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Abstract 21	

The RNA exosome is a key 3’-5’ exoribonuclease with an evolutionarily conserved structure 22	

and function. Its cytosolic functions require the co-factors SKI7 and the Ski complex. Here 23	

we demonstrate by co-purification experiments that the ARM repeat protein 24	

RESURRECTION1 (RST1) and RST1 INTERACTING PROTEIN (RIPR) connect the 25	

cytosolic Arabidopsis RNA exosome to the Ski complex. rst1 and ripr mutants accumulate 26	

RNA quality control siRNAs (rqc-siRNAs) produced by the post-transcriptional gene 27	

silencing (PTGS) machinery when mRNA degradation is compromised. The small RNA 28	

populations observed in rst1 and ripr mutants are also detected in mutants lacking the 29	

RRP45B/CER7 core exosome subunit. Thus, molecular and genetic evidence supports a 30	

physical and functional link between RST1, RIPR and the RNA exosome. Our data reveal the 31	

existence of additional cytosolic exosome co-factors besides the known SKI subunits. RST1 32	
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is not restricted to plants, as homologues with a similar domain architecture but unknown 1	

function exist in animals, including humans. 2	

 3	

 4	

 5	

The main 3'- 5' exoribonucleolytic activity in eukaryotic cells is provided by the RNA 6	

exosome. It consists of a core complex composed of nine subunits (Exo9), to which the 7	

exoribonucleases RRP6 and DIS3/RRP44 differentially associate within the nucleolus, 8	

nucleoplasm or cytosol1–4. Whilst the overall structure and function of the RNA exosome is 9	

conserved, both the composition and enzymatic activities of exosome complexes vary among 10	

organisms. For example, most non-plant Exo9s including those in yeast and human are 11	

catalytically inactive5, whereas plant Exo9s have retained a phosphorolytic activity 12	

originating from its prokaryotic ancestor6. This unique phosphorolytic activity of plant Exo9 13	

acts in combination with the hydrolytic activities provided by RRP6 and DIS36. Another 14	

exception among RNA exosomes is the association of human Exo9 with functionally distinct 15	

DIS3L and DIS3 proteins, only the latter of which is conserved in yeast and plants3,7.  16	

In all eukaryotes investigated, the catalytic activities of the RNA exosome are modulated 17	

by cofactors that aid in the recognition of specific types of substrates and that couple 18	

exosome-mediated degradation to cellular processes such as ribosome biogenesis or mitosis8–19	
15. All "activator-adapter" or "exosome targeting" complexes that have been characterized to 20	

date contain an RNA helicase from the MTR4/SKI2 family as a central component. In 21	

addition, exosome targeting complexes typically comprise RNA binding proteins, non-22	

canonical poly(A) polymerases or factors mediating protein-protein interactions.  23	

Most exosome targeting complexes described to date are nuclear. They include the 24	

TRAMP (TRF4-AIR1-MTR4 polyadenylation) complexes in both baker’s yeast and 25	

humans16–19, the human PAXT (polyA tail exosome targeting) complex22, the NEXT (nuclear 26	

exosome targeting) complexes that differ slightly in humans and plants19,23 and the MTREC 27	

(Mtr4-like 1 (Mtl1)-Red1-core) complex in fission yeast24,25. These MTR4 containing 28	

complexes assist the exosome in nuclear RNA surveillance by targeting various RNA 29	

substrates, including precursors of ribosomal and other non-coding RNAs, spurious 30	

transcripts generated by pervasive transcription and untimely, superfluous or misprocessed 31	

mRNAs17,19,23,24,26–30. 32	

In remarkable contrast to the diversity of nuclear exosome cofactors, a single conserved 33	

protein complex, the Superkiller (Ski) complex, is known to assist the exosome in the cytosol. 34	
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The Ski complex consists of the MTR4-related RNA helicase SKI2, the tetratricopeptide 1	

repeat protein SKI3 and two copies of the WD40-repeat protein SKI831–33. Association of the 2	

Ski complex with the exosome core complex requires an additional protein, SKI734. In yeast, 3	

the genes encoding Ski7 and Hbs1, which binds to Dom34 (PELOTA in humans and plants) 4	

for the release of stalled ribosomes35, arose from a whole genome duplication event. In other 5	

eukaryotes including mammals and plants, the SKI7 and HBS1 proteins are produced by 6	

alternative splicing from a single locus36–38.  7	

The Ski complex is conserved in Arabidopsis thaliana39, but its physical association with 8	

the exosome core has not been investigated yet. An initial experiment to affinity-capture 9	

factors associated with the Arabidopsis exosome identified the homologue of DIS3 and two 10	

nuclear RNA helicases, AtMTR4 and its closely related homologue HEN223. In addition, 11	

Arabidopsis Exo9 systematically co-purified with a 1840 amino acid ARM repeat protein of 12	

unknown molecular function named RESURRECTION 1 (RST1)23. RST1 was originally 13	

identified in a genetic screen for factors involved in the biosynthesis of epicuticular waxes40. 14	

Epicuticular waxes are a protective layer of aliphatic very long chain (VLC) hydrocarbons 15	

that cover the outer surface of land plants41,42. rst1 mutants have less wax on floral stems than 16	

wild-type plants, and about 70% of the seeds produced by rst1 mutants are shrunken due to 17	

aborted embryogenesis40. The molecular function of RST1 remains unknown. Interestingly, 18	

one of the two RRP45 exosome core subunits encoded in the Arabidopsis genome, named 19	

RRP45B or CER7 (for ECERIFERUM 7) was also identified in a genetic screen aimed at 20	

identifying enzymes or regulators of wax biosynthesis43. The wax-deficient phenotype of 21	

rrp45b/cer7 mutants (cer7 from now on) is suppressed by mutations in genes encoding RNA 22	

silencing factors such as RDR1, RDR6, AGO1, SGS3 and DCL444,45. This and the 23	

identification of small RNAs accumulating in cer7 mutants revealed that the wax deficiency 24	

observed in cer7 plants is due to post-transcriptional silencing of CER3 mRNAs44,45, encoding 25	

a protein that together with the aldehyde decarbonylase CER1 catalyses the synthesis of VLC 26	

alkanes from VLC acyl-CoAs46,47. These results demonstrated that the RNA exosome 27	

contributes to the degradation of the CER3 mRNA and that the wax-deficient phenotype of 28	

cer7 mutants is a consequence of the established link between RNA degradation and silencing 29	

pathways44,45,48. Indeed, in plants, the two major exoribonucleolytic pathways that degrade 30	

RNAs either from 5' to 3' or from 3' to 5' also prevent that degradation intermediates such as 31	

uncapped or RISC-cleaved mRNAs are attacked by post-transcriptional gene silencing 32	

(PTGS)49–54, a mechanism required for the destruction of non-self RNAs originating from 33	

viruses or transgenes55. 34	
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Here, we demonstrate by multiple reciprocal co-purification assays coupled to mass 1	

spectrometry analyses that the Arabidopsis exosome core complex Exo9 associates with the 2	

ARM repeat protein RST1, SKI7, another protein that we named RIPR (for RST1 interacting 3	

protein) and the SKI complex. Our data show that RST1 and RIPR suppress the silencing of 4	

transgenes as well as the production of secondary siRNAs from endogenous exosome targets 5	

such as RISC cleaved transcripts and certain endogenous mRNAs which are prone to PTGS. 6	

Those mRNAs include the CER3 mRNAs explaining that the rst1 and ripr mutants share the 7	

cer7 wax deficiency phenotype. Taken together, our biochemical and genetic data establish 8	

RST1 and RIPR as cofactors of the cytoplasmic exosome and the Ski complex in plants. 9	

