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Abstract 
 

Exceptional edge state ballistic transport, first observed in graphene nanoribbons grown on the 
sidewalls of trenches etched in electronics grade silicon carbide even at room temperature, is 
shown here to manifest in micron scale epigraphene structures that are conventionally patterned 
on single crystal silicon carbide substrates. Electronic transport is dominated by a single 
electronic mode, in which electrons travel large distances without scattering, much like photons 
in an optical fiber. In addition, robust quantum coherence, non-local transport, and a ground state 
with half a conductance quantum are also observed. These properties are explained in terms of a 
ballistic edge state that is pinned at zero energy. The epigraphene platform allows interconnected 
nanostructures to be patterned, using standard microelectronics methods, to produce phase 
coherent 1D ballistic networks. This discovery is unique, providing the first feasible route to 
large scale quantum coherent graphene nanoelectronics, and a possible inroad towards quantum 
computing. 
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1. Epigraphene nanoelectronics 
 

 In 1909 the silicon carbide LED (light emitting diode), was demonstrated (see refs in 1). At 
that time, the still widely used conducting graphene ink, AquaDAG, was also invented. It was 
made from the graphene layer that forms on silicon carbide crystals (SiC) when they are heated. 
In that process a graphene layer forms, whose honeycomb lattice is atomically aligned with the 
crystal lattice of the SiC. That is, the graphene layer is epitaxial2. This epigraphene layer had been 
intensely studied in the last century in the context of SiC electronics research1, but its intrinsic 
electronics properties were not considered.  

 
The fact that graphene itself could be a 2D electronic material was first recognized in 2001 by 

the Georgia Tech epigraphene group (GTEG)3. It was inspired by their earlier discovery of room 
temperature ballistic transport properties of carbon nanotubes4 combined with the realization that 
the electronic structure of graphene ribbons5,6 is remarkably similar to that of carbon nanotubes. 
In addition, high performance, high density nanoelectronics requires single crystal substrates and 
epitaxy7, to ensure the essential nanoscale precision and reproducibility. By those criteria, 
epigraphene is the ideal, and in fact currently the only, viable choice for high performance 
graphene nanoelectronics.  

 
The GTEG had produced the first epigraphene devices in 2002. By then, calculations5,6 had 

predicted that, like the ground state of carbon nanotubes4,8-10, the edge states in neutral graphene 
ribbons are 1D ballistic conductors. Later edge-state theory11,12 predicted numerous additional 
important properties, further amplifying the potential of graphene edge state electronics. 

 
In 2010 the GTEG produced epigraphene nanoribbons, by thermally annealing 20 nm deep 

trenches that were etched in the polar (0001) facet of hexagon silicon carbide (H-SiC)13. The 
narrow graphene ribbons grown on the sloping sidewalls of steps and trenches13-16 were found to 
have nanotube-like 1D ballistic properties4,17. Subsequently, room-temperature edge state 
transport was reported with unprecedented mean free paths (mfp) λ>40 µm, about 1000 times 
larger than the mfp of the bulk graphene14. However, the sloping sidewall geometry is poorly 
suited for electronics. Subsequently, we correctly conjectured that that the sloping SiC sidewalls 
were essential. Accordingly, we developed the capability to cut and polish SiC wafers from bulk 
SiC rods along the directions dictated by the sloping sidewalls. The properties of graphene grown 
on those non-polar crystal faces exceeded our expectations. 

 
We show here, that the edge states of conventionally patterned devices on non-polar planar SiC 

substrates have all of the 1D ballistic properties observed on sidewall graphene, including the 
exceptionally large mfp’s, and transport involving a single conductance quantum14. In addition, 
an unexplained half conductance quantum state is observed, as well as Fabry-Perot resonances 
and non-local transport, that demonstrate quantum coherence. These features show that quantum 
coherent interconnected quasi-1D networks can be patterned using conventional lithographic 
methods, making this new material an ideal platform for quasi-1D quantum coherent 
nanoelectronics: the essentially unexplored next frontier of electronics, as epitomized in quantum 
computing.   
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2. Graphene edge states 
 
According to tight-binding calculations5,6,18 (Fig.1) the electronic structure of the edge state of 

a graphene ribbon with zigzag edges consists of a dispersionless, non-conducting band at energy 
E=0 (the flat band) localized at the ribbon edge, two ballistic linearly dispersing bands with the 
graphene Fermi velocity |dE/dk|=c* (k is the wave number) for |E|>0, and an evanescent region 
near E=0, with wavefunctions that decay going into the bulk, Fig. 1c. The flat band represents a 
large density of states exactly at E=0 and corresponds to about 4 states per nm at the edge. It is 
half-filled at the charge neutrality point (CNP or Dirac point)5,6,11,19. The ballistic edge state 
conductance was predicted to be G=2G0=2e2/h, where G0 is the conductance quantum, e is the 
electronic charge and h is Planck’s constant18.  

