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1 Introduction

Recently, there has been renewed interest in supersymmetric AdS3 ×M7 backgrounds of

Type IIB supergravity dual to (0, 2) superconformal field theories (SCFTs) in two di-

mensions [1, 2]. In particular, the authors of [1, 2] studied such backgrounds with only

five-form flux [3], and showed the existence of the geometric dual of c-extremization in

two-dimensional (0, 2) SCFTs [4, 5].

Motivated by the expectation that a geometric dual of c-extremization should exist for

more general backgrounds than the ones considered in [1, 2], we aim to provide, as a first

step, a systematic classification of supersymmetric AdS3 ×M7 backgrounds of Type IIB

supergravity.1 Such a classification was initiated by the author of [3], with the backgrounds

mentioned in the previous paragraph (see also [8]). In [9], this class was extended to also

admit a three-form flux satisfying certain conditions, whereas in [10] instead a varying

axio-dilaton was included. In this note we extend this classification program further, by

allowing for both varying axio-dilaton and three-form fluxes. Although generically we

classify supersymmetric backgrounds that are dual to (0, 1) SCFTs2 for which no principle

of c-extremization exists, as we discuss below, our study does lead to solutions dual to

(0, 2) SCFTs. We restrict to the case that M7 is equipped with a “strict” SU(3)-structure,

which is equivalent to requiring that the two Majorana supersymmetry parameters on

M7 are orthogonal. Our classification includes as special cases the ones by [1, 3]. The

necessary and sufficient conditions for supersymmetry are phrased as restrictions on the

torsion classes of the SU(3)-structure, which in seven dimensions is determined by a real

one-form v, a real two-form J , and a complex decomposable three-form Ω. The vector dual

1A similar expectation for the geometric dual of a-maximization in four dimensions [6] was explored

in [7] using generalized geometry.
2See [11] for backgrounds with pure NSNS flux.
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Figure 1. Depiction of the relation between classes of solutions. φ is the dilaton, and H the NSNS

flux.

to v foliates M7, and we find that the transverse six-dimensional space M6 is conformally

symplectic.

On AdS3×M7, a solution to the supersymmetry equations also solves the equations of

motion if and only if the Bianchi identities are satisfied by the fluxes (see for example [12]).

By making an Ansatz for the three-form fluxes in our solution to the supersymmetry

equations, we reduce the problem of finding a solution to the Bianchi identities, and hence

the equations of motion, to two conditions: a “master equation” (5.10), which is a partial

differential equation for the conformally Kähler metric on M6, and existence of a primitive

(1,2)-form satisfying (5.7). Furthermore, supersymmetry is enhanced to N = 2. Similar

master equations (and solutions thereof) associated with Bianchi identities appeared in [3,

9, 10], and the one presented here reduces to the ones of [3, 9, 10] in the appropriate

limits.3 The relation of these classes of solutions, and the corresponding master equations

is depicted in figure 1. Solutions to the aforementioned conditions, as well as more general

Ansätze will be reported in future work.

The rest of this note is organized as follows. In section 2, we present the supersymmetry

equations as a set of equations involving a pair of polyforms on M7. In section 3, we

introduce an SU(3)-structure in seven dimensions, and parameterize the polyforms in terms

of it. In section 4, we derive a set of necessary and sufficient conditions for supersymmetry

as restrictions on the torsion classes of the SU(3)-structure, and also give expressions for

the fluxes in terms of the latter. A summary at the end of this section is included. section 5

presents a class of solutions to the equations of motion following an Ansatz, as described

earlier. Our conventions and certain technical details are included in the appendix.