 10	

Results 11	

Wax deficiency in rst1 mutants is caused by CER3 silencing 12	

To investigate whether the wax deficiency of rst1 plants is linked to compromised 13	

degradation of the CER3 mRNA as reported in cer7 mutants43, we compared the stems of 14	

wild-type and mutant plants grown under identical conditions. Due to the light reflecting 15	

properties of the wax crystals that cover the outer cuticle, stems of wild type Arabidopsis 16	

plants appear whitish (or bluish in cold light, Fig. 1A). Consistent with previous reports, 17	

plants lacking the exosome core subunit RRP45A have whitish stems signifying intact wax 18	

biosynthesis43. By contrast, plants with T-DNAs inserted in the RRP45B/CER7 (AT3G60500) 19	

and RST1 (AT3G27670) loci have glossy green stems indicating wax deficiency40,43 (Fig. 1A). 20	

Gas chromatography followed by mass spectrometry (GC-MS) analysis of extracts obtained 21	

from the stem surface confirmed that the amounts of the VLC derivatives nonacosane, 15-22	

nonacosanone, and 1-octacosanol, three major components of epicuticular stem wax in 23	

Arabidopsis, were similarly reduced in cer7 and in rst1 mutants (Fig. 1B). Ectopic expression 24	

of RST1 fused to GFP in rst1-3 plants restored the biosynthesis of nonacosane, 15-25	

nonacosanone and 1-octacosanol and resulted in wild type-like whitish stems (Fig. 1A,B). 26	

Previous studies established that the wax deficiency of cer7 mutants is due to post-27	

transcriptional silencing of the mRNA encoding CER343–45,48, a subunit of a VLC alkane-28	

forming complex46,47. Indeed, RNA blots revealed a severe reduction of the CER3 mRNA and 29	

an accumulation of CER3-derived small RNAs in both cer7 and rst1 mutants (Fig 1C). 30	

Mutating the PTGS factor SUPPRESSOR OF GENE SILENCING 3 (SGS3) in rst1-2 plants 31	

abolished the production of CER3-derived small RNAs, restored wild-type levels of the CER3 32	

mRNA and allowed the production of epicuticular wax as demonstrated in the rst1 sgs3 33	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/617894doi: bioRxiv preprint first posted online Apr. 26, 2019; 

http://dx.doi.org/10.1101/617894
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

double mutant (Fig. 1D). These results show that the wax-deficient phenotype of rst1 mutants 1	

is caused by silencing of the CER3 mRNA, as reported for cer7 mutants. 2	

 3	

RST1 is a suppressor of transgene silencing 4	

Two independent genetic screens identified rst1 point mutations as suppressors of silencing. 5	

The first screen aimed to identify mutations suppressing the phenotype of MIM156 plants. 6	

MIM156 plants express an artificial non-coding RNA with an uncleavable miRNA 156 7	

recognition site56. Ectopic expression of this miRNA target mimicry (MIM) construct reduces 8	

both levels and activity of endogenous miR156 and leads to a characteristic phenotype with 9	

spoon-shaped cotyledons, prematurely serrated rosette leaves and a reduced leaf initiation rate 10	

during vegetative growth (Fig. 2A). MIM156 rst1-4 plants were recovered from an EMS-11	

treated population of MIM156 plants that had been visually screened for restoration of normal 12	

growth and development. MIM156 rst1-4 plants display the spoon-shaped cotyledons of the 13	

parental line but wild type-like leaf initiation rates and rosette leaf serration. We mapped the 14	

suppressor mutation by whole genome sequencing to the RST1 gene and specifically the 15	

G3118A mutation causing a G706D amino acid change (Fig. 2B). Expressing a genomic 16	

RST1 construct in MIM156 rst1-4 plants restored the MIM156 phenotype confirming that the 17	

rst1-4 mutation was responsible for the suppressor effect (Fig. 2A). We then tested the 18	

accumulation of CER3-derived siRNAs in this novel rst1 allele. As compared to the T-DNA 19	

insertion alleles rst1-2 and rst1-3, rst1-4 mutants accumulated lower levels of CER3-derived 20	

siRNAs, indicating that rst1-4 is a weak allele (Fig. 2C). Next, we analysed the accumulation 21	

of both the full length MIM156 non-coding RNA and MIM156-derived siRNAs by RNA 22	

blots. This experiment revealed low levels of MIM156-derived siRNAs in the parental 23	

MIM156 line indicating that the MIM156 transcript is spontaneously targeted by PTGS, as 24	

often observed with highly expressed transgenes. Compared to the parental line, MIM156 25	

rst1-4 plants had reduced levels of the full-length MIM156 transcript but accumulated 26	

increased levels of MIM156 derived siRNAs (Fig. 2D). The increased accumulation of these 27	

siRNAs in the MIM156 rst1-4 suggests that RST1 restricts the production of MIM156-derived 28	

siRNAs, which prevents complete destruction of the full-length transcript by PTGS.  29	

 The second screen directly aimed at identifying factors affecting the 30	

posttranscriptional silencing of the 35Sprom:GUS transgene in the reporter line L1 jmj14-4 57. 31	

This screen identified rst1-5, a C4824T mutation in RST1 resulting in a truncation of the 32	

RST1 protein (Q1010*) (Fig. 2B). Compared to the L1 jmj14-4 parental line, L1 jmj14-4 rst1-33	

5 plants had decreased levels of GUS mRNA and increased levels of GUS-derived siRNA 34	
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(Fig 2E). This result resembled the effects of rst1-4 on the accumulation of MIM156 1	

transcript and MIM156 derived siRNAs (Fig. 2D). Backcrossing L1 jmj14-4 rst1-5 to wild 2	

type yielded rst1-5 plants, which showed a pronounced accumulation of CER3-derived 3	

siRNA similar to rst1-2 and rst1-3 (Fig. 2C). To further demonstrate that rst1-5 enhances 4	

PTGS, we introduced the rst1-5 mutation into the well-established reporter lines 6b4 and 5	

Hc157 (Fig. 2F). These lines harbour the same 35S:GUS transgene as the L1 jmj14-4 line, but 6	

inserted at different locations in the Arabidopsis genome. In a wild-type background, line 6b4 7	

does not trigger sense transgene PTGS (S-PTGS), while line Hc1 triggers S-PTGS in 20% of 8	

the population (Fig. 2F). In genetic backgrounds having impaired RNA degradation, both Hc1 9	

and 6b4 lines trigger S-PTGS at increased frequencies, which provides a quantitative 10	

readout23,49–51,53,58. 86% of the 6b4 rst1-5 plants and 100% of the Hc1 rst1-5 plants triggered 11	

silencing of the 35S:GUS reporter (Fig. 2F). This result confirmed that RST1 functions as a 12	

suppressor of S-PTGS comparable to other proteins involved in RNA degradation23,49–51,53,58 . 13	

 14	

RST1 co-purifies with the exosome, SKI7 and RIPR 15	

To examine the intracellular distribution of RST1, we used a rst1-3 mutant line expressing 16	

RST1 proteins fused to GFP at its N- or C-terminus. Both fusion proteins were functional as 17	

they rescued the wax deficiency of rst1-3 (Fig. 1), and showed a diffuse cytoplasmic 18	

distribution in root cells of stable Arabidopsis transformants similar to the cytoplasmic 19	

marker protein PAB2 (Fig. 3). Therefore we conclude that RST1 is a cytoplasmic protein, 20	

which is in contrast to a previous study, which had proposed that RST1 is localized at the 21	

plasmamembrane59. In our previous experiments, RST1 co-purified with Exo9 using the core 22	

exosome subunit RRP41 as bait23. To verify the association of RST1 with Exo9 we used 23	