 
Akhmerov and Beenakker20 showed that this tight-binding band structure generically applies to 

graphene ribbons with arbitrary edges (excluding perfect armchair edges). More elaborate recent 
theory (beyond tight-binding), comprehensively reviewed in ref11, predicts that edges of 
graphene systems can host localized states with evanescent wave functions that have properties 
that are radically different from those of the Dirac electrons in bulk, including edge 
ferromagnetism5,21,22, the quantum anomalous Hall and the quantum spin Hall phases, where 
transport involves topologically protected edge states18,23. This clearly greatly expands their 
potential for novel electronics. 
 

A graphene ribbon has distinct modes or electronic subbands (Fig. 1c), analogous to modes of 
an optical fiber. The Landauer equation states that the conductance G in the ribbon (with length 
L and width W) is the sum of the subband conductances. In simplified form (at T=0K)24:  

 
! = !! Θ!! ≈ !! !!(1+ !/!!)!!!""!

        (1) 
 

where, Θνis the transmission coefficient (0≤Θν≤1), !!=2 for ν=0 and !!=4 for ν≠0, and !! is the 
electronic mfp of the νth subband24. The sum is over the subbands that cross the Fermi level EF 
and EF=±!c*kF is the Fermi energy (!! = !" is the Fermi wave vector).  
 
In the diffusive limit, when !!<<L, then G= !"µ!/! where n is the charge density and µ is the 
mobility. For graphene ribbons !!=2 and !!!!=4. Congruently, for graphene sidewall ribbons 
we reported14: 

! = !!"#! + !!"#$ = !! 1+ !
!!

!!
!!(!,!)+ !"µ!/!                (2) 

Gedge  is the (ballistic) conductance of the edges state (ν=0, λν>10 µm) and Gbulk is the diffusive 
conductance of the bulk (ν≠0, λν≈20 nm)14, due to scattering from charges in the substrate25,26 
that is found to be essentially temperature independent. For sidewall ribbons at CNP, we showed 
that g0=1 rather than 2 for temperatures 20K≤T≤300K14. These properties are again found here.    

 
Sidewall ribbons are ballistic conductors at CNP (n=0) (Eq. 2).14,16,27 In contrast, due to edge 

disorder, at low temperature ribbons produced from exfoliated graphene are insulators at CNP28, 
even when BN substrates are used29 on which the bulk graphene mobility is extremely large30. 
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As expected (see, for example Ref.24) and observed14, an invasive probe placed on a ballistic 
ribbon with resistance RBal doubles its resistance to 2RBal because the probe divides the ribbon 
into two independent ballistic segments. For multiple probes, the resistance increases by 1RBal 
for each probe14. Segmentation both demonstrates and quantifies ballistic transport14. While a 
segmented ballistic network, as described above, electrically mimics a conventional diffusive 
resistor network, the physics is quite different as is clear from Eqs. 1 and 224.  

 
As demonstrated experimentally here, the half-filled flat band at CNP pins the Fermi level at 

E=0 at the ribbon edge31,32. The charge induced on the graphene by the gate, is depleted near the 
edge32,33 and absorbed in the flat band. The resulting electrostatic fields cause band bending (Fig. 
1 b) and the potential U(x) (measured from EF to CNP) a distance x from the edge is 
approximately  

 
! ! ≈ !! 1− !!! !   
! ! ≈ !! 1− !!! ! !

         (3) 
 

where U0 and n0 are the potential and charge density far from the edge, and d is the dielectric 
thickness32. Band bending near the edge confines the electronic waves in the direction transverse 
to the edge. The resulting guided ‘fiber-optic’ modes propagate along the crystal edge as plane 
waves and decaying into the bulk as evanescent waves (see Ref.12 Fig. 1). For simplicity, we call 
the dispersing component of the edge state near E=0, the EVE (evanescent edge state), without 
subscribing to any specific theoretical model. 
 

Since the EVE is pinned to E=0, its response to the gate voltage is suppressed so that 
g0(B,T,n)≈g0(B,T,n=0). Therefore, as shown here and previously in sidewall ribbons14, the 
conductance of the EVE is in parallel with the bulk and independent of the gate voltage, 
consistent with Eq.2. 
 

