditions as in Table 1b and in practice, the liquid density almost stays constant
as shown on Figure 4.

The convection time tconv of the system is defined as tconv = Lx/vl . The liquid is quickly accelerated and flows at
an averaged speed of vl ≈ 15m/s at x = 3mm as we will see in Section 4 in Figure 14c. Hence the convection time is
approximately equals tconv ≈ 1ms. The minimum simulation time of the three simulations is 8ms, which corresponds
to approximately height convective times, yielding a priori satisfying statistical convergences for each simulation. The
simulation information are summarized in Table (3). The total CPU cost is defined as the product of the number of
processors, Nproc, times the computational time for a given simulation time, tsim. The three simulations have not run in
overall the same amount of simulation time, due to time, ressource and statistical convergence constraints. Therefore,
only partial comparison in terms of CPU costs can be proposed. For tsim = 9ms, we see that ARCHER is 3.5 times more
costly than CEDRE (HR), the latter being 8.1 times more costly than CEDRE (MR). However, as we will see in Sec-
tion 4, time simulation needed to gain statistical convergence differs from one simulation to another. In overall CEDRE
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Fig. 4: CEDRE (MR) instantaneous liquid density ρl over time, maximum value, minimum value.

Total tsim CPU cost for tsim = 9ms [h] Degrees of freedom

CEDRE (MR) 18 8.54103 0.788M

CEDRE (HR) 10.5 69.3103 6.01M

ARCHER 14 245103 42.0M

Table 3: Simulation time and costs comparisons.

offers quicker stastical convergence than ARCHER with a significant reduction of degrees of freedom, highlighting
again the interest of reduced-order model simulations for industrial configurations.

Before moving on to Section 4, where we analyze and discuss the results obtained with the DNS and the diffuse
interface model, Figure 5 offers a global overview of the simulations performed with ARCHER and CEDRE. On the left
hand side of Figure 5, we have drawn a volume rendering of the liquid volume fraction αl obtained with the CEDRE
(HR) simulation. On the right hand side is shown the level set solved by ARCHER, indicating the position of the
interface.

Fig. 5: Instantaneous overview of the simulations: volume rendering of the liquid volume fraction, αl high
low (CEDRE (HR) - left) and level set in grey (ARCHER - right).

4 Results and discussion

We propose a qualitative and quantitative comparison of the results of the simulations performed with CEDRE and
ARCHER in order to, first, analyze the behavior of each model, second, emphasize the main conceptual differences
between them and, finally, evaluate to which extent CEDRE reduced-order model is predictive and to what extent it is
departing from the DNS results.

This section is organized as follows: we start by assessing the DNS reliability to identify the most relevant region
where the DNS can stand as a trustworthy benchmark. Then, we provide a comparison of the atomization global char-
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acteristics obtained by each simulations through the volume fraction time evolution and averaging. We further detail
the comparison with statistical analyses of the flow through first and second order moments based on the liquid volume
fraction and velocities.

4.1 Identification of the DNS region of validity

The problem of under resolution is a real issue in general for simulation of turbulent gas-liquid interfacial flows. The
resolution required to solve completely most of atomization processes, even with moderate Weber number, is often
skyrocketing. Solving entirely a two-phase flow of an atomization process would require several mesh cell per diameter
of any droplet, a condition that is hardly met in practice and leads to the question of mesh convergence. Even with the
most intensive computational effort [59], the full resolution is not necessarily guaranteed and statistical analysis is often
intractable. The strategy developed in the present work is to reduce the zone of analysis to a restricted area where the
mesh resolution is high enough to accurately capture the two-phase flow. This is among the first attempts to determine
which part of the flow is well-resolved based on numerical criteria characterizing the interface resolution quality (IRQ).
This approach is based on previous work, on a simplified problem [60] where the statistical analysis of this IRQ criteria
has been carried out by comparing several level of grid refinement leading to mesh convergence. The main advantage of
this criterion is to evaluate the quality of complex configuration simulations, such as the present one, without running the
simulation with several levels of mesh resolution to achieve a proper mesh convergence study. This criterion is defined
as IRQK = 1/(∆x2H), where ∆x is the grid size and H the mean curvature. This criterion highlights the under-resolved
regions of the simulation where its value diminishes. For instance, a droplet described with 4 mesh cells along its radius
has an IRQK = 2. Therefore, the lower the IRQ is, the lower is the resolution of the liquid (or gas) structure highlighted.
Note that the threshold value of 2 chosen here is arbitrary and the user is expected to choose a value that is the most
adequate to a given simulation. Instead of investigating the individual IRQK for each structure, the IRQK PDF can be
studied to obtain a better picture of the resolution level of the overall simulation.