GFP-RST1 or RST1-GFP as baits for immuno-precipitation (IP) experiments followed by 24	

LC-MS/MS analyses (15 IPs). Indeed, among the proteins that were enriched in RST1 IPs 25	

were the nine canonical subunits of Exo9: CSL4, MTR3, RRP4, RRP40A, RRP41, RRP42, 26	

RRP43, RRP45B/CER7 and RRP46 (Fig. 4A, Supplementary Table 1). By contrast, we did 27	

not detect HEN2 or MTR4, the two main cofactors of nucleoplasmic or nucleolar exosomes, 28	

respectively. The lack of HEN2 and MTR4 detection is in agreement with the cytoplasmic 29	

localization of RST1. Noteworthy, RST1 co-purified with the cytoplasmic protein encoded by 30	

AT5G10630, the mRNA of which is alternatively spliced to produce either HBS1 or SKI7 31	

proteins. As compared to the HBS1 mRNA, the SKI7 mRNA contains an additional exon 32	

encoding the putative exosome interaction domain of the Arabidopsis SKI7 protein38. 33	

Inspection of the peptides detected in the RST1 IP revealed the presence of peptides specific 34	
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to the SKI7 splice isoform (Supplementary Fig. S1). This and the fact that SKI7 proteins are 1	

bound to yeast and human exosome complexes indicate that the AT5G10630 gene product 2	

which co-purified with RST1 is indeed SKI7 rather than HBS1. The three components of the 3	

cytoplasmic Ski complex were also detected in RST1 IPs, albeit their enrichment relative to 4	

control IPs did not pass the p<0.05 threshold. Together, these IP results support the 5	

exclusively cytoplasmic localisation of RST1 and confirm its interaction with the Exo9 core 6	

complex. Furthermore, a protein of unknown function encoded by AT5G44150 and that we 7	

termed RIPR for RST1 interacting protein, was the most enriched protein in all RST1 IPs 8	

(Fig. 4A).  9	

Because our previous purifications of Arabidopsis exosome complexes with tagged RRP41 as 10	

bait were analysed using an older and less sensitive mass spectrometer23, we repeated the 11	

experiment using the same experimental settings as we used for the RST1 IPs (6 IPs, Fig. 4B, 12	

Supplementary Table 2). This new experiment as bait confirmed the previously reported co-13	

purification of the conserved exoribonuclease RRP44 and the two nuclear RNA helicases 14	

MTR4 and HEN2 with Exo9 and reproduced the co-purification of RST1. In addition, the 15	

new experiment revealed a significant enrichment of both RIPR and SKI7 in the RRP41 IPs. 16	

Peptides specific to the alternative subunit RRP45A were present in the RRP41 IPs but absent 17	

when RST1 was used as bait, suggesting that RST1 may preferentially interact with CER7 18	

(aka RRP45B)-containing exosome complexes. To test this hypothesis, we stably expressed 19	

GFP-tagged RRP45A and RRP45B/CER7 in Arabidopsis (Supplementary Fig. 2). Indeed, 20	

both RST1 and SKI7 were significantly enriched with CER7 as bait (Fig. 5, Supplementary 21	

Table 3). By contrast, RST1 and RIPR were not detected when RRP45A was used as bait, 22	

even though RRP45A and CER7 are both present in cytosolic and nuclear compartments, and 23	

notwithstanding that the large number of RRP45A IPs (14 IPs) was sufficient to detect the 24	

nuclear RNA helicase HEN2 and exoribonuclease RRP44, whose association to Exo9 is 25	

rather labile in Arabidopsis. These results indicate that RST1 and RIPR are bound to Exo9 26	

with RRP45B/CER7 subunits, but not to Exo9 complexes that contain the alternative subunit 27	

RRP45A. In order to confirm the physical association of RIPR with RST1, we used RIPR 28	

with GFP-tags at either the N- or the C-terminal ends as bait in co-purification experiments (4 29	

IPs, Fig. 6, Supplementary Table 4). RST1 was the most enriched protein in RIPR IPs. The 30	

nine subunits of the exosome were also detected but were less enriched than in the IPs with 31	

RST1 as bait (compare Fig. 4 and 6). By contrast, SKI7 as well as the three components of the 32	

Ski complex SKI2, SKI3 and SKI8 were amongst the most significantly enriched proteins co-33	

purifying with RIPR (Fig. 6).  34	
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 Altogether, the multiple reciprocal IPs confirm the interaction of RST1 with CER7-1	

containing exosome core complexes and identify SKI7 and RIPR as additional binding 2	

partners of both RST1 and Exo9. Furthermore, our data indicate that RIPR bridges the 3	

association of RST1-SKI7 with the Ski complex. 4	

 5	

Loss of RIPR function phenocopies rst1 mutants 6	

RIPR is conserved among flowering plants but has no clear sequence homologs in mosses, 7	

green algae or outside of the green lineage. RIPR is a 356 amino acid protein that lacks 8	

obvious functional domains and motifs or sequence homologies to known proteins. Confocal 9	

microscopy of Arabidopsis roots stably expressing RIPR-GFP fusion proteins revealed a 10	

diffuse cytoplasmic distribution (Fig. 7A) similar to the intracellular distribution of RST1 11	

(Fig. 3). Because T-DNA insertion mutants in the AT5G44150 locus were not available in 12	

Arabidopsis stock centres, we obtained two independent mutants using a CRISPR-Cas9 13	

strategy. The mutants, named ripr(insT) and ripr(insC), had single T or C nucleotides inserted 14	

at position 179, creating premature stop codons 60 and 65 amino acids after the start codon, 15	

respectively (Fig. 7B, C, Supplementary Fig. S3). Interestingly, ripr(insT) and ripr(insC) 16	

mutant plants have glossy green stems resembling the stems of rst1 and cer7 plants (Fig. 7D). 17	

Moreover, about 70% of the seeds produced by ripr(insT) and ripr(insC) plants were 18	

shrunken, similar to the proportion of unviable seeds produced by rst1-2, rst1-3 or cer7-3 19	

plants (Fig. 7E)40. RNA blots confirmed that the wax deficient phenotype of ripr(insT) and 20	

ripr(insC) is due to the accumulation of CER3-derived small RNAs and silencing of the 21	

CER3 mRNA (Fig. 7F). Those results demonstrate that RIPR can, like RST1, suppress the 22	

production of small RNAs from the CER3 locus. Finally, 56 /56 Hc1 ripr(insT) plants 23	

triggered silencing of the GUS PTGS reporter (Fig. 7G), demonstrating that RIPR also 24	

supresses transgene silencing. Taken together, loss of RIPR induced very similar 25	

physiological and molecular phenotypes as loss of RST1 or the exosome subunit CER7. 26	

 27	

Small RNAs produced from endogenous mRNAs accumulate in cer7, ripr and rst1 28	

mutants 29	

The association of RST1 and RIPR with the exosome complex and the fact that loss of RST1 30	

or RIPR phenocopies the cer7 mutation suggested that both RST1 and RIPR are involved in 31	

the exosome-mediated degradation of the CER3 mRNA before it can become a template for 32	

the production of CER3-derived small RNAs. To identify other common targets of RST1, 33	