The large density of states at E=0 is a general property of polycyclic aromatic hydrocarbons 
with zigzag-like edge atoms34-38 has been observed in STM studies39-41. Similarly a large local 
density of states and Fermi level pinning at E=0 was observed, and attributed to carbon 
vacancies42 in C-face epigraphene multilayers43. In Si-face epigraphene, Fermi level pinning at 
E=0 by the buffer layer causes extended ν=2 quantum Hall plateaus44. The physics of pinning at 
E=0 in graphene is similar to mid-gap defect pinning in semiconductors.31,32  
 

 When the flat band is saturated (or depleted) by the gate induced charge density n, the edge 
state unpins, approximately when |n|≈1/a0d≈ 4 1013 cm-2 for d =30 nm where a0=0.12 nm is the 
graphene lattice constant32. The edge state becomes insulating when the edge is disordered, as it 
is the case for oxygen plasma etched free-standing graphene edges as stated in Refs. 29,45,46. In 
contrast, the SiC substrate stabilizes epigraphene. This is dramatically demonstrated in 
epigraphene oxide that is produced by submersing epigraphene in a strongly oxidizing hot bath 
of potassium permanganate, sulfuric acid, and sodium nitrate. Yet, the epigraphene oxide layer 
that is formed is flat and reverts to pristine epigraphene when heated47,48. 

 
 The chemistry of plasma etched epigraphene edges and the SiC surfaces involves C, Si, O, and 

H that are used in the processing. Here we use HF to remove surface oxides, that most likely 
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hydrogen terminates the edges. Moreover, post-processing thermal annealing may establish Si-C 
bonds at the edges (as in sidewall ribbons). The chemical bonding to the substrate is seen in cross 
sectional TEM studies of sidewall ribbons14,49,50, showing that the SiC substrate chemically and 
mechanically stabilizes the graphene edges as well. 

 
3. Non-polar Epigraphene Production and Characterization 
 
The epigraphene laboratory in the Tianjin International Center for Nanoparticles and 

Nanostructures (TICNN) at the University of Tianjin, specifically established to develop 
epigraphene electronics, produced the non-polar SiC substrates and epigraphene, starting from 
commercial bulk single crystal 4H and 6H SiC stock. Figure 2 shows characterization of the 
epigraphene wafers produced using the confinement controlled sublimation method51. Upon 
heating epigraphene growth starts with trapezoidal islands (Fig. 2a) that subsequently merge, to 
produce a uniform flat graphene layer. Raman spectroscopy of the graphene indicates low defect 
graphene (Fig.2f).  

 
Angle resolved photoelectron spectroscopy (ARPES) scans along the K-M-K’ direction shows 

the K and K’ Dirac cones with Dirac points at the Fermi level (Fig. 2d), revealing an isotropic 
carrier velocity c*= 1.04 106 m/s at E=0, similar to sidewall graphene14,52. Scanning tunneling 
microscopy (Fig. 2b) shows graphene lattice, atomically resolved, and scanning tunneling 
spectroscopy (Fig. 2c) confirms that the graphene is neutral as are epigraphene sidewall ribbons 
(|n0|≤1010/cm2 corresponding to a Fermi energy EF≤10 meV). In contrast, EF≈350 meV and  
n≈-1013/cm2 in Si-face polar epigraphene. 

 
In a magnetic field B, electrons in graphene organize in discrete energy Landau levels: 

! ! = ± 2|!|!"ℏ!∗!. Transitions from occupied to unoccupied Landau level are detected in 
infrared magneto-spectroscopy (Fig. 2e). The characteristic ! dependence of the transitions is a 
signature of a graphene monolayer, from which c*=1.0 106 m/s is determined, consistent with 
ARPES. This transition is observed at least down to B=0.25 T, indicating that |n0|is at most 
3.6 1010 cm-2. 

  
4. Segmentation of the edge state 
 

Graphene Hall bars produced with standard nanoelectronics lithography methods were supplied 
with Pd-Au contacts (see Methods). The 30 nm thick Al2O3 dielectric used in the top gate is 
applied in high vacuum conditions as in previous epigraphene studies, including sidewall 
ribbons14-16, high-mobility Hall bar structures53 and ultra-high frequency field effect transistors54. 
 

Magneto-transport measurements were made at magnetic fields B ranging from -9 T to +9 T, 
temperatures T ranging from 2K to 300K, and charge densities n up to 4 1012cm-2. The bulk 
charge density n is derived from the top gate potential Vg=ne(1/C + 2/Cq), where C is the 
classical capacitance per unit area and Cq= 2ne2/EF  is the quantum capacitance55,56, which we 
experimentally measured.  
 