Since the DNS results have to be reliable to assess the predictiveness of the reduced order model, an analysis of
the IRQK criterion is first performed. The IRQK is extracted from two specific regions of the jet: in the main liquid core,
where the criterion should behave perfectly since most wrinkling of the interface are expected to be captured, and in
the most critical secondary atomization region, where liquids structures encounter fragmentation/breakup processes that
can lead to under-resolved liquids structures. Theses two regions of interest are illustrated in Figures 6a, 6b.

The PDF of IRQK , shown in Figures 6c, 6d, gives useful information about the quality of the simulation. In the
first region of the liquid sheet, most of the IRQ values of the PDF (around 95%) are located beyond the critical zone
of low IRQ, IRQK ∈ [−2 : 2], as shown in Figure 6c. This range is indicated by two red dotted lines in the figure. As
expected, the resolution is sufficient here to describe the main physical phenomena such as instabilities on the liquid
surface and the flapping mechanism. However, in the second region, Figure 6d, the PDF is compressed close to the
critical IRQK zone, hence only around 60% of the interface is well resolved. It indicates that the DNS results should be
taken with caution for large x∗. This can be explained by the production of droplets of small scale due to atomization of
the flapping sheet. Note that this kind of simulations at high Weber and Reynolds numbers are quite challenging in term
of computational costs, explaining the difficulty to reach higher IRQ in the most atomized or dispersed region. Besides,
we specifically have chosen two different regions with opposite behavior to assess the pertinence of the criterion.

Consequently, the DNS appears sufficiently trustworthy until the jet become more dispersed, due to the presence
of very small droplets. In addition, in the present work, CEDRE simulation has not been coupled with any specialized
reduced-order model, such as KBMM, to better describe the dispersed flow. It is unlikely the diffuse interface model
alone will capture properly this part of the flow. The following analysis will therefore be conducted in the zone x∗ ∈ [0,4]
along the streamwise axis where the DNS can be considered as the reference simulation.

4.2 Evaluation of the atomization global characteristics of both numerical approaches

To begin with, we would like to evaluate the macroscopic features of the investigated flow. We first analyze the time
evolution of the liquid volume fraction in order to reveal the expected flag effect mentioned in Section 3. Then we
interest ourselves to the liquid core penetration as it is usually a key feature measured in experiments.
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Fig. 6: IRQk PDF analysis at time t = 12ms (bottom), in two regions identified by the red dashed rectangles drawn on
the plan y∗ = 0 showing liquid volume fraction αl (top).

4.2.1 Time evolution

Figure 7 shows the temporal evolution of the liquid volume fraction obtained with the interface capturing technique
(left) and the diffuse interface model (right). The time-frame starts at a given simulation time tsim = t0 with a δ t frame
rate and stops after nine iterations.

In the first place some inherent properties linked to these numerical methods are clearly observable: results obtained
with the CLSVOF method exhibit a sharp interface between liquid and gas, i.e. a one cell transition between αl = 0 or
αl = 1 at the interface. On the contrary, the liquid volume fraction obtained with the seven equation model allows a
range of αl to be found across the interface, corresponding to a smooth transition between liquid and gas.

When comparing the instantaneous snapshots, the local representation of the interface is clearly different due to
the intrinsic modeling gap between a sharp and a diffuse interface modeling. Nevertheless, these differences are less
obvious when considering that the diffuse interface approach may be interpreted in terms of some statistical probability
to find the liquid phase, i.e. 0.5 value of liquid volume fraction does not actually mean that there is actually 50% of
liquid phase and gas phase but that pure liquid may be found there with a probability of 50%.

Focusing on large scale motions, Figure 7 reveals a sinusoidal flapping. Measuring this flapping frequency could
be done by Fourier transform of a signal characteristic of the flapping varying over time. However, while this procedure
is conducted in experiments since operators can record the signal in time for a large number of flapping, it is nonetheless
hardly applicable to the present numerical simulations including only few flapping events. Instead, we have chosen
an arbitrary initial time t0 at which both simulations are synchronized. The global flapping evolution of both numerical
approaches are much the same inferring that, despite the different representation of the interface, the liquid sheet flapping
frequency is similar. One may have also noticed at the end of Figure 7, that both simulations exhibit a transient regime
during which we observe compaction of the thin flapping liquid sheet starting to be thicker and shorter. Then the liquid
sheet stretches again at the very end of the time-lapse for both simulations.