2 Supersymmetry equations

We start with a general bosonic background of Type IIB supergravity invariant under

SO(2, 2). The ten-dimensional metric is a warped product of a metric on AdS3 and a

metric on a seven-dimensional Riemannian manifold M7:

g10 = e2AgAdS3 + gM7 , (2.1)

3See [13, 14] for more solutions dual to two-dimensional (0, 2) SCFTs.
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where A is a function on M7.4 Conforming to the SO(2, 2) symmetry, the NSNS field-

strength H10d and the RR field-strengths F10d, with F10d denoting their sum in the demo-

cratic formulation, are decomposed as

H10d = κe3AvolAdS3 +H , F10d = e3AvolAdS3 ∧ ?7λ(F ) + F . (2.2)

The magnetic fluxes H and F =
∑

p=1,3,5,7 Fp, are forms on M7. The operator λ acts on

a p-form Fp as λ(Fp) = (−1)bp/2cFp. The RR field-strengths are subject to dH10d
F10d = 0,

which decomposes as

dH(e3A ?7 λ(F )) + κF = 0 , dHF = 0 , (2.3)

where dH ≡ d−H∧. We will refer to the first set of equations as equations of motion for

F , and to the second one as the Bianchi identities.

In order to study the restrictions imposed by supersymmetry on the above bosonic

background, we decompose the supersymmetry parameters of Type IIB supergravity, ε1
and ε2 under Spin(1, 2)× Spin(7) ⊂ Spin(1, 9):5

ε1 = ζ ⊗ χ1 ⊗

(
1

−i

)
, ε2 = ζ ⊗ χ2 ⊗

(
1

−i

)
. (2.4)

Here, χ1 and χ2 are Majorana Spin(7) spinors; ζ is a Majorana Spin(1, 2) spinor satisfying

the Killing equation:

∇µζ =
1

2
mγµζ , (2.5)

where the real constant parameter m is related to the AdS3 radius LAdS3 as L2
AdS3

= 1/m2.

The above decomposition follows the requirement for N = 1 supersymmetry.

The necessary and sufficient conditions for preserving N = 1 supersymmetry can be

derived following the derivation for Type IIA supergravity in the appendix of [15], with

straightforward modifications. They are expressed in terms of bispinors ψ± defined by

χ1 ⊗ χt2 ≡ ψ+ + iψ− . (2.6)

Following the Fierz expansion of χ1 ⊗ χt2, and application of the Clifford map which maps

anti-symmetric products of gamma matrices to forms, ψ+/ψ− become polyforms on M7,

of even/odd degree.

The supersymmetry restrictions take the form of the following system of equations:

2mc− = −c+κ , (2.7a)

dH(eA−φψ+) =
1

16
c−F , (2.7b)

dH(e2A−φψ−) + 2meA−φψ+ =
1

16
c+e

3A ?7 λ(F ) , (2.7c)

(ψ+, F )7 =
m

2
e−φvol7 . (2.7d)

4We work in string frame.
5For the decomposition of the Clifford algebra see the appendix.
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Here c± are constants defined by the norms of χ1 and χ2:

c± ≡ e∓A(||χ1||2 ± ||χ2||2) . (2.8)

Furthermore, (ψ+, F )7 ≡ (ψ+∧λ(F ))7, with (·)7 denoting the restriction to the seven-form

component.

In this work we will consider backgrounds with zero electric component for H10d i.e.

κ = 0, since an electric component can be set to zero by applying an SL(2,R) duality

transformation.6 Supersymmetry then dictates c− = 0, or equivalently ||χ1||2 = ||χ2||2.

The system of supersymmetry equations thus becomes:

dH(eA−φψ+) = 0 , (2.9a)

dH(e2A−φψ−) + 2meA−φψ+ =
1

8
e3A ?7 λ(F ) , (2.9b)

(ψ+, F )7 =
m

2
e−φvol7 . (2.9c)

Without loss of generality we have set c+ = 2 i.e. ||χ1||2 = ||χ2||2 = eA.

3 Supersymmetry and G-structures

A nowhere-vanishing Majorana spinor χ on M7 defines a G2-structure for TM7. A pair of

nowhere-vanishing Majorana spinors χ1, χ2 define a G2 ×G2-structure on the generalized

tangent bundle TM7 ⊕ T ∗M7. If χ1, χ2 are parallel, the G2 × G2-structure reduces to

a G2-structure, whereas if χ1, χ2 are orthogonal it reduces to a “strict” SU(3)-structure.

