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Bacterial adaptation to growth with toxic halogenated chemicals was explored

in the context of methylotrophic metabolism of Methylobacterium extorquens, by

comparing strains CM4 and DM4, which show robust growth with chloromethane

and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates

growth-supporting degradation, with intracellular release of protons and chloride ions

in both cases. The core, variable and strain-specific genomes of strains CM4 and

DM4 were defined by comparison with genomes of non-dechlorinating strains. In

terms of gene content, adaptation toward dehalogenation appears limited, strains

CM4 and DM4 sharing between 75 and 85% of their genome with other strains

of M. extorquens. Transcript abundance in cultures of strain CM4 grown with

chloromethane and of strain DM4 grown with dichloromethane was compared to growth

with methanol as a reference C1 growth substrate. Previously identified strain-specific

dehalogenase-encoding genes were the most transcribed with chlorinated methanes,

alongside other genes encoded by genomic islands (GEIs) and plasmids involved in

growth with chlorinated compounds as carbon and energy source. None of the 163

genes shared by strains CM4 and DM4 but not by other strains of M. extorquens

showed higher transcript abundance in cells grown with chlorinated methanes. Among

the several thousand genes of the M. extorquens core genome, 12 genes were only

differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known

function were detected, for the membrane-bound proton translocating pyrophosphatase

HppA and the housekeeping molecular chaperone protein DegP. This indicates that the

adaptive response common to chloromethane and dichloromethane is limited at the

transcriptional level, and involves aspects of the general stress response as well as of

a dehalogenation-specific response to intracellular hydrochloric acid production. Core

genes only differentially abundant in either strain CM4 or strain DM4 total 13 and 58
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CDS, respectively. Taken together, the obtained results suggest different transcriptional

responses of chloromethane- and dichloromethane-degrading M. extorquens strains

to dehalogenative metabolism, and substrate- and pathway-specific modes of growth

optimization with chlorinated methanes.

Keywords: dehalogenation, chloromethane, dichloromethane, GEI, genomic island, genome adaptation,

methylotrophy

INTRODUCTION

Chlorinated one-carbon compounds chloromethane (CM,
CH3Cl) and dichloromethane (DCM, CH2Cl2) are toxic
chemicals that occur in both pristine and polluted environments.
CM is the most abundant halogenated trace gas in the
atmosphere, where it contributes to ozone destruction
(Carpenter et al., 2014). It is mainly produced by vegetation
(Derendorp et al., 2012; Hardacre and Heal, 2013; Rhew et al.,
2014; Bringel and Couée, 2015). DCM is one of the most
commonly manufactured chlorinated chemicals. It is used for
its solvent properties, and is a frequently found contaminant
at polluted sites. Some methylotrophic microorganisms are
able to utilize chlorinated methanes (such as CM and DCM) as
their sole carbon and energy source for growth (Muller et al.,
2011a; Nadalig et al., 2014). Bacterial CM and DCM utilization
starts with dehalogenation, causing diverse physiological stresses
such as production of intracellular HCl, which lowers pH and
increases ionic strength, and formation of DNA adducts (Kayser
and Vuilleumier, 2001; Torgonskaya et al., 2011; Michener
et al., 2014b, 2016). The mechanisms allowing methylotrophic
bacteria to cope with dehalogenation-induced stress are still
poorly understood, despite potential use of such bacteria for
bioremediation.

The aerobic alphaproteobacterium Methylobacterium
extorquens is the most extensively studied methylotroph. It
is found in a wide variety of habitats, including plants, soil,
wastewater, and clouds (Amato et al., 2007; Kolb, 2009; Bringel
and Couée, 2015). The well-studied M. extorquens strains CM4
and DM4, whose genomes have been sequenced (Vuilleumier
et al., 2009; Marx et al., 2012), utilize the chlorinated compounds
CM and DCM, respectively, as their sole source of carbon and
energy. Degradation pathways for CM and DCM have been
characterized in these strains, and are also found in many other
species (Muller et al., 2011a; Nadalig et al., 2014). The ability to
grow on chlorinatedmethanes has been demonstrated by genetic,
biochemical and recent experimental evolution studies to require
the expression of essential dehalogenation-associated genes that
differ for CM and DCM. To our knowledge no strains able to
metabolize both CM and DCM has been isolated so far. Genes
cmuA and cmuB are essential for CM dehalogenation by the
cmu (CM-utilization) pathway (Vannelli et al., 1999). The two-
domain methyltransferase/corrinoid-binding CmuA protein
catalyzes methyl transfer from CM to a cobalt-corrin cofactor
(Studer et al., 2001), and the methylcobalamin:tetrahydrofolate