14 P. Cordesse, A. Remigi, B. Duret, A. Murrone, T. Ménard, F.X. Demoulin and M. Massot

t0 t0 +δ t t0 +2δ t

t0 +3δ t t0 +4δ t t0 +5δ t

t0 +6δ t t0 +7δ t t0 +8δ t

Fig. 7: Time lapse of liquid volume fraction near the injector (ARCHER), αl = 0 1. Left: ARCHER, right:
CEDRE. We define t0 as the starting time and δ t as the time step.

4.2.2 Liquid core penetration

One key quantity in the study of liquid injection is the liquid penetration length. For transient injection, for which no
liquid is initially present, the liquid spray grows from the injector outlet and penetrates into the chamber. The liquid core
penetration length is then easily obtained at the first break-up event. Since the present case focuses on the established
state of the flow, we cannot monitor such event. Worst, the flow has undergone multiple break-ups through time and
the spray has reached the outlet of the computational domain. Experimentally, some apparatus may give a picture of
the spray with high contrast between a zone where the spray is present and a zone where there is nearly no liquid and
average it over time. Since this procedure is hard to apply on numerical simulations, we choose to study the time and
y−axis and z−axis averaged liquid volume fraction, 〈αl〉(t,y,z), along the streamwise direction (x-axis) in Figure 8.
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Fig. 8: Averaged liquid volume fraction 〈αl〉(t,y,z) along streamwise axis. ARCHER, CEDRE (HR),
CEDRE (MR).

The liquid profile along the axis obtained by the DNS ranges from unity close to the injector slit towards zero
further downstream, once atomization and dispersion have occurred. The high resolution profile CEDRE (HR) of the
diffuse interface model matches nicely the DNS data. It is a noticeable result that despite of the difference on the
representation of the interface the evolution of the liquid concentration is accurately captured. The CEDRE (MR) profile
on the contrary shows a certain discrepancy with the reference DNS result. This suggests a correlation with the mesh
resolution, which can be explained as follows: the diffuse interface approach integrates a part of the interface statistics
by representing the phase transition by a smooth function rather than by a discontinuity as for the DNS. The diffuse
interface model contains thus two averaging procedures, one related to the model derivation itself and a second due to
the mesh resolution, causing the observed discrepancy with the medium refined mesh.
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4.2.3 Discussion on small-scale representations

Turbulence is intrinsically impossible to be reproduced and thus to be predicted locally in space and time by simulations.
Accordingly, only statistical characteristics of turbulent flows can be predicted. With this in mind, DNS simulation
has the meaning of a numerical procedure that can be used directly without any modeling assumptions to generate
flow samples having the same statistical characteristics as the real investigated flow, such as the averaged velocity.
DNS instantaneous results can not be considered as the true realization of the flow, but rather possible realizations.
Our understanding of turbulence in liquid-gas flow and in particular for this test case is not complete, but it may be
a reasonable hypothesis that these unpredictable velocity fluctuations are accounted for. It is even possible that the
complex interaction between phases across the interface enforces the unpredictability of the exact flow. Thus, it is
possible to expect that a small perturbation of the DNS can lead to a significant position change of some ligaments and
droplets later on.

On the contrary, as explained in Figure 7, the diffuse interface model makes explicit this non-determination of
the interface real position by estimating the probability of the liquid phase presence in each cell. The diffuse interface
approach is then potentially representing correctly the real flow, but it is highly relying on the closure of the models,
such as the velocity relaxation time introduced in Equation (3) or the interfacial pressure and speed.

To conclude, on these preliminary comparisons, while the two models show a very different representation of small-
scales due to the distinct interface modeling, large-scale motions seems reasonably in good agreements and sufficient to
recover global features of the atomization process such as liquid penetration and spray angle.

Beyond the global characteristic of the atomization, numerical simulations give also access to more complete data
set of results. In particular, for this established flow, the time averaging procedure provides local statistics of the flow.
The following part is thus dedicated to statistical analysis of results obtained by diffuse interface method compared to
the reference DNS data. To ensure a fair comparison the domain is limited to the well-resolved part x∗ ∈ [0,4].