RIPR and the exosome complex we analysed small RNA libraries prepared from wild-type 34	
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plants and from cer7, rst1 and ripr mutants (Fig. 8A). This analysis identified more than 300 1	

mRNAs that gave rise to small RNAs in cer7 (Supplementary Table 5), including 5 of the 6 2	

mRNAs that were previously shown to undergo silencing in absence of the RRP45B/CER7 3	

exosome subunit45. Many of the loci that generate small RNAs in cer7 mutants have 4	

previously been shown to produce siRNAs in ski2 single mutants, ski2 xrn4 double mutants or 5	

in the decapping mutants dcp2 and vcs51,52,54, and/or are known or predicted targets of 6	

miRNAs (Supplementary Table 5). Because these siRNAs are produced from protein coding 7	

genes in RNA degradation mutants, they have been termed ct-siRNAs (coding-transcript 8	

siRNAs) or rqc-siRNAs (RNA quality control siRNAs)51,52,54. About one third of the loci that 9	

generated rqc-siRNA in cer7 mutants produced significant amounts of rqc-siRNAs in rst1 and 10	

ripr mutants as well, while only very few loci were specifically observed in only ripr or rst1 11	

(Fig. 8B). The observation of quasi identical populations of small RNAs in rst1 and ripr and 12	

the fact that almost all loci affected by rst1 or ripr are also affected in cer7 strongly support 13	

the conclusion that RST1 and RIPR are required for the degradation of at least a subset of 14	

cytoplasmic exosome targets. 15	

 16	

Discussion 17	

This study identifies RST1 and RIPR as two previously unknown co-factors which support 18	

the function of the cytoplasmic RNA exosome in Arabidopsis. Three lines of evidence back 19	

our conclusion. Firstly, RST1 and RIPR are physically associated with the exosome core 20	

complex and the Ski complex, respectively, both of which act together in the degradation of 21	

cytoplasmic RNAs. Secondly, both RST1 and RIPR suppress the silencing of a transgenic 22	

reporters similar to almost all known main RNA degradation factors including proteins 23	

involved in decapping, the 5'-3' exoribonucleases XRN3 and XRN4, and both subunits of 24	

Exo9 and Exo9 cofactors involved in 3'-5' RNA degradation23,49–51,53. Thirdly, loss of function 25	

mutations of either RST1, RIPR or the exosome subunit CER7 lead to the accumulation of 26	

illegitimate siRNAs generated from endogenous protein-coding genes many of which have 27	

been previously found to produce siRNAs in ski2, xrn4 ski2, or in mutants of the decapping 28	

complex51,52,54 29	

 The current hypothesis for the production of rqc-siRNAs is that mRNA degradation 30	

intermediates such as decapped, deadenylated or cleaved mRNAs, including the fragments 31	

produced by RISC, must be rapidly eliminated to avoid that they serve as substrates for the 32	

synthesis of double-stranded RNA by endogenous RNA-dependent	RNA	polymerases and 33	

SGS349–52,54,60. Likely, the largely redundant 5'-3' degradation by the cytoplasmic 34	
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exoribonuclease XRN4 and 3'-5' degradation by the cytoplasmic exosome and the Ski 1	

complex ensures the rapid elimination of mRNAs after their degradation has been initiated by 2	

decapping, deadenylation or RISC-mediated cleavage, thus preventing the production of rqc-3	

siRNAs. Vice versa, accumulation of rqc-siRNAs indicates impaired RNA degradation. The 4	

fact that similar rqc-siRNA profiles are observed in cer7, rst1 and ripr mutants indicates that 5	

CER7, RST1 and RIPR contribute to the degradation of an overlapping set of mRNA targets. 6	

It is important to note that both the loci concerned and the levels of siRNAs from a given loci 7	

vary among plants of the same genotype and grown under identical conditions. Also, not each 8	

of the loci that give rise to rqc-siRNA undergoes silencing, i.e. full suppression of its 9	

expression61. Yet, PTGS is obviously consistently triggered for certain Arabidopsis mRNAs. 10	

For instance, compromising 3'-5' degradation leads to silencing of the CER3 and few other 11	

mRNAs, while distinct loci appear to be more sensitive to impaired decapping or 5'-3' 12	

decay51,52,54. Interestingly, many of the mRNAs that reproducibly generate small RNAs in 13	

RNA degradation mutants including the CER3 mRNA, have actually no sequence homology 14	

to miRNAs (Supplementary Table 5). It is therefore tempting to speculate that mRNAs prone 15	

to PTGS possess common intrinsic features that trigger the recruitment of SGS3 and RDR6. 16	

One of the currently discussed propositions is that highly expressed mRNAs are more likely 17	

to generate aberrant RNAs than moderately or low expressed ones54. In addition, certain 18	

mRNAs prone to RNA silencing may be cleaved by off-targeted RISC, or are perhaps 19	

substrates of other endonucleases. Alternatively, secondary structures or strong association to 20	

proteins may impede degradation by at least one of the otherwise largely redundant 5'-3' and 21	

3'-5' degradation pathways and could explain why some mRNAs are more likely to become 22	

substrate for RNA-dependent RNA polymerases than mRNAs which are efficiently degraded 23	

from both directions. Yet, about 30% of the rqc-siRNAs generating loci in rst1 and ripr are 24	

known or predicted miRNA targets (Supplementary Table 5). Hence, at least for those, the 25	

initial substrate for RDR6-dependent siRNA production could be a RISC-cleaved mRNA 26	

fragment. Since miRNAs and AGO1, the main effectors of RISC, are associated with 27	

polysomes62,63, 5' cleavage products that could be generated by RISC on polysomes resemble 28	

truncated mRNAs without a stop codon and without a polyA-tail. Therefore, we can presume 29	

that RST1 and RIPR, together with the Ski complex and the RNA exosome, participate in the 30	

elimination of no-stop RNA. The notion that 5' RISC-cleaved fragments that fail to be 31	

degraded by RST1-RIPR-SKI and the exosome become a substrate for the production of 32	

small RNAs fits well with the observation that the full-length cleavage fragments of only 10-33	

20% of the Arabidopsis miRNA targets can be detected in the no-stop decay mutant pelota60. 34	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/617894doi: bioRxiv preprint first posted online Apr. 26, 2019; 

http://dx.doi.org/10.1101/617894
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

Our data also have important implications on the physical organisation of the cytoplasmic 1	

RNA exosome and the Ski complex. In Arabidopsis and closely related species, two genes 2	

encode the exosome core subunit RRP45. Arabidopsis RRP45A and RRP45B/CER7 share 3	

88% identity over their first 300 amino acids. Both subunits are located in cytosolic and 4	

nuclear compartments, and are at least in stable transformants, similarly enriched in nucleoli. 5	

Interestingly, both RST1 and RIPR only associated with RRP45B/CER7-containing 6	

exosomes, while no peptide of RST1 was detected in any of the fourteen experiments that we 7	

performed using RRP45A as bait. Instead, RRP45A-containing exosomes preferentially co-8	

purified with the nuclear RNA helicase HEN2, in line with previous results obtained using 9	

HEN2 as bait23. Our results indicate that RST1 preferentially associates with the CER7-10	

containing version of the Arabidopsis exosome. Compared to RRP45A, CER7 possesses an 11	

extra C-terminal domain of 135 aminoacids, which may be important for the recruitment of 12	

RST1. However, a previous study suggested that these extra amino acids are dispensable for 13	

the function of CER7 in the degradation of the CER3 mRNA43. Moreover, the ectopic 14	

expression of RRP45 in cer7 mutants rescued their wax-deficient phenotype43. A possible 15	

explanation is that overexpression of RRP45A allows a weak interaction with RST1 that is 16	

below the detection level in our IPs with RRP45A as bait. An alternative explanation could be 17	

that the physical interaction between RST1 and Exo9 is not essentially required for the 18	

function of both proteins in the turnover of the CER3 mRNA.  19	

 The observation that RST1 is among the most enriched proteins captured with either 20	

