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Abstract

We introduce higher-order Stein kernels relative to the standard

Gaussian measure, which generalize the usual Stein kernels by involv-

ing higher-order derivatives of test functions. We relate the associated

discrepancies to various metrics on the space of probability measures

and prove new functional inequalities involving them. As an appli-

cation, we obtain new explicit improved rates of convergence in the

classical multidimensional CLT under higher moment and regularity

assumptions.

1 Introduction

Stein's method is a set of techniques, originating in works of Stein [37, 38],
to bound distances between probability measures. We refer to [14, 35] for a
recent overview of the �eld. The purpose of this work is a generalization of
one particular way of implementing Stein's method when the target measure
is Gaussian, which is known as the Stein kernel approach.

Let µ be a probability measure on Rd. A matrix-valued function τµ :

Rd −→ Md(R) is said to be a Stein kernel for µ (with respect to the
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2 M. Fathi

standard Gaussian measure γ on Rd) if for any smooth test function ϕ

taking values in Rd, we have

(1.1)
∫
x · ϕdµ =

∫
〈τµ,∇ϕ〉HSdµ.

For applications, it is generally enough to consider the restricted class of
test functions ϕ satisfying

∫
(|ϕ|2 + ‖∇ϕ‖2

HS)dµ < ∞, in which case both
integrals in (1.1) are well-de�ned as soon as τµ ∈ L2(µ), provided µ has
�nite second moments.

The motivation behind the de�nition is that, since the standard centered
Gaussian measure γ is the only probability distribution on Rd satisfying the
integration by parts formula

(1.2)
∫
x · ϕdγ =

∫
div(ϕ)dγ,

the Stein kernel τµ coincides with the identity matrix, denoted by Id, if and
only if the measure µ is equal to γ. Hence, a Stein kernel can be used to
control how far µ is from being a standard Gaussian measure in terms of
how much it violates the integration by parts formula (1.2). This notion
appears implicitly in many works on Stein's method [39], and has recently
been the topic of more direct investigations [3, 13, 33, 27, 17].

However, (1.2) is not the only integration by parts formula that charac-
terizes the Gaussian measure. For example, in dimension one, the standard
Gaussian measure is characterized by the relation∫

Hk(x)f(x)dγ(x) =

∫
Hk−1(x)f ′(x)dγ(x)

for all smooth test functions f , where the Hk are the Hermite polynomials
Hk(x) = (−1)kex

2/2 dk

dxk
e−x

2/2. The case k = 1 corresponds to the standard
formula (1.2). While these are not the only integration by parts formulas
one could state, they are in some sense the most natural ones, due to the role
Hermite polynomials play as eigenfunctions of the Ornstein-Uhlenbeck gen-
erator. Before de�ning higher-order Stein kernels, we must de�ne a few no-
tations. Tk,d shall denote the space of k-tensors on Rd, that is k-dimensional
arrays of size d, and T symk,d the subspace of symmetric tensors, that is ar-
rays A such that for any permutation σ ∈ Sk and i1, ..., ik ∈ {1, ..., d} we
have Ai1...ik = Aiσ(1)...σ(k). In particular, di�erentials of order k of smooth
functions belong to T symk,d , T1,d = Rd and T2,d = Md(R). We equip these
spaces with their natural Euclidean structure and L2 norm, which we shall
respectively denote by 〈·, ·〉 and || · ||2.

In dimension d ≥ 1, Hermite polynomials are de�ned as follows:
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De�nition 1.1 (Multi-dimensional Hermite polynomials). For k ≥ 1 and
indices i1, .., id ∈ N such that i1 + .. + id = k, we de�ne the Hermite poly-
nomial H i1,..,id

k ∈ R[X1, .., Xd] as

H i1,..,id
k (x1, .., xd) := (−1)ke|x|

2/2 dk

dxi11 ..dx
id
d

e−|x|
2/2.

We also de�ne H̄k := (−1)ke|x|
2/2dk(e−|x|

2/2), so that the coe�cients of the
k-tensor H̄k are the H

i1,..,id
k .

The natural generalization of the notion of Stein kernels with respect
to the integration by parts formulas de�ned via multidimensional Hermite
polynomials would be to say that a (k + 1)-tensor τk is a k-th order Stein
kernel for µ is for any smooth f : Rd −→ Tk,d we have∫

〈H̄k, f〉dµ =

∫
〈τk, Df〉dµ.