Abbreviations: CM, chloromethane; DCM, dichloromethane; GEI, genomic
island; H4F, tetrahydrofolate.

methyltransferase CmuB transfers the resulting corrinoid-bound
methyl group to tetrahydrofolate (H4F) (Studer et al., 1999).
For each molecule of CM, one methyl-H4F and one HCl are
produced. For DCM degradation, a glutathione-dependent
dehalogenase of the glutathione S-transferase family encoded by
dcmA converts DCM into formaldehyde and two molecules of
HCl (Vuilleumier and Leisinger, 1996; Kayser et al., 2002).

Although protons and chloride ions are produced in both
cases, the processing of carbon from chlorinated methanes for
production of biomass and energy proceeds differently in CM-
and DCM-utilizingM. extorquens strains (Michener et al., 2016).
Thus, toxic chlorinated methanes CM and DCM may generate
both similar and compound- and pathway-specific adaptive
responses. In this work, we analyzed these responses in terms
of global gene expression, by sequencing cDNA libraries of
M. extorquens strains grown either with CM or with DCM.

MATERIALS AND METHODS

Bacterial Cultivation and RNA Purification
Strains CM4 and DM4 were grown aerobically in 1.2L
Erlenmeyer flasks closed with gas-tight screw caps with
Mininert R© valves (Supelco) in Methylobacterium mineral
medium (M3) (modified as described in Roselli et al., 2013), with
shaking (120 rpm) at 30◦C. For 220-mL cultures, one-carbon
growth substrates were supplied at 10 mM final concentration,
by adding either aqueous solutions of 2.75 mL of filter-sterilized
aqueous stock solution of methanol (800 mM), 141 µL of neat
dichloromethane, or 40 mL of gaseous chloromethane (assuming
a Henry constant of 0.0106 m3.atm.mol−1 at 30◦C) (Chen et al.,
2012). Upon reaching mid-exponential phase (OD600 ∼0.15),
growth was stopped by addition of 27.5 mL stabilization buffer.
This buffer was prepared by mixing 5 mL of phenol and 5
mL of 1 M sodium acetate pH 5.5, then after centrifugation
at 1,800 g for 3 min, 5 mL of the lower phase was mixed
with 95 mL of absolute ethanol. Resulting cell suspensions were
centrifuged at 5,000 rpm for 5 min at 4◦C, and suspended
in 10 mL TE containing 2 mg.mL−1 lysozyme (Euromedex).
After 15 min incubation at 37◦C, each cell suspension was
centrifuged 10 min at 4◦C, the obtained pellet resuspended in
10 mL of Trizol (Invitrogen), and 2.5 mL of chloroform was
added. RNA was precipitated with isopropanol and washed with
ethanol (70%), then resuspended in DEPC-water and treated
with DNAse (Turbo DNAse, Invitrogen). DNA depletion was
checked by PCR (see Table S1 for primers). RNA quality was
checked with the RNA 6000 Nano kit on a Bioanalyzer 2100
(Agilent Technologies), and quantified with the Qubit RNA kit
(Invitrogen). Depletion of rRNA was obtained by treating 5 µg
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of total RNA with the Gram-negative RiboZero Magnetic kit
(Tebu-Bio) according to the manufacturer’s protocol.