RRP41 or CER7 as bait suggests that RST1 is stably associated with the exosome core 21	

complex. The strong enrichment of both RIPR and SKI7 with RST1 as bait and the 22	

observation that the Ski complex purifies mainly with RIPR suggests that RST1 and RIPR 23	

link the exosome to the Ski complex in plants. Future experiments will address the possibility 24	

that RIPR may be required to link the Ski complex with the core exosome while RST1 could 25	

stabilize the binding of Exo9 and SKI7. Other interesting possibilities are that RST1 and/or 26	

RIPR affect the recognition of target RNAs or the recruitment of the exosome to ribosomes. 27	

In fact we do detect ribosomal proteins in the all of our IPs, but with low enrichment scores 28	

(Supplementary Tables 1-4, or explore the interactive volcano blots available on figshare 29	

https://doi.org/10.6084/m9.figshare.c.4483406). Whether this has a technical basis or truly 30	

reflects a poor association of Exo9-RST1-RIPR-Ski complex with ribosomes remains to be 31	

investigated. Interestingly, a recent study in yeast identified Ska1 as a protein that impedes	32	

the association of the yeast Ski-Exo9 complex with the ribosome64. Similar to RIPR in 33	

Arabidopsis, Ska1 affinity-captured the Ski complex. But unlike RST1 or RIPR, the Ska1-Ski 34	
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complex is not required for the degradation of coding regions, and instead, has a specific 1	

function in the elimination of RNAs devoid of ribosomes such as 3' UTRs or long non-coding 2	

RNAs. Apparently, overexpressing of Ska1 outcompetes the association of the Ski complex 3	

with ribosomes, suggesting that the association the Ski complex with either Ska1 or the 4	

ribosome is mutually exclusive64. Of note, sequence homologs of Ska1 seem to be restricted 5	

to S. cerevisiae and some closely related fungi, although proteins with similar functions may 6	

exist in other species. 7	

 RIPR seems to be conserved in flowering plants but is absent from the genomes of 8	

mosses and green algae, suggesting a relative recent evolutionary origin. By contrast, RST1 is 9	

deeply conserved in the green lineage. Moreover, a single ARM repeat protein comprising the 10	

same domain of unknown function DUF3037 (IPR022542) as RST1 is conserved in humans, 11	

across all metazoa and in ancient amoebozoa such as Dictyostelium, but is apparently absent 12	

from modern fungi (PTHR16212 protein family). The human DUF3037 protein KIAA1797 13	

was named Focadhesin because its GFP fusion protein has been detected in focal adhesion 14	

points of astrocytoma cells65. Interestingly, a recently generated high-throughput dataset 15	

monitoring the migration of proteins in sucrose gradients with or without RNase treatment 16	

detected Focadhesin as a putative component of an RNA-dependent complex (Sven 17	

Diederichs lab, http://r-deep.dkfz.de/). More work is needed to fully understand the molecular 18	

function of human Focadhesin. It will be interesting to investigate whether Focadhesin is also 19	

associated with the function of the RNA exosome in animals. 20	

 21	

Material and Methods 22	

Plant material  23	

Plants were grown on soil or in vitro on Murashige and Skoog medium supplemented with 24	

0.5 % sucrose at 20°C in 16 h light and 8 h darkness. All plants were of the Col-0 accession, 25	

which served as wild type in all experiments. The T-DNA insertion lines cer7-2 26	

(Salk_003100), cer7-3 (GK_089C02), rrp45a (GK_665D02), sgs3-13 (Salk_039005) and 27	

rst1-2 (Salk_070359), rst1-3 (Salk_129280) have been described in 44,46 and 40, respectively. 28	

The rst1-5 and rst1-4 alleles are EMS alleles identified during this study. Starting point for 29	

the identification of rst-5 was the EMS mutagenesis of the line L1 jmj14-4 line in which 30	

PTGS of the 35Sprom:GUS transgene inserted at the L1 locus is partially impaired by the 31	

jmj14-4 mutation57,66. The rst1-4 mutant was identified following EMS treatment of 32	

MIM15656. EMS mutagenesis of seeds was performed as described in67. Mutations were 33	

identified by mapping-by-sequencing using pooled F2 plants exhibiting the phenotype of 34	
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interest. Sequencing libraries prepared with the Illumina TruSeq DNA Sample Preparation 1	

Kit were 10-plexed (Illumina adapters Set A) per flow-cell lane and sequenced on an Illumina 2	

HiSEquation 2000 instrument to obtain at least 10-fold genome coverage. The SHOREmap 3	

technique was used to identify SNPs and mapping intervals68. The EMS mutants were 4	

backcrossed to Col-0 to remove the MIM156 transgene (rst1-4) or the jmj14-4 mutation and 5	

the L1 35Sprom:GUS reporter (rst1-5). Presence or absence of the transgenes and mutations 6	

were confirmed by PCR genotyping. 7	

 8	

PTGS analysis 9	

Hc1 rst1-5, Hc1 ripr(insT) and 6b4 rst1-5 plants were obtained by crosses. S-PTGS 10	

frequencies were assessed by GUS activity assays as described previously69. 11	

 12	

CRISPR-Cas9 editing of AT5G44150 13	

The target site at position +179 from the ATG of the AT5G44150 gene was selected using the 14	

CRISPR plant webtool (http://www.genome.arizona.edu/crispr/CRISPRsearch.html). No off-15	

targets were predicted for the guide RNA TCATACCGATCCCAATT'CGA targeting the 16	

complementary strand at Chr5:17764907-17764927. 100 pmol of the oligonucleotides 5'-17	

ATTGTCATACCGATCCCAATTCGA-3' and 5'-AAACTCGAATTGGGATCGGTATGAC-18	

3' were phosphorylated for 30 min at 37 °C using 1 mM ATP and 1 unit polynucleotide 19	

kinase (NEB) in the buffer supplied by the manufacturer and then hybridized in a 20	

thermocycler (5 min 95 °C, cooling rate 5 °C/min, 5 min 25 °C). 100 fmol of hybridized 21	

oligonucleotides were ligated overnight at 18 °C to 10 ng of Aar1-digested and 22	

dephosphorylated vector pKI1.1R70. An aliquot of the ligation mixture was transformed in 23	

TOP10 E. coli cells (Invitrogen). The correct insertion of the guide RNA in the vector was 24	

confirmed by Sanger sequencing before plasmids were introduced in Agrobacterium 25	

tumefaciens strain GV3101 for the transformation of Col-0 plants by floral dip71. pKI1.1R's 26	

T-DNA confers a red fluorescence protein expressed under the seed-specific OLEO1 27	

promoter. Fluorescent T1 seeds were selected using an epifluorescence-equipped binocular. 28	

Plants were genotyped by high resolution melting using the precision melt supermix (Biorad) 29	

in a Roche Lightcyler 480 and further confirmed by Sanger sequencing. Plants carrying an 30	

insertion at the AT5G44150 target site were selfed and RFP-negative T2 seeds devoid of the 31	

Cas9-containing T-DNA were selected for outgrowth. Two independent T2 plants 32	

homozygous for the insertion of a single T or C at position +179 were selected for further 33	

characterization.  34	
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 1	

Expression of GFP-tagged fusion proteins 2	

RRP41-GFP lines were made with constructs comprising the genomic sequence of RRP41 3	

including 1000bp upstream of the translation start site and were previously described in 6. All 4	

other GFP-fusion proteins were expressed from the UBIQUITIN 10 promoter.  C-terminal 5	

fusion constructs contained the genomic sequence of the respective genes including the 5' 6	

UTR but lacking the Stop codon. For N-terminal fusions, the genomic sequences without the 7	