4.3 Statistical analysis

To push further the comparison of the simulations, we now provide statistical analyses of the flow. The first paragraph
evaluates first-order moments with the time averaged liquid volume fraction and the time averaged hydrodynamical
velocity components. Then, the second paragraph discusses about the second-order moments obtained from the liquid
volume fraction and velocity fluctuations.

4.3.1 First-order moments

Time averaged liquid volume fraction Isolines of the time averaged liquid volume fraction 〈αl〉t with its spatial evolution
on the y∗ = 0 plane are drawn in Figure 9. This figure also give an overview of the spray angle obtained with both
formalisms, which is a key quantity in atomization studies. The averaging time is tsim = 9ms.

A good agreement is observed qualitatively for both methods: the isolines almost match each other and contours of
liquid volume fraction are similar. However, the isolines extend a bit further along the x− axis for the DNS than those of
the diffuse interface model. This effect is probably due to the numerical dissipation, since the DNS mesh is about four
times refined in each direction compared to CEDRE (HR) mesh. The isolines extend slightly more for the DNS case,
by a small margin. Interestingly, from the lower value of isolines, we can clearly see qualitatively the spray angle of the
simulations. The angle is a little wider for the DNS confirming that DNS is more subjected to dispersion than the diffuse
interface model. This effect is nearly noticeable from the HR diffused interface simulation but clearly visible from the
MR simulation.

To obtain a quantitative comparison, time and y−axis averaged liquid volume fraction profiles along the transverse
direction (z) are depicted for three different x positions in Figure 10. The positions of transverse profiles are shown on
Figure 9. The diffuse interface model is very close to the DNS reference simulation, but confirms the slightly higher
dispersion in the reference DNS, visible at least on the CEDRE (MR) case. A possible explanation, involving the
representation of the interface, could be that droplets formed during the atomization process are thrown away by the
flapping motion of the liquid sheet. Once they are ejected, they have a relative transverse velocity component with
respect to the surrounding gas phase. The relaxation of this slip velocity has not the same mechanism in the DNS that
aims at solving the force acting at the liquid surface, whereas the diffuse interface models it (see Equation (3)). The
correct resolution of these forces by the DNS depends on the mesh resolution, hence is difficult to achieve for droplets
having a radius of the order of the mesh resolution. This may lead to these slight differences on the dispersion, the DNS
approach estimating a longer time of relaxation than the diffused interface approach.
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Fig. 9: Averaged liquid volume fraction isolines 〈αl〉t = 0.1 1 at the y∗= 0 plane. Dashed located at x∗ ∈{1,2,3}.
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Fig. 10: Averaged liquid volume fraction 〈αl〉(t,y) along Figure 9 dashed lines. ARCHER, CEDRE (HR),
CEDRE (MR). Reader must take care to the fact that the 〈αl〉(t,y) range is different for the three slices.

As a concluding remark, in future work, we could characterize the relaxation time of the velocity relaxation based
on the dispersion observed in the results to close the diffuse interface model.

Mean velocities Time average transverse velocity contours are illustrated in Figure 11 at slice y∗ = 0. Qualitatively
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Fig. 11: Averaged tansverse velocity 〈vz〉t =−3 3m/s at the y∗ = 0 plane.

the global behaviour is the same between DNS and diffuse interface approach for a resolution high enough. Medium
resolution case leads to an over dissipation of the velocity variations, most probably due to the numerical diffusion. In
particular, just at the exit of the injection plane the longitudinal acceleration of the liquid sheet induce a contraction that
can be seen on a small area (x∗ < 1 and |z∗|< 0.5) where the transverse liquid velocities are directed towards the centre
plane (z∗ = 0). This effect is completely damped for the less resolved mesh. Outside this zone, the velocity is always
directed outward due to the liquid dispersion and jet spreading. To achieve a more quantitative analysis of the dispersion,
the transverse velocity profiles have been extracted and averaged in time and along the y-direction in Figure 12.
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Fig. 12: Averaged tansverse velocity 〈vz〉(t,y) along Figure 9 dashed lines. ARCHER, CEDRE (HR),
CEDRE (MR).