Vij;kl indicates the voltage difference between contacts k and l, with  current injected between 
contacts i and j, hence Rij;kl= Vkl/Iij and  Gij;kl=1/Rij;kl. As usual, Vij;kl(B) is decomposed in its 
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symmetric and antisymmetric components: VX(B)=(V(B)+V(-B))/2 (longitudinal voltage) and  
VY(B)=(V(B)-V(-B))/2 (Hall voltage), which also defines Rx and Ry.  

 
Individual segment resistances Ri (see Fig. 1d for segment notation) were determined from the 

matrix of 2-point resistances of pairs of contacts measured at T=11 K, for n=0, n=6 1011 cm-2 and 
n=2.8 1012 cm-2.  Figure 3a shows that at CNP (n=0), Ri=Ri

edge is about 40 kΩ. For n≠0, Gi
bulk 

=Gi(n)-Gi(CNP), following Eq.2. Ri
bulk increases linearly with segment length Li and inversely 

with n. The mobility µ= 870 cm-2V-1s-1 corresponds to λbulk ≈10 nm (for n=1012cm-2). Hence we 
find that Redge(n=0,B=0,T=0)=49±5 kΩ=1.9±0.2 R0 where R0=h/e2=1/G0≈25.8 kΩ (the 
temperature dependence is extrapolated to T=0K, Fig. 3c inset). The mfp’s of the segments at 
n=0 are then determined, using Eq. 2, as listed in the caption of Fig. 3.  

 
Figure 3b plots the resistances for all measured values of RX

15;kl (n=0,B=9T, T=4.5, 40, 65K) 
versus the number of segments N15;kl from contact k to l, along the current path from contact 1 to 
contact 5 (Fig. 1d). It shows that RX

15;kl (n=0, B=9T,T)≈N15;kl R0 (independent of T). A similar 
analysis for B=0, n=0 shows a linear dependence with N15;kl with temperature dependent slopes. 
The measured temperature dependence (Fig. 3c), that saturates below T=3K, allows 
conductances to be extrapolated to T=0K (Fig.3c inset). Hence we find that Redge (B=9T,T) 
=0.98±0.03 R0 and Redge(B=0T,T=0K)=Redge (B=0T,T=2K)=2.08±0.27 R0. We identify Redge with 
R(n=0), see Eq. 1. 
 

Figure (3d-e) shows conductance measurements of G1
edge=GX

15;12 (Segment 1) and G15;15 
(Segments 1,7,8, and 5 in series) at CNP. GX(n,B,T) increases linearly with B and saturates at 
GX

sat for Bsat≈1.5T producing a “V” shape whose amplitude diminishes with increasing T. 
Similar saturation is found for increasing B and T. Also note that G15;15(n=0,B=9T,T) =0.255 G0  
(≈G0/4 as expected for 4 segments), whereas G15;12(n=0,B=9T,T)=0.78 G0 (or 0.96 G0 after 
adjusting for the measured mfp as  described in Eq. 2). 
 

For B=0, the T dependence (Fig.3c) is approximately described by G(n,T)=(1+L1/λ1)-1 

(G0/2)(1+exp-T*/T) + G(n), with T*≈12K, consistent with Eq. 2. The second term is the T 
independent diffusive (bulk) contribution. The first term is consistent with two 1D subbands, 
each with a conductance of ½ G0 (not 1 G0 as expected) and separated in energy by ΔE=kBT*. 
Furthermore, the band shift ΔE decreases with increasing B, to produce the “V” shape of Fig. 3d-
e suggesting a magnetic splitting21,22. Similar behavior was observed in Ref.14 and cannot be 
explained by weak localization, that would imply a phase coherence length !!≈20 nm,24 while in 
fact !!>1 µm as shown below. 
 

Figures 4d,e,f show GX
15;12(n,T,Bi). GX

15;12(n,T=4.5,40,65K,Bi<1T) increases linearly with 
increasing |n| with a sharp corner at n=0 (Fig. 4d, inset). The linear increase results from the 
parallel conductance contributions of the edge and the bulk as described in Eq. 2. This corner 
rounds somewhat at T=65K (Fig.4f, insert), due to thermal population of subbands at n=0. Since 
at T=65K, the thermal broadening exceeds the broadening due to charge disorder δn, we estimate 
that (kBT/!c*)2 > πδn, or δn<2.5 109/cm2. Note that the conductance at n=0 at low temperatures, 
generically called the “residual conductance”25, is here due to the edge state. It is not related to 
the minimum conductivity, that is due to charge disorder25 (“charge puddles”) that are essentially 
absent in epigraphene57,58.  
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Hence, as described in Eq. 2, the EVE forms a network of ballistic segments, in parallel with a 

network of essentially T independent diffusive segments. However, in the quantum Hall regime 
(QHR), the bulk becomes insulating and transport is confined to the ballistic quantum Hall edge 
state that, then, is likely to interact with the EVE.   
 