In this formula,Df stands for the di�erential of f , viewed as a (k+1)-tensor.
However, it turns out that for the applications we shall describe below, it
is more convenient to de�ne higher-order Stein kernels in a di�erent way:

De�nition 1.2 (Higher-order Stein kernels). We de�ne Stein kernels of
order k τ̄k (as long as they exist) as any symmetric (k+ 1)-tensor satisfying

(1.3)
∫
〈τ̄k, Dkf〉dµ =

∫
x · f − Tr(∇f)dµ

for all smooth vector-valued f such that x · f − Tr(∇f) and ||Dkf ||2 are
integrable with respect to µ.

Note that τ̄1 = τ − Id where τ is a classical Stein kernel. The choice of
restricting the de�nition to symmetric tensors is non-standard when k = 1.
It is motivated by the fact that since we only test out the relation on tensors
of the form Dk+2f , which are symmetric, and will allow us to easily relate
the expectation of such kernels to moments of the underlying measure.

In the sequel, we shall consider the weighted Sobolev space with respect
to µ

Hk(µ) :=

{
f : Rd −→ R;

∫
|Dkf |2dµ <∞

}
.

In the sequel, we shall always make the following structural assumptions on
µ:

Assumption. We assume the following:
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1. The sequence of spaces (Hj(µ))j≤k is decreasing.

2. The Dirichlet form E : f −→
∫
|∇f |2dµ is closable on the set of

smooth, compactly supported test functions, that is for any sequence
(fn) of such functions, if ||fn||L2(µ −→ 0 and E(fn − f`) −→ 0 as n, `
go to in�nity, then E(fn) −→ 0.

3. The space of smooth, compactly supported functions is dense inHk(µ),

with respect to the norm
(∑

j≤k ||Djf ||2L2(µ)

)1/2

.

When these assumptions are satis�ed, Hk(µ) endowed with the norm
de�ned above is a Hilbert space. We shall mainly consider measures that
satisfy a Poincaré inequality, which implies the �rst assumption. If µ has a
smooth positive density with respect to the Lebesgue measure on Rd, the
last two assumptions are satis�ed. However, for more general measures it
may be an issue to handle the in�uence of the boundary of the support, or
of some singular part [25]. The second assumption is a classical assumption
in the study of Dirichlet forms [18]. The third one could be avoided, but
then the integration by parts formula for Stein kernels would only hold
for the completion of the set of smooth test functions with respect to the
Sobolev norm. We refer to [4, Section 3] for background on the role of such
assumptions in the theory of Markov semigroups and functional inequalities.

In some sense, the point of view we develop here is very close to the
one developed in [22], where approximate Stein identities with higher-order
derivatives are used, in the framework of the zero-bias transform. See also
[23] for connections between distributional transforms and orthogonal poly-
nomials applied with Stein's method in a more general context. The main
advantage of the functional-analytic framework presented here is to allow
more explicit estimates in the multivariate setting, albeit under strong regu-
larity conditions. A particular upside of our estimates is that the dependence
on the dimension will be very explicit.

A �rst remark is that we have the iterative relation

(1.4)
∫
〈τ̄k, Dkf〉dµ =

∫
〈τ̄k−1, D

k−1f〉dµ

As we shall later see in Lemma 2.1, for τ̄k to exist, we must have
∫
P (x1, .., xd)dµ =∫

P (x1, .., xd)dγ for any P ∈ Rk+1[X1, .., Xd]. Of course, this is not a suf-
�cient condition. These kernels are in some sense centered, so that µ is
Gaussian i� τ̄k = 0. For k = 1, this does not exactly match with the usual
de�nition, which is not centered, but this shift will make notations much
lighter.
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These Stein kernels can be related to kernels associated with Hermite
polynomials via linear combinations. For example, if τ2 (resp. τ1) is a kernel
associated with Hermite polynomials of degree 2 (resp. 1), then τ̄2 = τ2 −
x⊗ τ1 is a second-order Stein kernel in the sense of (1.3).

As for classical Stein kernels, we can then de�ne the associated discrep-
ancy, which measures how far a given probability measure is from satisfying
the associated Gaussian integration by parts formula.

De�nition 1.3. The k-th order Stein discrepancy is de�ned by

S̄k(µ) := inf

∫
||τ̄k||2dµ,

where the in�mum is over all possible Stein kernels of order k for µ, since
they may not be unique.