For high enough resolutions both methods leads to very similar profile: in the zone dominated by the liquid phase
close to the center plane z∗ = 0, the transverse velocity is always directed outward due to the liquid dispersion process.
The magnitude of the velocities are mostly similar even slightly higher values are achieved through the DNS approach
with respect to the diffuse interface approach. It should be, like for the liquid concentration profile, an effect of the
relaxation time of the liquid droplet and structure that are initially ejected from the main liquid stream with high velocity.
Then it takes more time for this velocity to relax to the ambient gas velocity than for the diffuse interface approach. On
the external zone the transverse velocity is mostly directed toward the centre and the differences between DNS and
diffuse interface approach may be due to the numerical treatment of the external boundary conditions.

Similar comparisons are performed on the time averaged streamwise velocity, 〈vx〉t , in Figure 13. An excellent
agreement is observed with respect to the diffuse interface model results. Again, the intensity of the velocity is slightly
smaller due to numerical dissipation inherent to the diffuse interface model. The agreement is confirmed by analyzing
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Fig. 13: Averaged axial velocity 〈vx〉t = 0 70m/s at the y∗ = 0 plane.

the time and y−axis averaged velocity profiles at different locations shown in Figure 14.
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Fig. 14: Averaged axial velocity 〈vx〉(t,y) along Figure 9 dashed lines. ARCHER, CEDRE (HR),
CEDRE (MR).

The next paragraph is dedicated to the study of turbulent statistics through the analysis of the second order moments
of the flow using the liquid volume fraction and velocity components fluctuations.

4.3.2 Second-order moments

Mean components of the Reynolds stress tensor To study more deeply the statistics of the flow, we have computed the
second order moments based on the liquid volume fraction and velocity fields. We introduce α̃l is the fluctuating part of
the liquid volume fraction, defined as α̃l = αl−〈αl〉t and v′x, v′y and v′z the fluctuating velocity components. Three kinds
of second order moment emanate from these quantities: the liquid volume fraction variance, 〈α̃lα̃l〉t , nine components

of the Reynolds stress tensor,
〈

v′iv
′
j

〉
t
, and the three components of the liquid turbulent flux 〈α̃lv′i〉t .

The analysis of the Reynolds stress tensor allows a validation of the turbulence characteristics observed in the
diffuse interface model. Figure 15 shows the transverse Reynolds stress tensor component

〈
v′zv
′
z
〉

t contour in the y∗ = 0
plane. Turbulence intensity is higher downstream in both formalisms. Again, the intensity obtained with the seven
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Fig. 15: Transverse Reynolds stress tensor component
〈
v′zv
′
z
〉

t = 0 350m2/s2 at the y∗ = 0 plane.

equation model is slightly smaller but the overall results are close to the one obtained with the DNS.

Figure 16 illustrates the y−axis averaged transverse Reynolds stress tensor component for different locations in the
streamwise direction. As mentioned before, the maximum turbulence intensity is lower than the DNS but the trend of the
curve are very similar in both methods, confirming the ability of the diffuse interface model to represent the fluctuating
velocities.

The same analysis is performed on the longitudinal Reynolds stress component 〈v′xv′x〉t , shown in Figure 17 . Here,
some differences are observed: turbulent intensity in the DNS is higher, but also more spread vertically compared to the
results obtained with the diffuse interface model, for which the turbulence fluctuations are located closer to the main
axis.
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Fig. 16: Transverse Reynolds stress tensor component
〈
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〉
(t,y) along Figure 9 dashed lines. ARCHER,

CEDRE (HR), CEDRE (MR).
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Fig. 17: Longitudinal Reynolds stress tensor component 〈v′xv′x〉t = 0 300m2/s2 at the y∗ = 0 plane.

Concerning the y−axis averaged longitudinal Reynolds stress tensor profiles shown in Figure 18, an overall good
agreement is found between the DNS and the diffuse interface model results. Still for x∗ = 2 the peak values obtained
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Fig. 18: y−axis averaged longitudinal Reynolds stress tensor component 〈v′xv′x〉(t,y) along Figure 9 dashed lines.
ARCHER, CEDRE (HR), CEDRE (MR).

through the DNS are noticeably larger than for the one obtained with the diffuse interface model. At the contrary at
x∗ = 3 the peak values are almost the same but the spreading of the DNS is greater than that of the diffuse interface
approach.