5. Quantum Hall Regime   
 
Transport at larger magnetic fields, away from CNP, exhibits quantum Hall features, as shown 

in Fig 4a-f for RHall=R15;26 and RX=RX
15;12. A single Hall plateau at RHall=¼ R0 (suggesting a 

bilayer) is observed while RHall=½ R0 is expected for the ν=0 Landau level of a monolayer. The 
absence of any evidence of second Landau level prevents immediate identification, but further 
analysis, below, supports a monolayer. 

 
 The EVE significantly affects the Hall effect. Symmetry requires that at E=0, the EVE 

current is half electron-like and half hole-like (Fig. 1c), so that its net Hall voltage vanishes59 
even though the net EVE current Iedge does not: a right moving electron carries the same current 
as a left moving hole so if both currents contribute equally, then no average Hall voltage is 
generated. Moreover, if these events are simultaneous (correlated) as suggested by its 
quantization, then the charge of the ribbon does not change in the process. (While resembling co-
tunneling60-63, co-tunneling is ruled out since the edge state conductance is quantized, and co-
tunneling is not.) 

 
As shown above, in the diffusive regime, the total current I0=Iedge+ Ibulk =(Gedge+Gbulk)V and 

Gedge is  essentially independent of Vg. Therefore 
 
Gbulk(n,B)=G(n,B)-Gedge(n,B)= G(n,B)-G(n=0,B)    (a) 
Ibulk(n,B)=I0 (1-GX(n=0,B)/GX(n,B))                           (b) 
RY

bulk (n,B) =RY(n,B)  I0 / Ibulk.             (c)    (4) 
 
Equation 4 is expected to be relevant in the QHR and explains the anomalous quantum Hall 

resistance as summarized next. 
 
(1) The EVE current affects the measured Hall plateau resistance, RY(n,B) (Eq. 4c). Fig. 5a 

shows the corrected RY bulk(n,B)≈0.4 R0 which is close to the expected RHall= ½ R0 for monolayer 
graphene.   

(2) At fixed Bi and increasing n from n=0, RY(n,Bi) initially follows a Bi-independent 
universal curve RUni(n), characterized by non-quantized pseudo quantum Hall plateaus RY(B,ni) 
= RUni(ni) as shown in Fig. 4g. We conclude that the pseudo-plateaus are in fact monolayer 
quantum Hall plateaus, however the shorting effect of the edge state reduces the quantized value 
by Ibulk/I0, that vanishes at CNP and initially increases linearly with n as shown in Fig. 5b. 

(3) Fig. 4a (dashed vertical lines) shows that the quantum Hall plateau is escaped for filling 
factor F=(ni/Bi)φ0 ≈ 4, where φ0 =h/e is the flux quantum. Since this plateau extends to n=0, the 
mid-plateau filling factor is F=2, which corresponds to a monolayer (not a bilayer)64. 

(4) Normally, in the QHR, the quantum Hall edge states are protected ballistic conductors 
where backscattering is completely suppressed, and the 2-point resistance between any two 
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ohmic contacts is RHall. In contrast we observe RX
15;15=1.6 R0 instead of 0.25 R0 ;  RX

15;12=0.6 R0 
instead of 0; RX

15;23= 0.2 R0 instead of 0;  RX
15;34=0.4 R0 instead of 0 (lead resistances are <0.04 

R0). These observations are consistent with edge state backscattering at the junctions that is not 
suppressed, causing voltage drops at the junctions. 

(5 )The amplitude ASdH(B,T) of the RX(B,T) oscillations (Shubnikov-de Haas oscillations) are 
given by the Lifshitz-Kosevich equation: ASdH(B,T)/ASdH(B,T=0K)=u/sinh(u), where 
u=2π2kBT/ELL(B) and ELL(B) is the Landau level energy. For a monolayer it predicts65: 
ASdH(B=9T,T=150K)/ASdH(B=9T,T=0K)=0.4 and for a bilayer66 
ASdH(B=9T,T=150K)/ASdH(B=9T,T=0K)=0.04. In contrast, the observed amplitude is 
ASdH(B=9T,T=150K)/ASdH(B=9T,T=0K)=0.25. This is consistent with monolayer and not with a 
bilayer. 

 
Hence we conclude that the anomalous Hall effect is caused by the EVE. 