Remark 1.4. The abstract setting we use here is not restricted to Hermite
polynomials or higher-order derivatives. For example, it would be possible
to de�ne a kernel by considering any tensor-valued function u : Rd −→ Tk,d
and looking for a function Kµ(u) : Rd −→ Tk+1,d such that for any smooth
function f : Rd −→ Tk,d we would have∫

〈u, f〉dµ =

∫
〈Kµ(u),∇f〉dµ.

This more general point of view is related to the one developed in [30]. Exis-
tence would be treated in the same way as we shall implement in this work,
but we do not have any other example leading to meaningful applications
at this point.

The main application of these higher-order Stein kernels to the rate of
convergence in the classical CLT is the following decay estimate, made pre-
cise in Corollary 4.4: if the random variables (Xi) are iid, isotropic, centered
and have mixed moments of order three equal to zero, then if µn is the law
of the renormalized sum in the CLT we have an estimate of the form

W2(µn, γ) ≤ Cd1/2(1 + log n)

n

where C is a constant we shall make precise, that depends on a regularity
condition on the law of the Xi. This seems to be the �rst improved rate of
convergence in the multidimensional CLT in W2 distance.

The plan of the sequel is as follows: in Section 2, we shall establish ba-
sic properties of higher-order Stein kernels, including existence and some
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�rst results on what distances the associated discrepancies control. In Sec-
tion 3, we shall establish some functional inequalities relating Wasserstein
distances, entropy and Fisher information. Finally, in Section 4, we shall
derive various improved bounds on the rate of convergence in the central
limit theorem under moment constraints.

2 Properties

2.1 Existence

Before studying these higher-order Stein kernels and their applications, the
�rst question to ask is when do they actually exist? As for classical Stein
kernels, there must be some condition beyond normalizing the moments,
since they may not exist for measures with purely atomic support.

The �rst condition we can point out is that existence of Stein kernels
constrains the values of certain moments:

Lemma 2.1. Assume that µ admits Stein kernels τ̄j up to order k ≥ 1,

and has �nite moments up to order k + 1. Then for any polynomial P in d

variables of degree ` ≤ k we have
∫
P (x)dµ =

∫
P (x)dγ, and moreover if

this is also true for polynomials of degree k + 1 then∫
(τ̄k)i1,...ik+1

dµ = 0

for any indices i1, ..., ik.

Proof. We prove this statement by induction on k. The case k = 1 can
be readily checked by testing the Stein identity on coordinates x1, .., xd.
Assume the statement holds for k ≥ 1. To prove the statement for k+1, it is
enough to check it for monomials of degree k, by the induction assumption.
Up to relabeling, we can restrict to the case where the degree in x1 is
positive. Let α1, ..., αd be such that

∑
αi = k and P (x) = xα1

1 x
α2
2 ...x

αd
d .

De�ne E = {(i1, ..., ik);∀` |{j; ij = `} = α`}. We have∫
xα1+1

1 ...xαnn dµ =

∫
〈τ̄k,1, DkP 〉dµ+

∑
i

∫
(αix

αi−1
i )

∏
j 6=i

x
αj
j dµ

=
d∏
j=1

(αj!)
∑

(i1,...,ik)∈E

∫
(τ̄k)1,i1,...,ikdµ+

∑
i

∫
(αix

αi−1
i )

∏
j 6=i

x
αj
j dγ

=

(
d∏
j=1

(αj!)

)
k!

∫
τ̄1,1...1,2...ddµ+

∑
i

∫
(αix

αi−1
i )

∏
j 6=i

x
αj
j dγ
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where we have used the symmetry of τ̄k, and the moment assumption to
match the second term. The indices in the last line correspond to having αi
times the indice i, and the order does not matter by symmetry of τ̄k. Since
for a Gaussian measure the two integrals of moments match, the integral of
the kernel must be zero as soon as the moment assumption is satis�ed.

In dimension one, when µ has a nice density p with respect to the
Lebesgue measure, we can give explicit formulas in terms of p:

Proposition 2.2. Let µ(dx) = p(x)dx be a probability measure on R with

connected support, such that
∫
xjdµ =

∫
xjdγ for all j ≤ k. Then the itera-

tive formula

τ̄k(x) = − 1

p(x)

∫ ∞
x

τ̄k−1(y)p(y)dy

de�nes Stein kernels, with τ̄1 = − 1
p(x)

∫∞
x
yp(y)dy − 1 the usual explicit

formula for classical Stein kernels in dimension one.