This can be illustrated by the decomposition of χ2 in terms of χ1 (taking χ1, χ2 to be of

equal norm):

χ2 = sin θχ1 − i cos θvmγ
mχ1 , (3.1)

where v is a real one-form with ||v|| = 1, and θ ∈ [0, π/2]. As θ varies from 0 to π/2,

the G2 ×G2-structure varies from a “strict” SU(3)-structure, to an “intermediate” SU(3)-

structure, to a G2-structure. In this work we will consider the first case, i.e. θ = 0.

An SU(3)-structure on M7 is defined by a real one-form v, a real two-form J , and a

complex decomposable three-form Ω, all nowhere-vanishing, satisfying7

vyJ = vyΩ = 0 , Ω ∧ J = 0 ,
i

8
Ω ∧ Ω =

1

3!
J ∧ J ∧ J . (3.2)

These forms can be expressed as bilinears in terms of the spinors (χ1, χ2); see appendix A

for our conventions. The one-form v gives a foliation of M7 with leaves M6; accordingly,

we define the volume form as vol7 ≡ 1
3!v ∧ J ∧ J ∧ J and locally decompose the metric on

M7 as

gM7 = v ⊗ v + gM6 . (3.3)

6We thank N. Macpherson for pointing this out.
7Xyω(k) ≡ 1

k−1!
Xnωnm1...mk−1dx

m1 ∧ . . . ∧ dxmk−1 .
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Existence of an SU(3)-structure ensures that all forms on M7 decompose into irre-

ducible representations of SU(3). In particular, the local k-forms with no component along

v can be decomposed into primitive (p, q)-forms.8

We may also apply this decomposition to the exterior derivatives of the SU(3)-structure

{v, J, Ω} itself. Doing so, we find a parameterization in terms of torsion classes. These

constitute the components of the intrinsic torsion of the SU(3)-structure expressed in irre-

ducible representations of SU(3). Specifically, we have (see for example [16])

dv = RJ + T1 + Re(V1yΩ) + v ∧W0 ,

dJ =
3

2
Im(W 1Ω) +W3 +W4 ∧ J + v ∧

(
2

3
ReEJ + T2 + Re(V2yΩ)

)
,

dΩ = W1J ∧ J +W2 ∧ J +W5 ∧ Ω + v ∧ (EΩ− 2V2 ∧ J + S) .

(3.4)

The real scalar R and the complex scalars E and W1 transform in the 1 representation of

SU(3). The complex (1, 0)-forms V1, V2 and W5 transform in the 3, and the real one-forms

W0 and W4 in the 3 + 3. The real primitive (1,1)-forms T1 and T2, and the complex

primitive (1,1)-form W2 transform in the 8. Finally, the real primitive (2, 1) + (1, 2)-form

W3 transforms in the 6 + 6, and the complex primitive (2, 1)-form S in the 6.

In order to solve the supersymmetry equations, we parameterize the polyforms ψ± as

defined in (2.6) in terms of the SU(3)-structure data. Making use of (3.1), (A.7), (A.8) we

find that in the general case,

ψG2×G2
+ =

1

8
eA
[
Im(eiθeiJ) + v ∧ Re(eiθΩ)

]
,

ψG2×G2
− =

1

8
eA
[
v ∧ Re(eiθeiJ) + Im(eiθΩ)

]
,

(3.5)

for ||χ1||2 = ||χ2||2 = eA. As stated earlier, we will study the case of a strict SU(3)-structure

for which θ = 0 and hence

ψ+ =
1

8
eA
[
Im(eiJ) + v ∧ Re(Ω)

]
,

ψ− =
1

8
eA
[
v ∧ Re(eiJ) + Im(Ω)

]
.

(3.6)

Substituting the above expressions in the supersymmetry equations (2.9), we will derive

the restrictions on the intrinsic torsion of the SU(3)-structure imposed by supersymmetry.