 
6. Coherence and non-local transport 

 
Reproducible voltage fluctuations are observed at all contacts, for all magnetic fields and gate 

voltages. The fluctuations are Fabry-Perot interference patterns (FP) resulting from coherent 
scattering. For comparison, the FP of a gated carbon nanotube of length L consists of regular 
spaced oscillations with a period ΔkF=π/L (!! = !" ).8 For multi-segment systems, the 
diffraction patterns are complex: the large number of paths from source to drain produces rich 
diffraction patterns.  
 

The Hall resistance was measured in two configurations that are mutually rotated by 90°, i.e 
R15;26 and R26;15. R15;26(Bi) and R26;15(-Bi), that superimpose very well (Fig. 6a). These 
measurements were made 3 weeks apart, demonstrating the robustness of the diffraction pattern 
as also is clear from Figure 6b that overlaps ΔR15;26 (n,Bi) and ΔR26;15(n,-Bi) for 27 values of Bi. 
In this Hall geometry, the measured fluctuations reflect voltage fluctuations at the junctions. 
 

Figure 6c shows that the RX
15;12(n,Bi) and RX

15;16(n,Bi)  are essentially identical. Classically, 
this result may be expected, since both configurations measure segment 1. However, they 
measure opposite edges, and fluctuations generated within opposite edges are not expected to be 
identical. This supports the picture that the fluctuations manifest in the junction region (i.e. they 
are not generated in the edges), even in the QHR.67 

 
Figure 6d shows the Fourier spectrum of R15;12(kF,Bi), that is plotted versus (2π/kF)2= λ2 to 

bring out the striking quadratic dependence of the resonances: λ2
m=(λ0(Bi)+mΔλ)2 where 

Δλ=0.67 µm independent of B, and λ0(Bi)/Δλ has a bimodal distribution peaked at ≈ ± 0.3. Note 
that the junction widths are 0.7 µm, corroborating the conclusion that the fluctuations are created 
at the junctions, and that tunneling is involved in the transport of the EVE at the junctions.  
These clearly important properties are not understood.  
 
Coherent transport68 is also indicated in the non-local voltage response from a remote current 
excitation as shown in Fig. 5c, d at several temperatures and magnetic fields. For B=9T and 
T=300K, the nonlocal resistance R26;39 is about 1% of the local resistance R39;39 while for 
diffusive transport, this ratio is e-πL/W=4 10-7. Nonlocal charge transport effects are frequently 
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observed in quantum Hall conductors69, caused by non-equilibrated edge and bulk channels. 
Note the observed absence of T and n dependence for B=0, and the large non-local effect at 
B=9T that increases with increasing T and decreases with increasing n. These effects remain to 
be explained. 
 

7. Future outlook 
 
This work launches epigraphene electronics. It introduces the rich physics and the 

considerable applications potential of non-polar epigraphene. 
   
Epigraphene is unique, providing crystallographically aligned graphene, with contamination-

free interfaces, extremely low disorder57,58 and mechanically and chemically stable edges49. It is 
produced on the wafer scale70-72, compatible with current microelectronics fabrication processes 
while using relatively inexpensive single crystal electronics grade SiC substrates. This, combined 
with its extreme thermal, electrical, chemical and mechanical stability, makes epigraphene 
unique among the 2D materials: currently, only epigraphene qualifies as a potential low 
dimensional nanoelectronics platform. 
  

Graphene’s macromolecular nature73 is reflected in its electronic properties, and introduces 
quantum coherence into electronics22,74, which in turn is an essential feature of quantum 
computing. However, since the edge state is metallic, non-conventional switches based on 
quantum mechanical tunneling and quantum interference3 need to be developed. Recently 
extraordinary, tunneling-like properties75,76 have been demonstrated in sidewall ribbons provided 
with constrictions75 and physical gaps76 indicating that ultralow power tunnel field effect 
transistors77 may be developed soon. Spin transport measurements78 indicate spintronics22 
potential.  Anticipating integration with silicon electronics, the GTEG already developed a wafer 
bonding technique to bond a ≈1 µm thick single crystal silicon sheet on top of the patterned 
epigraphene layer79.   

 
But, first, fundamental scientific questions need to be resolved11,33. For example, why is the 

edge state mean free path 1000 times greater than the bulk even though the edges are by no 
means perfect? What is the nature of the two states and the symmetry breaking that produces the 
energy gap? Why is the conductance half of what is expected12,80? What causes the unusual 
resonance spectrum of the edge state? Moreover, since edge state transport is pinned to the Dirac 
point, and topologically non-trivial, could there be a connection with Majorana fermions81-84?  