We refer to [36] for a detailed study of 1st order kernels in dimension one.
We shall not develop this point of view further, and focus on the situation
in higher dimension, where this formula is no longer available. It turns out
that, up to extra moment conditions, the arguments used in [16] for standard
Stein kernels also apply. Before stating the conditions, we must �rst de�ne
Poincaré inequalities:

De�nition 2.3. A probability measure µ on Rd satis�es a Poincaré inequal-
ity with constant CP if for all locally lipschitz function f with

∫
fdµ = 0

we have ∫
f 2dµ ≤ CP

∫
|∇f |2dµ.

Poincaré inequalities are a standard family of inequalities in stochas-
tic analysis, with many applications, such as concentration inequalities and
rates of convergence to equilibrium for stochastic processes. They can also be
reinterpreted as a lower bound on the eigenvalues of a certain Markov gener-
ator with invariant measure µ. They are satis�ed by a wide class of measures,
including log-concave, and are stable by tensorisation (which makes them
a well-adapted tool for high-dimensional problems) and bounded pertur-
bations. In dimension one, measures that satisfy a Poincaré inequality are
characterized by the Muckenhoupt criterion [31]. In higher dimension, we do
not have such a characterization, but many su�cient conditions are known.
For example, [5] proves that if the measure has a smooth density of the form
e−V and that ε|∇V |2 − ∆V is bounded from below by a positive constant
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at in�nity, for some ε > 0, then a Poincaré inequality holds. See [4], the
lecture notes [26] and references therein for more background information
and other conditions ensuring such an inequality holds. Additionally, if a
distribution is compactly supported, then its convolution with a Gaussian
distribution with arbitrarily small variance satis�es a Poincaré inequality
(with a constant that depends on the variance and the size of the support)
[41, 8].

Connections between such functional inequalities and Stein's method go
back to [39], and were more recently explored in [27, 16]. Our basic existence
result for higher-order kernels is the following:

Theorem 2.4. Assume that µ satis�es a Poincaré inequality with constant

CP , and that its moments of order less than or equal to max(k, 2) match

with those of the standard Gaussian. Then a Stein kernel of order k exists,

and moreover S̄k(µ)2 ≤ Ck−1
P (CP − 1)d.

This theorem yields a su�cient condition for existence, but it is not
necessary. Even in the case k = 1, we do not know of a useful full character-
ization of the situations where Stein kernels exist. Actually, [16] uses a more
general type of functional inequality to ensure existence of a 1st order Stein
kernel, but its extension to higher order kernels is a bit cumbersome, since
the condition would iteratively require previous kernels to have a �nite 2nd
moment after multiplication with an extra weight.

Proof. We proceed by induction. The case k = 1 was proven in [16]. Assume
that the statement is true for some k, and that µ has moments of order less
than k+ 1 matching with those of the Gaussian. Let τ̄k be a Stein kernel of
order k for µ, which exists by the induction assumption. We wish to prove
existence of τ̄k+1. Consider the functional

J(f) =
1

2

∫
|Dk+1f |2dµ−

∫
〈τ̄k, Dkf〉dµ

de�ned for f : Rd −→ Rd. It is easy to check that, from the Euler-Lagrange
equation for J , if g is a minimizer of J , then τ̄k+1 := Dk+1g satis�es (1.3).
Indeed, if we consider the �rst variation of J , we have

J(g + εh)− J(g) = ε

(∫
〈Dk+1g, F k+1h〉dµ−

∫
〈τ̄k, Dkh〉dµ

)
+O(ε2)

so that g is a critical point of J i� Dk+1g can be taken as a Stein kernel in
(1.3).
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Note that if two functions f and g are such that Dk+1f = Dk+1g (or
equivalently, that Dk(f−g) is a constant), then since τ̄k is centered, J(f) =

J(g). Therefore we can view J as being de�ned on the quotient of Hk(µ)

by {(f, g);Dk+1f = Dk+1g}. Because of the Poincaré inequality and our
assumptions on µ, this quotient space is a Hilbert space when endowed
with the norm

(∫
|Dk+1f |2dµ

)1/2
.

From the Poincaré inequality and the fact that τ̄k is centered due to the
moment assumption, we have∣∣∣∣∫ 〈τ̄k, Dkf〉dµ

∣∣∣∣2 =

∣∣∣∣∫ 〈τ̄k,(Dkf −
∫
Dkfdµ

)
〉dµ
∣∣∣∣2

≤
(∫
|τ̄k|2dµ

)(∫ ∣∣∣∣Dkf −
∫
Dkfdµ

∣∣∣∣2 dµ
)

≤ CP

(∫
|τ̄k|2dµ

)(∫
|Dk+1f |2dµ

)
.