5' UTR but including the 3' UTR were used. All sequences were amplified from genomic 8	

DNA, cloned into pENTR1a (Invitrogen) and transferred to pUBC-GFP and pUBN-GFP 9	

destination vectors72, respectively, using GatewayR recombinases. Expression vectors were 10	

transferred to Agrobacterium and used to transform rst1-3 (for RST1-GFP and GFP-RST1), 11	

cer7-2 for CER7-GFP, rrp45a for RRP45a-GFP, and Col-0 plants for both GFP-RIPR and 12	

RIPR-GFP.  13	

 14	

Co-immunopurification experiments 15	

Plants were selected by testing crude flower extracts by western blots using homemade 16	

antibodies specific to GFP. For each IP, 200-500 mg of flower buds pooled from at least 4 17	

individual plants were ground in liquid nitrogen or directly in 2 ml ice-cold lysis buffer (50 18	

mM Tris HCL pH 7.5, 25 or 50 mM NaCl, 1% Triton, protease inhibitors (Complete - EDTA, 19	

Roche). After removal of cell debris by centrifugation (2 times 5 min, 16000 x g, 4 °C) the 20	

cleared supernatants were incubated for 30 min with GFP antibodies coupled to magnetic 21	

microbeads (Miltenyi). Beads were loaded on magnetized MACS separation columns 22	

equilibrated with lysis buffer and washed 5 times with 300 µl washing buffer (50mM Tris 23	

HCL pH 7.5, 25 or 50 mM NaCl, 0,1 % Triton). Samples were eluted in 50 µl of pre-warmed 24	

elution buffer (Milteny). Control IPs were carried out with GFP antibodies in Col-0 or in 25	

plants expressing RFP or GFP alone. Additional control IPs were performed with antibodies 26	

directed against myc or HA epitopes. 27	

 Eluted proteins were digested with sequencing-grade trypsin (Promega) and analyzed 28	

by nanoLC-MS/MS on a QExactive+ mass spectrometer coupled to an EASY-nanoLC-1000 29	

(Thermo-Fisher Scientific, USA) as described before73. Data were searched against the 30	

TAIR10 database with a decoy strategy. Peptides were identified with Mascot algorithm 31	

(version 2.5, Matrix Science, London, UK) and the data were imported into Proline 1.4 32	

software (http://proline.profiproteomics.fr/). The protein identification was validated using the 33	

following settings: Mascot pretty rank <= 1, FDR <=1% for PSM scores, FDR <= 1% for 34	
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protein set scores. The total number of MS/MS fragmentation spectra was used to quantify 1	

each protein from at least two independent biological replicates. If not specified otherwise, 2	

biological replicates consisted of plants of the same genotype grown at different dates and in 3	

different growth chambers.  4	

 For the statistical analysis of the co-immunoprecipitation data we compared the data 5	

collected from multiple experiments for each bait against a set of 20 control IPs using a 6	

homemade R package as described in73 except that the size factor used to scale samples were 7	

calculated according to the DESeq normalisation method (i.e.  median of ratios method)74. 8	

The R-package performs a negative-binomial test using an edgeR-based GLM regression and 9	

calculates the fold change and an adjusted p-value corrected by Benjamini–Hochberg for each 10	

identified protein. The RST1 dataset comprised the data collected from 15 11	

immunoprecipitation experiments performed in 6 biological replicates of each GFP-RST1 and 12	

RST1-GFP. 14 IPs from 4 biological replicates were performed with RRP45A. 6 experiments 13	

from 2 biological replicates were used for each of RRP41-GFP and CER7-GFP, and the RIPR 14	

dataset contained 4 IPs from 2 biological replicates of each RIPR-GFP and GFP-RIPR. 15	

Control IPs included 4 biological replicates of Col-0 incubated with GFP antibodies, 6 IPs 16	

from 4 biological replicates of GFP-expressing plants treated with GFP antibodies, and 10 IPs 17	

performed with anti-HA antibodies in 3 biological replicates RST1-GFP, 3 replicates GFP-18	

RST1 and in 1 RFP sample. The mass spectrometry proteomics data have been deposited to 19	

the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the 20	

PRIDE partner repository75 with the dataset identifier PXD013435. 21	

 22	

Epicuticular wax analysis 23	

For each sample, 3 stem sections of 6 cm were immersed for 30 s in 10 ml chloroform. 24	

Extracts were dried under N2 gas, dissolved in 150 µl chloroform, transferred in an insert and 25	

again dried under N2 gas. Extracts were derivatized in a mix of BSTFA [N,O 26	

bis(trimethylsilyl) trifluoroacetamide) (> 99 %, Sigma)] / pyridine (> 99,5 %, sigma) (50/50, 27	

V/V) (1 h 80 °C with shaking at 300 rpm) before BSTFA-pyridine extracts were evaporated 28	

under N2 gas. The samples were dissolved in chloroform containing a mix of 9 alkanes (C10-29	

C12-C15-C18-C19-C22-C28-C32-C36) as internal standards. 30	

 Derivatized silylated samples were analyzed by GC-MS (436-GC, Bruker; column 30-31	

m, 0.25-mm, 0.25 µm; HP-5-MS) with He carrier gas inlet pressure programmed for constant 32	

flow of 1 ml/min and mass spectrometric detector (SCION TQ, Bruker; 70 eV, mass to charge 33	

ratio 50 to 800). GC was carried out with temperature-programmed injection at 50 °C over 2 34	
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min. The temperature was increased by 40 °C/min to 200 °C, held for 1 min at 200 °C, further 1	

increased by 3 °C/min to 320 °C and held for 15 min at 320 °C. Injector temperature was set 2	

to 230 °C with a split ratio of 3:1. Peaks in the chromatogram were identified based on of 3	

their mass spectra and retention indices. Mass spectra detected by GC-MS were compared 4	

with the spectra of known compounds stored in the National Institute Standard and 5	

Technology (NIST) and in the Golm Metabolome databases. Nonacosane, 15-nonacosanone 6	

and 1-octacosanol were identified with match values of 933, 865 and 952, respectively. Mass 7	

spectrometric detector peak areas were used for relative quantification with octacosane as 8	

internal standard. 9	

 10	

RNA extractions and northern blots 11	

RNA was extracted from the top 3 cm of inflorescence stems or from flowers with TRI-12	

reagent (MRC) following the manufacturers instructions. After precipitation with 0.8 vol 13	

isopropanol for 1-3 h at -80 °C, RNAs were collected by centrifugation (30 min 16000 x g, 4 14	

°C), washed twice with 70% EtOH, dissolved in water and further purified by adding 1 vol of 15	

Phenol:Chloroform:Isoamylalcohol (25:24:1). The aqueous phase was transferred in a fresh 16	

tube, RNAs were precipitated overnight with 2.5 vol of EtOH at -80 °C, collected by 17	

centrifugation, washed twice with 70 % EtOH and dissolved in water to approx. 2.5 µg/µl. 18	

For high molecular weight northern blots, 20 µg of total RNA were separated in a 2 % 19	

denaturing agarose gel containing 30 mM Tricine, 30 mM Triethanolamine and 40 mM 20	

Formaldehyde (4-6 h at 50 V). The RNA was blotted to Amersham Hybond-N+ membranes 21	

(GE Healthcare Life Sciences) and UV-crosslinked (254 nm). Membranes were stained with 22	

methylene blue and hybridized to 32P radio-labeled DNA probes (DecaLabel, ThermoFischer) 23	

in PerfectHybTM (Sigma) over night at 65 ºC. Sequences for primers used for amplification of 24	

probe templates are listed in Supplementary Table S6. 25	

 For low molecular weight and small RNA northern blots, 20 µg of total RNA were 26	

separated in 5% and 17 % polyacrylamide gels (19:1), respectively, containing 7 M Urea in 27	