 
Regardless of the answers to these questions, it is already clear that non-polar epigraphene is 

an important new platform both for fundamental physics and for future electronics.  
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Figure Captions 
 
Fig.1 The epigraphene edge state. (a) Schematic diagram of a top gated epigraphene edge (to 
scale). Electric fields E for a negative gate voltage Vg are represented as black arrows. (b) The 
charge density n(x) that is induced on the graphene by the gate voltage Vg is depleted near the 
edge and absorbed in the empty states of the flat band at the edge, thereby pinning the Fermi 
level to E=0 at the edge. Moving away from the edge, the Dirac point energy ED sinks below the 
Fermi level. Far from the edge eVg=dn0 +hc*kF where !! = !" and d is the dielectric thickness. 
Note that the Fermi wavelength λF diverges at the edge and converges to its bulk value 2π/kF far 
from the edge. (c) One valley of the graphene ribbon band structure for a 700 nm wide ribbon, 
showing the edge state, composed of a flat band localized at the edge (FB), two linear 
delocalized dispersing bands (LB+ and LB-), and the hyperbolic bulk 1D subbands (bulk bands).  
Near E=0 the edge state is evanescent (EVE) and decays in the bulk. Only the EVE participates 
in the transport for E=0. (d) Schematic diagram of the top gated Hall bar consisting of 8 contacts, 
10 segments (branches of the crosses) and 3 junctions (central region of the 3 crosses). Numbers 
correspond to contacts and their associated segments. Segments 7 and 8 are internal. The 
segment lengths measured in µm from contact to junction, are L1=3.57; L2=1.56; L3=4.00; 
L4=3.26; L5=4.5; L6=3.64; L7=3.28; L8=1.69 µm. Segment widths are 700 nm. 
 
Fig.2 Non-polar epigraphene characterization. (a) SEM micrograph of trapezoidal graphene 
islands that form early in the growth and ultimately coalesce to produce a uniform graphene 
layer. (b) Low temperature STM image of the epigraphene. The inset shows the characteristic 
hexagonal lattice of graphene. (c) STS. Typical scanning tunneling spectrum obtained at 4.4K 
(Iset=400 pA at Vbias=500 mV) , showing the characteristic graphene density of states.  A linear 
fit (dashed lines) indicates a doping level EF-ED<6 meV, showing that the graphene is essentially 
charge neutral. (d) ARPES (197.45 eV) taken along K-M-K’ showing characteristic graphene 
Dirac cones with c*=1.06 108cm/s, that terminate at E=0 confirming charge neutrality and no 
significant anisotropy. (e) Infrared magneto-spectroscopy. The transitions following the 
expected characteristic graphene !  dispersion (indicated by the red lines) confirming its 
monolayer character. (f) Raman spectroscopy. Raw spectrum (red) and SiC subtracted spectrum 
(blue). The 2D peak position and width are typical of a graphene monolayer. The G peak and D 
are somewhat distorted, probably due to the buffer-layer like interface layer. 
 
Fig.3 Segmentation. (a) Segment resistances Ri(B=0,n) versus segment length Li at T=11K and 
B=0, extracted from a matrix of 2 point measurements, showing that Gi(n)=Gi(n=0)+neµW/Li  
=Gi

edge + Gi
bulk; (Gi=1/Ri). Redge(Li,B=0,n=0), (blue dots); Rbulk(Li,B=0, n=6 1011cm-2), (red dots);  

and Rbulk(Li,B=0,n=2.8 1012cm-2), (green dots), corresponding to µ=870 cm2V-1s-1. Extrapolating 
to T=0 (Fig. 3c inset), with λI=19 µm (see below), then (Eq.2) 
1/g0=Redge(B=0,n=0,T=0K)/(1+L1/λ1)≈2 R0, where R0=h/e2 (black dots). (b) R15;ij at n=0 at 
T=4.5K (blue), 40K (green) and 65K (red) versus Nseg, the number of segments along the current 
path (1-5) from i to j. For B=9T (triangles: data, solid color lines: linear fit), the excited state 
resistance Rex

edge/Nseg=0.98±0.03 R0, independent of T. Extrapolating the B=0T data (Circles: 
data, dashed lines: linear fit) to T=0 (Fig. 3c inset), yields the ground state resistance at T=0: 
Rgr

edge/Nseg=2.08±0.27 R0 (stars: data, black line: linear fit) (c) Temperature dependence 
Gedge(T,B=0,n=0) showing saturation at G0/2 for T=0K (inset) and an asymptotic approach to 
G=1 G0 for large T. Measurements of GX