Therefore f −→
∫
〈τ̄k, Dk+1f〉dµ is a continuous linear form w.r.t. the norm∫

|Dk+1f |2dµ on the quotient space we de�ned above. Hence from the Lax-
Milgram theorem (or Riesz representation theorem) we deduce existence
(and uniqueness) of a centered global minimizer g, and τ̄k+1 = Dk+1g is a
suitable Stein kernel, and satis�es the symmetry assumption. Moreover,

−1

2

∫
|τ̄k+1|2dµ =

1

2

∫
|Dk+1g|2dµ−

∫
〈τ̄k, g〉dµ

≥ 1

2

∫
|∇g|2dµ− CP

2
S̄k(µ)2 − 1

2CP

∫ ∣∣∣∣g − ∫ gdµ

∣∣∣∣2 dµ
≥ −CP

2
S̄k(µ).

The induction assumption then yields S̄k+1(µ)2 ≤ Ck
P (CP − 1)d.

2.2 Topology

In this section, we are interested in studying what distances between a
probability measure and a Gaussian are controlled by our discrepancies. As
is classical in Stein's method, we seek to control a distance of the form

d(µ, ν) = sup
f∈F

∫
fdµ−

∫
fdν

where the class of test functions F should be symmetric, and large enough
to indeed separate probability measures. The total variation distance corre-
sponds to the set of functions bounded by one, while the L1 Kantorovitch-
Wasserstein distance is obtained when considering the set of 1-lipschitz func-
tions, thanks to the Kantorovitch-Rubinstein duality formula [40].
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To relate such distances to Stein's method, we introduce the Poisson
equation

(2.1) ∆h− x · ∇h = f −
∫
fdγ.

The classical implementation is that if the solution satis�es a suitable reg-
ularity bound, then we can control∫

fdµ−
∫
fdγ =

∫
(∆h− x · ∇h)dµ

by a type of Stein discrepancy. Due to the elliptic nature of the Ornstein-
Uhlenbeck generator, the solution h gains some regularity compared to f .
For example, if f is 1-lipschitz, h is C3−ε [19]. Here, to control it by a
Stein discrepancy of order k, we shall have to di�erentiate several times
the solution, and require it to satisfy a bound of the form ||Dk+1h||∞ ≤ C.
In particular, solutions to the Poisson equation should be smooth enough,
which typically requires f to be Ck (this will be explained in more details
in the proof of Theorem 2.5 below).

We can now state a �rst result on the topology controlled by higher-order
Stein discrepancies.

Theorem 2.5. Let µ be a probability measure on Rd whose k �rst mixed

moments match with those of a d-dimensional standard centered Gaussian.

Then

dZol,k(µ, γ) := sup
||Dkf ||≤1

∫
fdµ−

∫
fdγ ≤ S̄k(µ).

The controlled distance dZol,k can be thought of as a generalization of
the L1 Kantorovitch-Wasserstein distance, which corresponds to k = 1. It is
known as the Zolotarev distance of order k, and it controls the same topology
as the Lk Kantorovitch-Wasserstein distance [9], that is weak convergence
and convergence of moments up to order k.

Proof. We �rst derive a regularity estimate for solutions of the Poisson
equation. The scheme of proof below is a straightforward extension of the
regularity bound of [15] in the case k = 1. Similar regularity bounds, in
operator norm, for arbitrary k where derived in [20]. In the case where f is
lipschitz, better regularity bounds (namely, C2,1− bounds) were obtained in
[19], and it should be possible to get better regularity bounds for general k.
However, for our purpose it is not clear that improved bounds would further
help us here.
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As pointed out by Barbour [7], a solution of the Poisson equation (2.1)
is given by

(2.2) hf (x) =

∫ 1

0

1

2t

∫
(f(
√
tx+

√
1− ty)− f(y))dγ(y)dt.

and after integrating by parts with respect to the Gaussian measure, its
gradient can be represented as

∇hf (x) =

∫ 1

0

1

2
√
t(1− t)

∫
yf(
√
tx+

√
1− ty)dγ(y)dt

and hence higher-order derivatives are given by

Dk+1hf (x) =

∫ 1

0

tk/2

2
√
t(1− t)

∫
y ⊗Dkf(

√
tx+

√
1− ty)dγ(y)dt.