8A primitive k-form ω(k) satisfies Jyω(k) = 0 for k = 2, 3, whereas k-forms with k = 0, 1 are primitive

by definition. The (p, q) decomposition of k-form ω is defined by

ω(p,q)
m1...mk

=
k!

p!q!

(
Π+) n1

[m1
. . .

(
Π+) np

mp]

(
Π−) np+1

[mp+1
. . .

(
Π−) nk

mk]
ωn1...nk ,(

Π±) n

m
=

1

2
(δnm ∓ iJ n

m − vmvn) .
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4 A class of solutions to the supersymmetry equations

In this section, we derive a class of solutions to the supersymmetry equations (2.9) by

inserting the strict SU(3)-structure polyforms (3.6).

The first constraint (2.9a) yields

d
(
e2A−φJ

)
= 0 , (4.1a)

d
(
e2A−φv ∧ ReΩ

)
− e2A−φH ∧ J = 0 , (4.1b)

d
(
e2A−φJ ∧ J ∧ J

)
+ 3! e2A−φH ∧ v ∧ ReΩ = 0 . (4.1c)

These in turn determine

0 = W1 = W3 = V2 = T2 ,

2dA− dφ = −W4 −
2

3
ReE v .

(4.2)

Upon decomposing the NSNS field-strength H with respect to the SU(3)-structure as

H =HRReΩ +HIImΩ +
(
H(1,0) +H(0,1)

)
∧ J +H(2,1) +H(1,2)

+ v ∧
(
H(1,1)
v +H0

vJ +H(0,1)
v yΩ +H(1,0)

v yΩ
)
,

(4.3)

where H(2,1) and H
(1,1)
v are primitive, we also find expressions for several of the components

in terms of torsion classes from (4.1). Using (A.12), we find:

HI = −1

3
ReE , H(1,0) = V1 ,

H(1,1)
v = −ReW2 , H0

v = 0 , H(1,0)
v =

1

2i

(
W

(1,0)
4 +W

(1,0)
0 −W5

)
.

(4.4)

The exterior derivatives of the the SU(3)-structure tensors now read

dv = RJ + Re(V1yΩ) + T1 + v ∧W0 , (4.5a)

dJ = −d(2A− φ) ∧ J , (4.5b)

dΩ = W2 ∧ J + (W5 + E v) ∧ Ω + v ∧ S . (4.5c)

We define a rescaled metric gM7 = e−2A+φǧM7 and rescale the SU(3)-structure tensors

accordingly as {v, J, Ω} = {e−A+φ/2v̌, e−2A+φJ̌ , e−3A+3φ/2Ω̌} to obtain

dv̌ = ŘJ̌ + Re(V̌ 1yΩ̌) + Ť1 + v̌ ∧ W̌0 , (4.6a)

dJ̌ = 0 , (4.6b)

dΩ̌ = W̌2 ∧ J̌ + (W̌ 5 + iImĚ v̌) ∧ Ω̌ + v̌ ∧ Š , (4.6c)

where

W̌0 = W0 +
1

2
W4 , W̌5 = W5 −

3

2
W4 , (4.7)

– 6 –
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and

R = eA−
φ
2 Ř , ImE = eA−

φ
2 ImĚ , V1 = V̌1 ,

W2 = e−A+φ
2 W̌2 , T1 = e−A+φ

2 Ť1 , S = e−2A+φŠ .
(4.8)

We note that the condition dJ̌ = 0 means that the six-dimensional leaves M6 transverse

to v̌ admit a symplectic structure.