cDNA Library Preparation, Sequencing and
Data Normalization
rRNA-depleted RNA (50–60 ng in 5 µL) were fragmented by
adding 13 µL of the “Fragment, prime, finish mix” of the “Purify
and fragment mRNA” kit (Illumina). Then, cDNA libraries were
constructed with the TruSeq stranded mRNA LT kit (Illumina)
following the manufacturer’s protocol. Obtained cDNA libraries
were quality checked (Bioanalyzer, DNA 1000 kit, Agilent
Technologies) prior to HiSeq2000 sequencing. Paired-end
sequence mapping was used to limit mapping artifacts and
remove mapping ambiguities between gene paralogs. Factor size
normalization of the raw counts was performed using a set of 55
reference “housekeeping” genes instead of the standard method
using the complete set of CDS (Anders et al., 2013), as a few
genes had very high read numbers in growth with chlorinated
methanes only. The 55 reference genes cover a wide range of
expression levels but had unchanged transcript abundance in the
tested biological replicates (log2fc value between −0.9 and 1.2)
(Table S2). Normalization was validated by comparison with the
complete set of CDS for the methanol dataset (Figure S1). Gene
transcripts were defined as differentially abundant when the
log2 of fold-change values (log2fc) between cultures grown with
chlorinated methanes and methanol were ≥2.0 or ≤ −2 (Yang
et al., 2015). Each condition was analyzed in duplicate, with the
average of read sense and antisense for each condition. Data were
considered significant when False Discovery Rate (i.e., FDR)
was ≤0.1 as previously described (Benjamini and Hochberg,
1995). The complete RNA-Seq dataset is accessible online
(https://www.genoscope.cns.fr/agc/microscope/transcriptomic/
NGSProjectRNAseq.php?projType$=$RNAseq).

RT-qPCR
Retrotranscription was performed from 2.0 µg of DNA-depleted
RNA extracted using the Nucleospin RNA plus kit (Macherey
Nagel) combined with Turbo DNase and Turbo DNA free
kit (Invitrogen) using Superscript III (Invitrogen) and random
hexanucleotide primers (Invitrogen) following manufacturers’
protocols, except that RNaseOUTTM was replaced by RNasinTM

(40 U.µL−1; Invitrogen), with inclusion of appropriate controls
(reactions without RNA template or Superscript III enzyme).
Amplification was performed in qPCR 96 wells plates (Agilent
Technologies) covered with Microseal B adhesive seals (Bio-Rad)
using the Thermocycler Stratagene Mx3005P (MxPro software
v4.10; Agilent Technologies). Master mix containing 7.5 µL
Brilliant III SYBRTM Green low ROX qPCR master mix (Agilent
Technologies), 0.225 µL of each primer (Eurofins) at 20 µM and
3.3 µL molecular biology grade water was mixed with 3.75 µL
template cDNA. After 3 min pre-denaturation at 95◦C, 40 cycles
of 20 s at 95◦C and 20 s at 60◦C, a final one-cycle step of 1 min
at 95◦C with ramping from 60 to 95◦C was applied to obtain
dissociation curves for quality control of PCR products. For
each biological triplicate, technical duplicates were analyzed and
compared to standard curves with gDNA (0.1–1.10−5 ng.µL−1)

and a no template control. SYBR
TM

green fluorescence data

normalized with Rox fluorescence were analyzed using the
package qpcR (v1.40) within R for Ct determination (Ritz and
Spiess, 2008). Fold change values were calculated by the 2−11Ct

method (Schmittgen and Livak, 2008), with rrsA as internal
control and dcmA in DM4 cultures grown with methanol as the
reference condition.

Comparative Genomics Analysis
Comparative analysis of M. extorquens genomes was done
in MaGe on the Genoscope MicroScope online platform
(Vallenet et al., 2017), with the sequenced genomes of 5
strains of M. extorquens, i.e., the 2 dehalogenating strains
CM4 (Genbank accession numbers CP001298, CP001299,
CP001300) and DM4 (FP103042, FP103043, and FP103044),
and 3 other strains AM1 (CP001511, CP001512, CP001513,
and CP001514), PA1 (CP000908), and BJ001 (CP001029,
CP001030, and CP001031) (Vuilleumier et al., 2009; Marx
et al., 2012). All studied strains contain at least one plasmid,
except for PA1. Proteins responsible for dehalogenation of
CM or DCM are exclusively encoded by M. extorquens
CM4 and DM4 genomes, respectively. The common genome
called hereafter “core” was operationally identified using the
MaGe Pan/Core-genome tool (https://www.genoscope.cns.fr/
agc/microscope/compgenomics/pancoreTool.php?), by defining
shared CDS as encoding proteins displaying at least 80% amino
acid identity over 80% of CDS length in all considered genomes.
Other genes were assigned either to the variable genome
when present in at least 2 genomes, to the dehalogenation-
associated genome when shared only by strains CM4 and
DM4, and to the strain-specific genome when found only
in one genome, respectively. Genomic islands of at least
5 kb were defined using the MaGe “Regions of Genomic
Plasticity” tool (https://www.genoscope.cns.fr/agc/microscope/
compgenomics/genomicIsland.php?) with the genomes of the
5 strains above, and applying a specificity score cutoff of 40 for
all compared genomes.