Transversal turbulent liquid flux The transversal turbulent liquid flux
〈
α̃lv′z

〉
t represents the transport of the liquid

volume fraction induced by velocity fluctuations. This quantity is important for atomization modeling [61], since it has
to be well captured in order to recover an accurate dispersion of the liquid.

Using the plane y∗ = 0 as in previous paragraphs,
〈
α̃lv′z

〉
t contours are summarized in Figure 19.
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Fig. 19: Transversal turbulent liquid flux tensor component
〈
α̃lv′z

〉
t =−1.5 1.5m.s−1 at the y∗ = 0 plane.

Figure 20 illustrates the y−axis averaged transversal turbulent liquid flux for different locations in the streamwise
direction.
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Fig. 20: y−axis averaged transversal liquid flux tensor component
〈
α̃lv′z

〉
(t,y) along Figure 9 dashed lines.

ARCHER, CEDRE (HR), CEDRE (MR).

This variable behavior combines the effects pointed out earlier on the liquid volume fraction and the transverse
velocity fluctuation: the turbulent liquid flux is more spread in the DNS case due to the higher spray angle. The turbulent
liquid flux intensity is lower in the seven equation model. These results confirms that the liquid dispersion is higher in
the DNS results.

Discussion on second-order moments The second-order moment statistics exhibit some differences between both nu-
merical approaches that are most probably related to the different representation of the small scale features of the flows,
and more particularly to the representation of the liquid-gas transition as already attested with the global feature flow
comparison at the beginning of the section.

In addition, it can be pointed out that it is more difficult to achieve the statistical convergence, as shown by remain-
ing fluctuations in all the second-order moment figures. To show the effect of small scale structure on the second-order
fluctuations, let us first consider the variance of the liquid volume fraction, defined as

〈α̃lα̃l〉= 〈αlαl〉−〈αl〉 〈αl〉 . (17)

Since at a given location x there can either be liquid or gas, the admissible values of αl are only one and zero respectively,
thus the probability density function, at this location, reads P(αl) = (1−〈αl〉)δ (αl)+ 〈αl〉δ (αl−1), thus yielding

〈α̃lα̃l〉= 〈αl〉−〈αl〉 〈αl〉= 〈αl〉(1−〈αl〉). (18)

The sharp representation of the interface preserves this feature as shown in Figure 5, since the product αl(1−αl) is
always null, whereas the diffuse interface model gives necessarily lower resolved variance level since αl(1−αl) is not
null in zones where the interface has been diffused (see Figure 7), yielding a lower variance. This variance gap has not
disappeared in the diffuse interface approach. If the construction of the diffuse interface approach is based for instance
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on some probability to find the liquid, the same statistical approach induces that a certain amount of variance is related
to this probability, this part is somehow included as a model and hidden at the resolved scale.

Furthermore, the turbulent liquid flux includes also this kind of effect, by considering at one location and time there
can be only liquid and gas. It can be shown that〈

α̃lv′
〉
= 〈α〉(1−〈α〉)(〈vl〉−

〈
vg
〉
) = 〈α̃lα̃l〉(〈vl〉−

〈
vg
〉
). (19)

Thus, the turbulent liquid flux is related to the variance and the difference of velocity between phases. Since the resolved
part of the diffuse interface underestimates the variance, it penalizes the turbulent liquid flux. Here again, it is due to the
fact that second-order moments are sensitive to the small-scales feature of the flow.

On the same line not all the features of the flow are perfectly represented by the sharp interface approach (DNS),
since for low mesh resolution the precision on the determination of the interface position will decrease leading to other
kind of numerical artifacts. For low resolution, the methods that preserve the sharp interface transition to keep also the
total amount of each phase forces somehow the phase inclusion to remain at the resolution level. This has been shown
on Figure 6d, for the low resolution part of the simulation, an accumulation of surface that has a curvature related to ∆x
appears showing that the numerical method start to limit the atomization process to preserve droplet that can be captured
with the present mesh resolution.

Finally, the implication of the reduction of variance can also be demonstrated for Reynolds stress correlation, as an
example the same PDF of αl implies〈

v′v′
〉
= 〈αl〉

〈
v′lv
′
l
〉
+(1−〈αl〉)

〈
v′gv′g

〉
+
〈
α
′
l α
′
l
〉
(〈vl〉−

〈
vg
〉
)2. (20)

The Reynolds stress contains three contributions: a part in the liquid phase, a part in a gas phase and a last part due
to the velocity difference between gas and liquid. This last contribution is proportional to the variance of αl . Thus the
under estimation of the variance by the diffuse interface approach reduces also the Reynolds stress. This effect can be
observed on Figure 18 and it is more pronounced for the MR case than for the HR case.