100 mM Tris, 100 mM Borate, 2 mM EDTA. RNA was transferred to Amersham Hybond-28	

NX membranes (GE Healthcare Life Sciences) and either UV-crosslinked (LMW blots) or 29	

chemically crosslinked (small RNA blots) by incubation with 0.16 M l-ethyl-3-(3-30	

dimethylaminopropyl) carbodiimide (EDC, Sigma) in 0.13 M 1-methylimidazole (Sigma), 31	

pH 8, for 1.5h at 60 °C. Membranes were hybridized to radio-labeled DNA probes overnight 32	

at 45 ºC. For loading controls, blots were stripped with boiling 0.1 % SDS, and hybridized to 33	
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a radiolabelled oligonucleotide specific to 7SL RNA, U6 snRNA or miR156. Oligonucleotide 1	

sequences are listed in Supplementary Table S6. 2	

 3	

Microscopy 4	

Plants were grown on MS agar plates supplemented with 0.5% sucrose. Roots from ten day-5	

old seedlings were excised, placed with water under a coverslip and examined with a ZEISS 6	

LSM 780 confocal microscope.  7	

 8	

small RNA libraries and analysis 9	

RNA was prepared as described above from flower buds of 6 week-old plants. For each 10	

genotype, three biological replicates of Col-0 (wild type), cer7-3, rst1-2, rst1-3, ripr(insT), 11	

ripr(insC) and two of cer7-4 were grown at different dates in different growth chambers. 12	

Libraries were prepared from 1 µg of total RNA using the NEB Next Multiplex Small RNA 13	

Library Prep Set for Illumina (NEB #E7300S and #E7580S) following the manufacturer’s 14	

instructions. After ligation of primers, cDNA synthesis and PCR amplification, pooled 15	

libraries were loaded on a NOVEX 6% polyacrylamide gel with 100 mM Tris, 100 mM 16	

Borate, 2 mM EDTA. Five fractions corresponding to 130-180 bp products were excised and 17	

eluted overnight in water. After EtOH precipitation, size and concentration of the fractions 18	

were checked with an Agilent 2100 Bioanalyzer (Agilent Technologies). The fraction of 140-19	

150 bp containing the 21-22 nt small RNAs of interest was sequenced on a HiSeq 4000 20	

sequencer (single-end mode 1x50bp). 21	

 Sequence reads were trimmed from 3’-adapters and low quality bases (q < 30) using 22	

cutadapt v1.1876. Reads were aligned without mismatches to the Arabidopsis TAIR10 genome 23	

using ShortStack v3.8.577 in unique mode (-u). Counts of 21 nt and 22 nt reads were extracted 24	

and annotated against TAIR10. Differential expression analysis was performed with 25	

DEseq278. The data obtained from the two alleles of cer7, rst1 and ripr were analysed 26	

together. Downstream analysis and data visualization were done with R. Only loci with 27	

log2FC > 1 and an adjusted p-value of < 0.01 were considered. PhasiRNA were identified 28	

with the help of ShortStack’s phasing score (score >= 5). Potential miRNA target mRNAs 29	

were predicted using the psRNATarget webservice at 30	

(http://plantgrn.noble.org/psRNATarget)79.  31	

 32	

Statistical analysis 33	
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For the statistical analysis of proteomic and sequencing data, we used negative-binomial 1	

models based on the edgeR and DEseq2 packages, respectively, which calculate the fold 2	

change and adjusted p-values with a two-sided Wald test.  3	

 4	

Gel and blot images 5	

Uncropped blots and stem images are provided in Supplementary Figure S4.  6	

 7	

Data availability. 8	

The small RNAseq and mass spectrometry proteomics raw data that support the findings of 9	

this study have been deposited to the NCBI Gene Expression Omnibus (GEO) database, 10	

accession code GSE129736, and to the ProteomeXchange Consortium via the PRIDE75 11	

partner repository with the dataset identifier PXD013435, respectively.  12	

Full resolution versions of all images, processed small RNA-seq data and interactive volcano 13	

blots are available at figshare (https://doi.org/10.6084/m9.figshare.c.4483406). 14	
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Fig. 1 The wax-deficient phenotype of rst1 mutants is caused by silencing of the CER3 gene. A. Inflorescence stems 
of Arabidopsis plants of the indicated genotypes. GFP-RST1 and RST1-GFP are rst1-3 plants ectopically expressing 
RST1 fused to GFP. The whitish appearance of wild type stems is due to a layer of epicuticular wax deposited on the stem 
surface, while wax-deficient stems appear green and glossy. To better visualize the difference between normal and glossy 
stems, the white balance of the photograph was set to cold light (3800K), which accounts for the bluish appearance of the 
picture. B. Relative amounts of major stem wax compounds extracted from Arabidopsis stem sections. The barplot shows 
the mean of three replicates, error bars show the SD. C. Levels of CER3 mRNA and CER3-derived siRNA in WT, cer7 and 
rst1 mutants. Total RNA extracted from stem samples of the indicated genotypes was separated by denaturing agarose 
(left) or polyacrylamide (right) electrophoresis, transferred to membranes and hybridised with a probe specific to CER3. 
The methylene blue (MB) stained membrane and hybridisation with a probe specific to U6 snRNA are shown as loading 
controls, respectively. D. Mutating SGS3 restores the wax phenotype of rst1 mutants. Stem sections from rst1-2 and rst1-2 
sgs3-13 plants are shown on the left. RNA blots show full-length CER3 mRNA (mid) and CER3-derived siRNAs (right) in 
RNA samples extracted from stems of the indicated genotypes. 
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Fig. 2 RST1 suppresses silencing of transgenes. A. The rst1-4 mutation suppresses the developmental phenotype induced by a MIM156 
transgene. B. Diagram of the AT3G27670 gene encoding the RST1 protein. Boxes represent exons, lines represent introns. Triangles indicate 
the position of the T-DNA insertions in rst1-2 and rst1-3 lines. Vertical lines indicate the point mutations in rst1-4 and rst1-5. C. rst1-4 is a weak 
allele. Accumulation of CER3-derived siRNAs in wild type (WT), cer7-3 and the four rst1 alleles used in this study shown by a small RNA blot 
hybridised with a probe specific to CER3. D. RNA blots showing the accumulation of the full-length MIM156 ncRNA and MIM156-derived 
siRNAs visualized by hybridisation with a probe specific to the IPS1 backbone of the MIM156 transgene. 7SL RNA and U6 snRNA are shown 
as loading controls. E. RNA blots showing that the rst1-5 mutation results in reduced levels of the GUS mRNA and increased levels of GUS-deri-
ved siRNAs in the L1 jmj14-4 background. 25S rRNA and U6 snRNA are shown as loading controls F. The rst1-5 mutation increases S-PTGS 
frequency in both 6b4 and Hc1 reporter lines. The barplot shows the proportion of plants with silenced GUS expression in the indicated genoty-
pes.
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RST1-GFP PAB2-RFPRST1-GFPGFP-RST1