15;12(T,B=0,n) for n=7 1011 cm-2 (blue), n=2 1012 cm-2 



 16 

(green), and n=4 1012 cm-2 (red) that  are rigidly shifted to coincide with GX
1(T=4.5K,B=0,n=0) 

show good mutual overlap for all T, consistent with Eq. 2. Also shown is Gedge(T,B=9T,n=0) 
(black diamonds) that is substantially temperature independent. (d) GX

15;12(n=0,B,T) for T=4.5K 
(blue); 40K (green); 65K (red) showing “V” shape behavior, extending from G≈1/2 G0 to 
G≈1 G0  (d) GX

15;15(n=0,B,T) for T=4.5K (blue); 40K (green); 65K (red) showing “V” shape  that 
is approximately ¼ of GX

15;12(n=0,B,T) as expected for 4 segments in series. These 
measurements are consistent with the high temperature and/or large magnetic field single 
segment resistance Redge=1 R0 as found in Ref.14. The edge state segment mfp’s compiled from 
all measurements of all segments are: λ1=19 µm; λ2>40 µm; λ3=26 µm; λ5=34 µm; λ6>40 µm; 
λ7=17 µm; λ9>40 µm. 
 
Fig.4. Magneto-transport. Hall resistance (RHall=R15;26) and longitudinal conductance (GX

15;12, 
top edge and GX

15;16, bottom edge) for T= 4.5K  (a,d); T=40K (b,e); T=65K (c,f) and B=±[9 …1 
,0.5, 0.25, 0]T. Positive B gives positive Hall and corresponding colors identifies GX

15;12. 
Negative B gives negative Hall and corresponding color identifies GX

15;16. Note that GX
15;12 and 

GX
15;16 overlap well. Note that for B≤1T, GX(n,B,T)=GX(n=0,B,T)+nC, where C=5.3 10-13 G0.cm2 

and GX(n=0,B,T) follows “V” (Fig.3.d), showing that the edge state and bulk state are in parallel, 
as described in Eq. 2. The sharp corner in GX at n=0, T=4.5K rounds for T=65K, consistent 
with δn<2.5 109 cm-2. Note also the quantum Hall plateau at RHall=±0.25R0 (a,b,c) and the 
R15;26(Bi,n) that all converge to a universal envelope curve merging into the Hall plateau Runi(n). 
The various RHall(Bi,n) escape from the Runi(n) for Bi=0.9ni T (ni in 1012cm-2), consistent with a 
monolayer (see text). This indicates that the entire universal curve is the |ν|=2 Hall plateau, 
which is not constant, because of the “shorting” effect of the edge state. This causes the non-
quantized pseudo-plateaus RHall(ni,B) presented in (g). (h) Empirical determination of the 
quantum capacitance (QC) from B/RHall(n,Bi); Bi=1T(red)-9T(blue) and 0.5T(black). Light lines, 
without QC so that n is proportional with Vg; bold lines, with QC correction (see text for details).  
 
Fig.5. (a) Renormalized Hall plateaus for indicated Bi, assuming edge state conductance does not 
depend on n, and that the edge state current does not produce a Hall voltage. (b) Corresponding 
renormalized Hall currents, which increase from IHall/I0=0 for n=0, to IHall/I0=0.5 for large n and 
B. (c) Demonstration of non-local transport: Rlocal=R26;26;(n,B,T); Rnonlocal=R26;39;(n,B,T). 
Rnonlocal/Rlocal or various T and B (see legend). Classically from the geometry R26;39/R39;39 is 
expected to be 10-7 and independent of n, B, and T. 
 
Fig.6. Fluctuations at T=4.5K. (a) R15;26(n,Bi) compared with R26;15(n,-Bi). Note the remarkable 
overlap, considering the different configurations and different times of the measurements, which 
indicates that robust fluctuations are generated at the junction, even in the QHR. Note the sign 
changes. (b)  Same as (a), after subtraction of smooth background and vertical shift. Note the 
weak B dependence. (c) Fluctuations in RX: ΔR15;12(n,Bi) (top edge of Segment 1) compared 
with ΔR15;16(n,Bi) (bottom edge of Segment 1), showing essentially identical fluctuations, 
indicating shorting at the junction due to the edge state. (d) Logarithm of the amplitude of the 
Fourier transform of R15;12(Bi,kF) (!! = !") showing significant structure, indicating coherent 
quantum interference from micron scale structures in the Hall bar (analogous to Fabry-Perot 
interference). The spectra are shifted vertically, and the Bi (in Tesla) are indicated at the right 
border.  
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