To conclude this discussion, the fact that the diffuse interface model underestimates the variance does not mean that
the diffuse interface model produces wrong result, but that a part of second-order moments is included in the statistical
representation of the transition between the gas and liquid.

Conclusions

In the present work, we have proposed to pursue the evaluation of reduced-order models to perform predictive simu-
lations of the primary atomization in engines ranging from cryotechnic to aeronautic applications. As a baseline com-
parator, we have relied on the DNS results of a hierarchy of specific test-cases. The original test-case consisted in an
air-assisted water atomization using a coaxial injector with experimental results from the LEGI test bench [32]. In the
present paper, we have selected a second test-case, an air-assisted water atomization using this time a planar injector
rather than a co-axial injector. This planar injector reproduces in terms of Weber and Reynolds numbers the liquid sheet
flowing out a swirling atomizer used in agricultural applications [33], ReL = 1.5103 and WeR = 4.0102 and p = 1bar.
The Reynolds and Weber numbers are also typical from the mid-range aeronautical engines. As analyzed in the present
contribution, this test-case offers also an atomization regime, which makes it complementary with the first test case in
order to eventually evaluate and assess our reduced-order models, the final aim being a cryogenic coaxial injection.

We have thus qualitatively and quantitatively compared the results of simulations performed with CEDRE for the
diffuse interface reduced-order model and ARCHER for the DNS. We have first assessed the DNS reliability through
the use of the IRQ criterion to identify the most relevant region where the DNS can stand as a trustworthy benchmark.
Then, the main result of this work concerns the comparisons of two models that have a different modelling of small-
scales due to the distinct interface representation. With the DNS code ARCHER an interface reconstruction technique
is used representing thus the interface like a sharp transition. On the other hand, the diffuse interface approach spreads
the phase transition over few mesh cells, inducing a statistical representation of the probability of phase presence.
Despite this intrinsic difference of representation of flow at small scale of interface deformation, the mean behavior
of the flow (average velocity) and atomisation (average liquid volume fraction) are preserved and well recovered for
both approaches. Looking at the average slice of liquid volume fraction field, global features of the atomization process
such as liquid penetration and spray angle are comparable even if a slightly higher dispersion of the reference DNS
with respect to the diffuse interface model may be observed. To go further, quantitative comparison have been realized
by comparing directly transverse average profile of liquid volume fraction and velocity component. The agreement
is within the statistical noise for all quantities except for the transverse velocity comparison where few percent of
difference may be observed. It is important to stress that the diffuse interface results depend on the mesh resolution up
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to a certain level where the DNS based results can be recovered. This findings suggest further work to build a clear
theoretical derivation of the statistical length scale induced by the diffuse interface representation. We have further
detailed the comparison with statistical analysis of the flow through first and second-order moments based on the liquid
volume fraction and velocities limited to the well-resolved part 〈0,4dl〉 of the computational domain. The second-order
moments have confirmed the liquid higher dispersion for the DNS. We finally have pointed out why the diffuse interface
model underestimates the variance and emphasized that it does not mean that the diffuse interface model produces
wrong result, but that a part of second-order moments may be included in the representation of the transition between
the gas and liquid. To summarize, we have understood the behavior of each numerical method and identified the main
conceptual differences between them.

Even if both numerical formalisms (i.e. diffuse interface method and interface capturing method) are quite different,
their comparison has shown good agreement for key quantities such as spray angle, liquid penetration length, averaged
velocities profiles, averaged volume fraction profiles, averaged Reynolds stress tensor and mean turbulent liquid flux.
Important CPU gains between the seven equation model implemented in the CEDRE code and the DNS results from the
ARCHER code have been obtained.

The diverging modeling of the small-scale between the two approaches has brought out the need to examine in
future works the underlying averaging process coming from the diffuse interface modeling, which is linked to the mesh
resolution and produces numerical dissipation leading to a lost of amplitude of the fields. It also suggests to add a sub-
scale description of the interface dynamics through geometric variables such as the interfacial area density, the mean
and Gaussian curvatures as proposed in [19]. It is current research area part of the PhD thesis [5].
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