Turning to the second constraint (2.9b) we obtain:

e3A ?7 F7 = 0 , (4.9a)

e3A ?7 F5 = d
(
e3A−φv

)
+ 2me2A−φJ , (4.9b)

−e3A ?7 F3 = d
(
e3A−φImΩ

)
− e3A−φH ∧ v + 2me2A−φv ∧ ReΩ , (4.9c)

e3A ?7 F1 = −1

2
d
(
e3A−φv ∧ J ∧ J

)
− e3A−φH ∧ ImΩ− 1

3
me2A−φJ ∧ J ∧ J . (4.9d)

From these equations, employing (4.4) and (4.5) and the set of identities (A.10), (A.11), we

can obtain expressions for the magnetic RR fluxes Fp, p = 1, 3, 5, 7. We give these in (4.14)

in the summary below.

Finally, the third constraint (2.9c) reads

F5 ∧ J − F3 ∧ v ∧ ReΩ− 1

3!
F1 ∧ J ∧ J ∧ J = 4me−A−φvol7 , (4.10)

and plugging in the expressions for the RR fields we conclude that

3R+ 6me−A + 4HR + 2ImE = 0 . (4.11)

4.1 Summary

Let us summarize our results. The differential constraints imposed on the SU(3)-structure

by supersymmetry are:

dv = RJ + Re(V1yΩ) + T1 + v ∧W0 , (4.12a)

dJ = −d(2A− φ) ∧ J , (4.12b)

dΩ = W2 ∧ J + (W5 + E v) ∧ Ω + v ∧ S . (4.12c)

The expression for the NSNS field is:

H = − 1

4

(
3R+ 6me−A + 2ImE

)
ReΩ− 1

3
ReE ImΩ + 2ReV1 ∧ J + 2Re(H(2,1))

+ v ∧
(
−ReW2 + Im

(
(W

(1,0)
4 +W

(1,0)
0 −W5)yΩ

))
.

(4.13)

– 7 –



J
H
E
P
0
5
(
2
0
2
0
)
0
4
8

The expressions for the RR fields are:

eφF1 =
(
2ImE + 4me−A

)
v + 2Im(X

(1,0)
1 ) , (4.14a)

eφF3 =
1

4

(
−2me−A + 3R− 2ImE

)
ImΩ− 2ImV1 ∧ J + v ∧ ImW2

+ 2Im(H(2,1))− ReS +X3y(v ∧ ReΩ) , (4.14b)

eφF5 =
1

2

(
R+ 2me−A

)
v ∧ J ∧ J − Im(X

(1,0)
5 ) ∧ J ∧ J

− v ∧ J ∧ T1 + 2v ∧ ReV1 ∧ ImΩ , (4.14c)

eφF7 = 0 , (4.14d)

with

X1 ≡ dA+W0 + 3W4 − 2(W5 +W5) ,

X3 ≡ dA−W4 +W5 +W5 ,

X5 ≡ dA−W0 −W4 .

(4.15)

The above solution to the supersymmetry equations also solves the equations of motion

if and only if the Bianchi identities for the NSNS and RR fields are imposed in addition.

5 A new class of solutions

We make the following Ansatz:

H + ieφF3 = 2H(2,1) , (5.1)

and recall that H(2,1) is primitive. This leads to vydA = 0 = vydφ and the following

restrictions on the torsion classes:

0 = ReE = V1 = W2 = S = W5 −W (1,0)
0 −W (1,0)

4 ,

ImE = −2me−A , R = −2

3
me−A , W0 = −dA , W4 = −2dA+ dφ .

(5.2)

We thus have

dv = −2

3
me−AJ + T1 − v ∧ dA , (5.3a)

dJ = −d(2A− φ) ∧ J , (5.3b)

dΩ =
(
−3dA+ dφ− 2ime−Av

)
∧ Ω , (5.3c)

or in terms of the rescaled SU(3)-structure

dv̌ = −2

3
me−2A+φ/2J̌ + Ť1 − v̌ ∧

(
2dA− 1

2
dφ

)
, (5.4a)

dJ̌ = 0 , (5.4b)

dΩ̌ =

(
−1

2
dφ− 2ime−2A+φ/2v̌

)
∧ Ω̌ . (5.4c)

– 8 –
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From the differential equations for {J̌ , Ω̌} we conclude that M̌6 is Kähler. In what follows

we will introduce the exterior derivative d6 on M̌6, Dolbeault operators ∂, ∂̄ so that d6 =

∂ + ∂̄, and dc6 = i(∂̄ − ∂). The remaining RR fields read

F1 = −dc6e−φ ,

F5 =
2

3
me−6A+3φ/2v̌ ∧ J̌2 +

1

2
dc6(e−4A+φ) ∧ J̌ ∧ J̌ − e−4A+φv̌ ∧ J̌ ∧ Ť1 .