We then have for any A ∈ Tk+1,d

〈Dk+1hf (x), A〉 =

∫ 1

0

tk/2

2
√
t(1− t)

∫
〈A, y ⊗Dkf(

√
tx+

√
1− ty)〉dγ(y)dt

=

∫ 1

0

tk/2

2
√
t(1− t)

∫
〈Ay,Dkf(

√
tx+

√
1− ty)〉dγ(y)dt

≤ sup
z
||Dkf(z)||2

∫ 1

0

tk/2

2
√
t(1− t)

dt

∫
||Ay||2dγ(y)

≤ sup
z
||Dkf(z)||2

∫ ∑
i1,..,ik

(∑
j

Ai1,..,ik,jyj

)2

dγ(y)

1/2

= sup
z
||Dkf(z)||2||A||2.

Therefore
sup
x
||Dk+1hf (x)||2 ≤ sup

x
||Dkf(x)||2.

We then have, for any function f satisfying supx ||Dkf(x)||2 ≤ 1,∫
fdµ−

∫
fdγ =

∫
∆hf − x · ∇hfdµ

=

∫
〈τ̄1, D

2hf〉dµ

=

∫
〈τ̄k, Dk+1hf〉dµ

≤ S̄k(µ).

This concludes the proof.

Remark 2.6. In dimension one, the Ornstein-Uhlenbeck enjoys strictly
better regularization properties, which would allow to control stronger dis-
tances.
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3 Functional inequalities

Our �rst functional inequality is a generalization of the HSI inequality of
[27]. Given a probability measure µ = fdγ on Rd, we denote by H(µ) =∫
f log fdγ its relative entropy with respect to the Gaussian measure, and

I(µ) =
∫
|∇ log f |2fdγ its Fisher information.

Theorem 3.1 (HSI inequalities). Let k ≥ 2. We have

H(µ) ≤ 1

2
min

(
I(µ), kI(µ)(k−1)/kS̄k(µ)2/k

)
.

This inequality improves on the classical Gaussian logarithmic Sobolev
inequality of Gross [24]. Such inequalities are used to establish concentra-
tion of measure inequalities, as well as to measure rates of convergence to
equilibrium for stochastic processes [4].

We introduce the Ornstein-Uhlenbeck semigroup

Ptf(x) = E[f(e−tx+
√

1− e−2tG)]

where G is a standard Gaussian random variable. We also denote by µt the
law of e−tX +

√
1− e−2tG, where X is distributed according to µ, indepen-

dently of G. The properties of this semigroup have been well-studied. In
particular, as time goes to in�nity, Ptf converges to

∫
fdγ, and the entropy

and Fisher information are related by De Brujin's formula:

(3.1) H(f) =

∫ ∞
0

I(Ptf)dt.

The key lemma at the core of our results is the following estimate on
Fisher information along the �ow:

Lemma 3.2. For any t > 0, we have

I(µt) ≤
e−2(k+1)t

(1− e−2t)k
k!S̄k(µ)2.

When k = 1, this estimate corresponds to the main result of [33], and
played a core role in the proofs of the functional inequalities of [27]. This
extension to higher orders will allow us to get more precise estimates when
higher-order Stein kernels exist, i.e. under moment constraints.

Proof. We have the commutation relation

(3.2) ∂i(Ptf) = e−tPt(∂if).
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Let vt := log(dµt/dγ). Following [27], we have a representation formula
for the Fisher information along the Ornstein-Uhlenbeck �ow:

I(µt) =
e−2t

√
1− e−2t

∫ ∫
〈(τ(x)− Id)y,∇vt(e−tx+

√
1− e−2ty)〉dµ(x)dγ(y)

=
e−(k+1)t

√
1− e−2t

∫ ∫
〈τ̄k(x)y,Dkvt(e

−tx+
√

1− e−2ty)〉dµ(x)dγ(y)

=
e−(k+1)t

(1− e−2t)k/2

∫ ∫
〈τ̄k(x)H̄k(y),∇vt(e−tx+

√
1− e−2ty)〉dµ(x)dγ(y)

Applying the Cauchy-Schwarz inequality and integrating out in y, we
get the result.

Proof of Theorem 3.1. From (3.1) and the decay property of the Fisher in-
formation I(µt) ≤ e−2tI(µ), we deduce that for any t ≥ 0 we have

H(µ) ≤ 1− e−2t

2
I(µ) +

∫ ∞
t

I(µs)ds.

Using Lemma 3.2 on the second term, we get

H(µ) ≤ 1− e−2t

2
I(µ) + k!S̄k(µ)2

∫ ∞
t

e−2(k+1)s

(1− e−2s)k
ds

≤ 1− e−2t

2
I(µ) +

k!