Fig. 3 RST1 is a cytosolic protein. Confocal microscopy of root tips from Arabidopsis 
rst1-3 plants ectopically expressing GFP-RST1 and RST1-GFP fusion proteins. 
Poly(A) binding protein 2 (PAB2) fused to RFP is shown as cytosolic marker. Scale 
bars are 10 µm.
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Fig. 4 RST1 co-purifies with the exosome, SKI7 and RIPR. Volcano plots show the 
enrichment of proteins co-purified with GFP-tagged RST1 (A) or RRP41 (B) as compared 
to control IPs. Y- and X-axis display adjusted p-values and fold changes, respectively. 
Note that nuclear exosome cofactors such as HEN2 and MTR4 are co-purified with 
RRP41 but not with RST1 as bait. 
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Fig. 5 RST1 and RIPR are bound to CER7-containing exosomes. Volcano plots 
show the enrichment of proteins co-purified with GFP-tagged RRP45B/CER7 (A) or 
RRP45A (B) as compared to control IPs. Y- and X-axis display adjusted p-value and 
fold change, respectively.
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Fig. 6 RIPR co-immunoprecipitates RST1, SKI7 and the Ski complex. The Volcano plot 
shows the enrichment of proteins co-purified with GFP-tagged RIPR as compared to control 
IPs. Y- and X-axis display adjusted p-value and fold change, respectively. 
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Fig. 7 Loss of RIPR function phenocopies rst1 mutants. A. Confocal microscopy of plants 
expressing RIPR-GFP, the cytosolic marker PAB2-RFP and a GFP-tagged version of the exoso-
me subunit RRP4. Scale bars are 20 µm. B. Scheme of the AT5G44150 gene encoding the RIPR 
protein. Small and large boxes represent exons in the UTRs and CDS, respectively, lines repre-
sent introns. The single insertion of a T or C nucleotide at position 179 (from the ATG) results in 
a frameshift and creates a premature stop codon. C. Electrospherograms of the genomic DNA 
sequence surrounding the relevant position of the AT5G44150 locus in wild type, ripr(insT) and 
ripr(insC) plants. D. Stem sections from wild type (WT), cer7, rst1 and ripr plants. E. cer7-3, rst1 
and ripr mutants produce similar proportions of non-viable seeds. Scale bar is 0.5 mm. F. 
Northern blots showing the downregulation of the CER3 mRNA (left) and the upregulation of 
CER3-derived siRNAs (right) in ripr mutants. Loading controls show the methylene blue stained 
membrane (MB, left) and the hybridisation with a probe specific to U6 snRNA (right). G. RIPR is 
a silencing suppressor. The barplot shows the percentage of plants that spontaneously trigger 
silencing of the Hc1 35S prom:GUS S-PTGS reporter.
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Fig. 8 Loss of RST1 or RIPR results in the accumulation of small RNAs that are also pro-
duced in cer7 mutants A. Multidimensional scaling plot illustrating global variance and similari-
ties between the 21/22 nt small RNA populations detected in the replicates of WT, cer7, rst1 and 
ripr. B. Venn diagram showing that rst1 and ripr mutants accumulate quasi identical populations 
of small RNAs almost all of which are also detected in cer7 mutants.
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Supplementary Fig. 1 SKI7-specific peptides detected in RST1 and RIPR IPs. The top 
panel illustrates the mapping coverage (RNA seq data from light grown seedlings, source 
Araport11) of the AT5G10630 locus and two (of five) gene models AT5G10630.1 and 
AT5G10630.4 encoding HBS1 and SKI7 proteins, respectively. Lines represent introns, 
small boxes represent 3' and 5' UTRs, large boxes represent exons. The exon specific to 
the SKI7- encoding mRNA is shown in orange. The lower panel illustrates the Arabidopsis 
SKI7 protein composed of an N-terminal and a Zn-finger domain thought to mediate the 
interaction with the SKI complex, the SKI7-specific domain encoded by the SKI7-specific 
exon and thought to be involved in recruitment of the exosome (in orange), and the large 
GTPase domain. The boxes below the diagram indicate unique peptides identified in the 
RST1 co-immunoprecipitation experiments with the SKI7-specific peptides again highligh-
ted in orange.
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RRP45B/CER7

RRP45A

GFP DIC

Supplementary Fig. 2 RRP45A and RRP45B/CER7 exosome subunits show 
similar intracellular distributions. Confocal microscopy images of Arabidopsis 
roots expression RRP45A (top) or RRP45B/CER7 (bottom) GFP fusion proteins. 
DIC, differential interference contrast. Scalebars are 10µm.
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RIPR WT 
ripr(insT)
ripr(insC)

41 80
41 60
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Q G N Q T K S P V Q S R R V S A L P S NWD R Y D D E L D A A E D S S I S L H S
Q G N Q T K S P V Q S R R V S A L P S * - - - - - - - - - - - - - - - - - - - -
Q G N Q T K S P V Q S R R V S A L P S Q L G S V * - - - - - - - - - - - - - - -

RIPR WT 81 120D V I V P K S K G A D Y L H L I S E A Q A E S N S K I E N N L D C L S S L D D L

RIPR WT 121 160L H D E F S R V V G S M I S A R G E G I L S WM E D D N F V V E E D G S G S Y Q

RIPR WT 161 200E P G F L S L N L N V L A K T L E N V D L H E R L Y I D P D L L P L P E L N T S

RIPR WT 201 240Q T K V S R N E E P S H S H I A Q N D P I V V P G E S S V R E A E S L D Q V K D

RIPR WT 241 280I L I L T D E S E K S S A I E A D L D L L L N S F S E A H T Q P N P VA S A S G

RIPR WT 281 320K S S A F E T E L D S L L K S H S S T E Q F N K P G N P S D Q K I HM T G F N D

RIPR WT 321 356V L D D L L E S T P V S I I P Q S N Q T S S K V L D D F D S WL D T I *

Supplementary Fig. 3  Frameshift mutations in ripr(insT) and ripr(insC) prevent the 
synthesis of full-length RIPR proteins. 
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Supplementary Table 6: Primers used in this study 
 
Genotyping primers 
cer7-2 fw  ATATTTGAGTGGTGCTGCTGG 
cer7-2 rev  AAACTCGACAAAGAGGGAAGC 
cer7-3 fw  AAAGCTTCCCTCTTTGTCGAG  
cer7-3 rev  GCCATTGGCATTAACTGTCAC 
rrp45a fw  GTTGTTGGTTGCAGAGAAAGC 
rrp45a rev  TGCGAGAAGTCTCAACATGTC  
rst1-2 fw  GCGTGTTCTAAGCCATCTTTG  
rst1-2 rev  GCAAGGAAATAAGAGCAAGGG 
rst1-3 fw  TTGATTTCATCAATGGCTTCC   
rst1-3 rev  CTGACAAGGGACGTTAGTTCG 
rst1-4 fw  TGAGGTGTCTGAAGTGGTGCA 
rst1-4 rev  CAAAGATGGCTTAGAACACGC, cleave product with Ban1 
riprT/C fw  CGATGGACTCAAAATCTCTAGCTAAATCGAAGA  
ripT/C rev  ACCTTGCCCGAACAACAAGA  
sgs3-13 fw  AAGGCCATGCTTGTACATGAG 
sgs3-13 rev TATGAGGCTCTTAGAGCACGC 
MIM156 fw  AAGAAAAATGGCCATCCCCTAGC 
MIM156 rev  TGACAGAAGATAGAAGTGAGCAT 
gRST1 fw   GACGTGTTGATTGAGATAGT  
gRST1 rev  AACAGCTATGACCAT (M13 rev present in T-DNA) 
 
probes 
CER3 fw   ACAGGTAATCTCAACTCCGAGG 
CER3 rev  TGGAACACCAGCTACGACAC 
IPS1 (MIM) fw  AAGAAAAATGGCCATCCCCTAGC 
IPS1 (MIM) rev  TAGAGGGAGATAAACAAAACTCGCAGT 
U6   GCTAATCTTCTCTGTATCGTTCCA 
7SL   ATATGAAGATCGGACCAGCAGGC 
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