(5.5)

Let us now examine the Bianchi identities. The first Bianchi identity, dF1 = 0, enforces

∂∂̄e−φ = 0 , (5.6)

which is solved by setting φ = − log(ϕ + ϕ), with ϕ holomorphic. Next, the three-form

Bianchi identities dH = 0 and dF3 −H ∧ F1 = 0 yield the constraints

∂H(1,2) + ∂̄H(2,1) = ∂̄H(1,2) = ∂H(1,2) − ∂φ ∧H(1,2) + ∂̄φ ∧H(2,1) = 0 . (5.7)

In analyzing the Bianchi identity for F5, we will invoke the results of [10]. The authors

of [10] study supersymmetric solutions which descend from the solutions analyzed here,

upon setting H(2,1) = 0. However, even when H(2,1) 6= 0, the SU(3)-structure of [10] and

the expressions for F1 and F5 can be identified with the ones presented in this section.

The map identifying the tensors there (left-hand side), with the tensors here (right-hand

side) is

P = ∂φ , Q = −1

2
dc6φ , F (2) = −e3A ?7 F5 ,

∆ = A− 1

4
φ , e2∆K = v̌ , g̃6 = m2ǧ6 ,

(5.8)

and in particular, (4.9b) is identified with (2.58) of [10].9 The authors of [10] showed that

the Bianchi identity for F5, dF5 = 0, amounts to

∇2(R− 2|∂φ|2)− 1

2
R2 +RijR

ij + 2|∂φ|2R− 4Rij∂
iφ∂

j
φ = 0 , (5.9)

which they refer to as the “master equation”. In the above, R and Rij are respectively

the Ricci scalar and the Ricci tensor of ǧ6, and contractions are also made using ǧ6. This

master equation generalizes the one derived in [3] by including a varying axio-dilaton. For

the case at hand the Bianchi identity of F5 is dF5 = H∧F3, and the term on the right-hand

side (a “transgression” term) modifies the master equation, which now becomes:

∇2(R− 2|∂φ|2)− 1

2
R2 +RijR

ij + 2|∂φ|2R− 4Rij∂
iφ∂

j
φ− 8

3
e−φH

(2,1)
ijk (H(1,2))

ijk
= 0 .

(5.10)

As noted above, in the limit H(2,1) = 0 the present class of solutions and master

equation (5.10) reduce to the ones of [10]. Further setting the axio-dilaton to zero, they

9One has to take into account that we work in the string frame whereas the Einstein frame is used

in [10]. In addition, we use a different orientation on AdS3.
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reduce to the ones studied in [3]. Starting with the latter, the authors of [9] “turned on” a

three-form flux G = G(1,2), and taking the limit of vanishing axio-dilaton we recover their

results. See figure 1.

Finally, the supersymmetry preserved by the class of solutions in this section enhances

to N = 2, and the dual field theories are (0, 2) SCFTs [17]. The vector field dual to v

generates a U(1) symmetry of the solutions, corresponding to the R-symmetry of the (0, 2)

SCFTs. Thus we expect that a geometric dual of c-extremization exists for this class of

solutions and would be very interesting to identify it.
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A Conventions & identities

Clifford algebra decomposition. The ten-dimensional gamma matrices are decom-

posed as follows

Γµ = eAγ(3)
µ ⊗ I⊗ σ3 , Γm = I⊗ γm ⊗ σ1 , (A.1)

where γ
(3)
µ span Cliff(1, 2), γm span Cliff(7) and the indices are spacetime indices.