2(k − 1)
S̄k(µ)2 e−2kt

(1− e−2t)k−1

≤ 1− e−2t

2
I(µ) +

k!S̄k(µ)2

2(1− e−2t)k−1
.

We optimize by taking t such that 1 − e−2t =
(
k!S̄2

k

I

)1/k

if possible, and
otherwise t = ∞ (which boils down to the usual logarithmic Sobolev in-
equality), and we get the result. We used the easy bound (k!)1/k ≤ k to
simplify the expression.

We can also obtain functional inequalities controlling the W2 distance,
which is de�ned as

W2(µ, ν)2 := inf
π

∫
|x− y|2dπ(x, y)

with the in�mum taken over the set of all couplings π of the two measures
µ and ν. Recall that in the case k = 1, [27] established the inequality

W2(µ, γ)2 ≤ S̄1(µ)2,
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which itself reinforced classical bounds on theW1 distance via Stein's method,
and allows to get simple proofs of CLTs in W2 distance, since Stein discrep-
ancies turn out to be easier to estimate in some situations. Our result is the
following variant involving higher-order discrepancies:

Theorem 3.3 (L2 transport inequalities). For k = 2, we have

W2(µ, γ) ≤ max(S̄2(µ)(1− log(S̄2/S̄1)), S̄2(µ)).

For k ≥ 3, we have W2(µ, γ) ≤ 2kS̄1(µ)1−1/(k−1)S̄k(µ)1/(k−1).

The �rst inequality will allow to improve the rate of convergence in the
CLT in W2 distance for measures having its moments of order 3 equal to
zero. As we will later see, when k ≥ 3, these inequalities are not satisfactory
for applications to CLTs.

Proof. As pointed out in [34], we have

W2(µ, γ) ≤
∫ ∞

0

I(µs)
1/2ds.

For k = 2, we have for any t

W2(µ, γ) ≤
∫ t

0

I(µs)
1/2ds+

∫ ∞
t

I(µs)
1/2ds

≤ S̄1(µ)

∫ t

0

e−2s

√
1− e−2s

ds+ S̄2(µ)

∫ ∞
t

e−3s

1− e−2s
ds

≤
√

1− e−2tS̄1(µ)− 1

2
e−t log(1− e−2t)S̄2(µ)

≤
√

1− e−2tS̄1(µ)− 1

2
log(1− e−2t)S̄2(µ)

Optimizing in t then leads to choosing t such that
√

1− e−2t = min(S̄2/S̄1, 1).
If S̄2 ≤ S̄1, we end up with the bound W2 ≤ S̄1(µ)(1− log(S̄2/S̄1)), and this
upper bound, is larger than S̄2. Otherwise, we bound it by S̄2 ≥ S̄1, and the
desired bound holds either way.

For k ≥ 3, we similarly have

W2(µ, γ) ≤
∫ t

0

I(µs)
1/2ds+

∫ ∞
t

I(µs)
1/2ds

≤ S̄1(µ)

∫ t

0

e−2s

√
1− e−2s

ds+
√
k!S̄k(µ)

∫ ∞
t

e−(k+1)s

(1− e−2s)k/2
ds

≤
√

1− e−2tS̄1(µ) +
√
k!S̄k(µ)

e−(k−1)t

k − 2

(
1

1− e−2t

)(k−2)/2

≤
√

1− e−2tS̄1(µ) +
√
k!S̄k(µ)

(
1

1− e−2t

)(k−2)/2
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and taking
√

1− e−2t = (
√
k!S̄k(µ)/S̄1(µ))1/(k−1) yields the result. The in-

equality could be improved, at the cost of clarity, but as far as we can see the
sharper inequality obtained by this method does not signi�cantly improve
the outcomes in the applications.

4 Improved rates of convergence in the classi-

cal CLT

We are interested in the rate of convergence of the law of (normalized)
sums of iid random variables n−1/2

∑n
i=1 Xi to their Gaussian limit. It is

known that the rate of convergence in Wasserstein distance W2 is of order
√
n in general, as soon as the fourth moment is �nite [12]. However, it is

possible to do a Taylor expansion of the distance as n goes to in�nity, and
see that under moment constraints, the asymptotic rate of decay may im-
prove. More precisely, [10, 11] shows that in dimension one, if the �rst k+ 1

moments of the random variables match with those of the standard Gaus-
sian, then the Wasserstein distance (and the stronger relative entropy and
Fisher information) asymptotically decays like n−k/2. Non-asymptotic rates
in dimension one were obtained in [22] using a variant of Stein's method,
and strong entropic rates under a Poincaré inequality and after regulariza-
tion by convolution with a Gaussian measure were obtained in [29], still in
dimension one. [2] gives a sharp non-improved rate of convergence in the
entropic CLT in dimension one in the classical case (i.e. without the extra
moment constraints satis�ed), without any regularization. See also [6] for a
multi-dimensional extension when the measure is additionally assumed to
be log-concave.

It is possible to use Stein's method to give simple proofs of this decay
rate [35, 27]. In particular, [16] proves a monotone decay of the Stein dis-
crepancy, which immediately implies the quantitative CLT as soon as the
Stein discrepancy of a single variable is �nite.

We consider the usual setting for the classical CLT: a sequence (Xi) of
iid random variables with distribution µ, and the normalized sum

Un :=
1√
n

n∑
i=1

Xi

whose law we shall denote by µn.

The aim of this section is to show similar results for higher-order dis-
crepancies. The starting point is the following construction of Stein kernels
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of the second type for sums of independent random variables, which is an
immediate generalization of the same result for k = 1.

Lemma 4.1. Let τ̄k,1 be a k-th order Stein kernel for µ. Then

τ̄k,n(m) := n−(k+1)/2E
[∑

τ̄k,1(Xi)|n−1/2
∑

Xi = m
]

is a k-th order Stein kernel for µn.

Proof. This can easily be checked by induction on k via (1.4). The case
k = 1 is well-known [27].

As a consequence, we obtain bounds on the rate of convergence of the
Stein discrepancies:

Corollary 4.2. Assume that all the mixed moments of order up to k+ 1 of

X1 are the same as those of the standard Gaussian. Then

S̄k(µn)2 ≤ n−kS̄k(µ)2.

We then obtain a rate of convergence in the multivariate CLT for the
Zolotarev distances dZol,k as an immediate consequence of the comparison
from Theorem 2.5:

Corollary 4.3. Assume that µ satis�es a Poincaré inequality with constant

CP , and that all of its mixed moments of order up to k+1 match with those

of the standard Gaussian measure. Let µn be the law of Un. Then

dZol,k(µn, γ) ≤

√
Ck−1
P (CP − 1)d

n−k/2
.

Such results have been obtained in dimension one (and for random vec-
tors with independent coordinates) in [20, 21]. See also [22] for related re-
sults.

Combined with the logarithmic Sobolev inequality and Lemma 3.2, this
also yields a multi-dimensional extension of a result of [29] on improved en-
tropic CLTs for regularized measures, with more explicit quantitative pref-
actors.

In the case k = 3, due to Theorem 3.3, we can upgrade the distance to
W2, losing however a logarithmic factor:
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Corollary 4.4. Assume that all of the mixed moments of order less than

three of X1 are the same as those of the standard Gaussian, and that its law

satis�es a Poincaré inequality with constant CP . Then

W2(µn, γ) ≤
√
dCP (CP − 1)

n

(
1 +

1

2
log n+

1

2
logCP

)
as soon as n ≥

√
dCP (CP − 1). If additionally the mixed fourth moments

match with those of the Gaussian, we get

W2(µn, γ) ≤
2
√
dCP (CP − 1)

(k − 1)n
.

Proof. The �rst inequality is obtained by plugging the upper bounds on
discrepancies in the bounds of Theorem 3.3, while using the fact that x→
x(1 − log x) is increasing on [0, 1]. The second inequality is obtained by
using the 2nd order kernels, and with our estimates using even higher order
kernels does not improve the bounds.

When k = 2, we only miss the sharp asymptotic rate of [10] by a log-
arithmic factor. However, under higher moment constraints we know that
the asymptotic rate is much better than n−1 (at least in dimension one), so
this result is not satisfactory.

For the entropy without regularization, we obtain the following rates
under the assumption that mixed third moments are equal to zero:

Proposition 4.5. Assume that the law of the Xi satis�es a Poincaré in-

equality and that the moments of order less than three agree with those of

the standard Gaussian measure. Then

Entγ(µn) ≤ 2CP
√
d

n
I(µ)1/2.

This eliminates a logarithmic factor from previous results of [27] in this
particular case, but once again does not give the expected sharp decay rate
under the moment assumptions.

Proof. This estimate is obtained by applying the HSI inequality with k = 2

and the fact that Fisher information is monotone along the CLT [1].
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