We take γ
(3)
µ to be real, and γm imaginary and antisymmetric. In particular we have

γm = γ†m , γm = −γtm , γm = −γ∗m (A.2)

γ−1
0 γ(3)

µ γ0 = −(γ(3)
µ )† , γ−1

0 γ(3)
µ γ0 = −(γ(3)

µ )t , γ(3)
µ = (γ(3)

µ )∗ . (A.3)

It follows that the ten-dimensional intertwiners A, C, and D defined by

A−1ΓMA = Γ†M , C−1ΓMC = −ΓtM , D−1ΓMD = Γ∗M , (A.4)

are

A = γ0 ⊗ I⊗ σ1 , C = γ0 ⊗ I⊗ I , D = I⊗ I⊗ σ3 . (A.5)

Spin(7). As noted above, we work with the Majorana representation of Cliff(7), for which

the gamma matrices are imaginary and antisymmetric. The charge-conjugate of a Spin(7)

spinor is the complex conjugate, and a Majorana spinor is real. The basis elements of

Cliff(7) are related via the identity

γm1...mk =
i

(7− k)!
(−1)k(k−1)/2 εm1...mkmk+1...m7γ

mk+1...m7 . (A.6)

As discussed in section 3, a pair of nowhere-vanishing Spin(7) Majorana spinors χ1 and

χ2 define an SU(3)-structure {v, J, Ω} in seven dimensions. For the strict SU(3)-structure

(θ = 0, or equivalently, χt1χ2 = 0), we introduce a Dirac spinor η as

χ1 =
1√
2

(η + η∗) , χ2 =
i√
2

(η∗ − η) . (A.7)
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The bilinears that can be constructed using η are η†γm1...mkη and ηtγm1...mkη. In terms of

the SU(3)-structure, η satisfies

η†η = eA , ηtη = 0 ,

η†γmη = eAvm , ηtγmη = 0 ,

η†γmnη = ieAJmn , ηtγmnη = 0 ,

η†γmnpη = 3ieAv[mJnp] , ηtγmnpη = − ieAΩmnp .

(A.8)

These can then be used to deduce the expressions (3.6) for the polyforms. In the case of

the G2-structure (θ = π/2, or χ1 = χ2), we may instead consider χ1 = χ2 = 1√
2
(η + η∗),

where η satisfies the above equations.

Identities. The SU(3)-structure is normalized as follows:

ΩmpqΩ
npq

= 23 (δm
n − iJ n

m − vmvn) , ΩmnpΩ
mnp

= 3!23 ,

εm1...m7 =
7!

3!23
v[m1

Jm2m3Jm4m5Jm6m7] .
(A.9)

Given the above normalization, we derive a number of identities necessary to obtain the

RR fields F1,3,5 from their Hodge duals ?7F1,3,5. Duals of the SU(3)-structure are given by

?7J =
1

2
v ∧ J ∧ J , ?7(v ∧ J) =

1

2
J ∧ J , ?7Ω = iv ∧ Ω . (A.10)

Duals for arbitrary primitive (p, q)-forms ω(p,q) are given by

?7(ω(1,0) ∧ J) = iv ∧ ω(1,0) ∧ J , ?7(ω(1,0) ∧ J ∧ J) = 2iv ∧ ω(1,0) ,

?7(v ∧ (ω(0,1)yΩ)) = −iω(0,1) ∧ Ω , ?7(ω(0,1)yΩ) = −iv ∧ ω(0,1) ∧ Ω ,

?7ω
(1,1) = −v ∧ J ∧ ω(1,1) , ?7(ω(1,1) ∧ J) = −v ∧ ω(1,1) ,

?7ω
(2,1) = −iv ∧ ω(2,1) .

(A.11)

We also make use of the identities

(ω(0,1)yΩ) ∧ J = −iω(0,1) ∧ Ω , (ω(0,1)yΩ) ∧ Ω = 4ω(0,1) ∧ J ∧ J , (A.12)

in order to obtain the components of H.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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