RESULTS

Acquisition of specific dehalogenase genes by M. extorquens
does not necessarily lead to growth with chlorinated methanes
(Kayser et al., 2002; Michener et al., 2014a,b, 2016). Adaptation
may require other specific genes associated with dehalogenative
pathways, as well as modulation of expression of common
“household” genes to optimize metabolic flux and responses
to dehalogenation-associated stresses. In this study, the relative
contribution of core, variable and strain-specific genomes in
M. extorquens strains growing with halogenated methanes was
investigated using a combination of comparative genomics and
transcriptomics.

The Potentially Dehalogenation-Associated
Genome of M. extorquens Is Limited
Beyond specific genes associated with dehalogenation [at least
6 genes of the cmu pathway for strain CM4 (Michener et al.,
2016), and 4 genes of the dcm islet for strain DM4 (Muller
et al., 2011a, respectively)], few strain-specific genes shared by
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CM- and DCM-dehalogenating strains were identified through
comparison with 3 other high quality assembled genomes from
M. extorquens (Figure 1A). The strains AM1, PA1, and BJ001
were experimentally checked for their inability to grow on
chloromethane or dichloromethane (data not shown). The gene
content in the 5 M. extorquens genomes totals 12,273 unique
CDS, representing 12.3 Mb. The core genome shared by all
5 M. extorquens genomes is extensive (3,489 CDS) ranging
from 55 to 68% (55% for CM4; 61% for DM4). M. extorquens
strains CM4 and DM4 share most of their genome content (75%,
4,424 CDS) and extensive gene synteny (Figure 1B). The specific
genome for strain CM4 comprises 1,512 CDS (24% of total), and
that of strain DM4 952 CDS (17%), respectively. In contrast, the
variable genome shared only by the 2 dehalogenating strains was
only 163 CDS, representing less than 3% of their total genome
size, and in the range of the shared variable genome for any pair
of the 5 strains considered (Figure 1A). A majority (97 CDS)
had no predicted function and 42 genes were found in synteny

on plasmids pCMU01 in CM4 and plasmid p1METDI in DM4
(Table S3).

Common Transcriptomic Response of
M. extorquens Strains to Chlorinated
Methanes as Growth Substrates
Methylobacterium extorquens strains CM4 and DM4 were grown
with CM and with DCM, respectively. Longer generation times
were observed for growth with CM and DCM compared to with
methanol, as observed previously (Muller et al., 2011b; Roselli
et al., 2013). Global profiles of gene expression were assessed by
RNA-Seq with sequencing coverage exceeding 600X (Table 1).
Only 29 CDS of strain CM4 and 36 CDS of strain DM4 showed
no reads. Obtained data were normalized (Table S1; Figure S1)
and verified by qPCR for a set of 16 genes spanning 2 orders of
magnitude of gene expression (Table S2; Figure S2). Only genes
with satisfactory false discovery rates (p-value< 0.1) were further

FIGURE 1 | Gene content and synteny in genomes of M. extorquens CM4 and DM4. Comparative genome analyses were performed on the sequenced and

assembled genomes of M. extorquens dehalogenating strains CM4 and DM4, as well as strains AM1, PA1, and BJ001 (Vuilleumier et al., 2009; Marx et al., 2012),

using MaGe (Vallenet et al., 2017) on the MicroScope online platform (see Materials and Methods). (A) Common homologous genes were defined and assigned to

either core (found in all 5 strains), variable (found in 2–4 strains), shared (found only in CM4 and DM4) or specific (found in one strain only) genomes. (B) Synteny of

CM4 and DM4 genomes indicating genomic islands (GEI) relevant to C1 metabolism, i.e., dcm for dichloromethane utilization and mau for methylamine utilization

(Vuilleumier et al., 2009), and cmu for CM utilization (380 kb plasmid pCMU01, Marx et al., 2012) (see Table 3 for GEI details). Synteny involved groups of at least 6

homologous genes (purple lines, strand conservation; blue lines, strand inversion).
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TABLE 1 | Overview of genomic properties of M. extorquens CM4 and DM4 and obtained RNA-Seq data.

Strain Genomea Growth condition

generation time (h)b
Total readsc Mapped reads (%) rRNA (%)d

CM4 chromosome 5.8 Mb GC% = 68.2

pCMU01 380.2 kb GC% = 66.3

p2MCHL 22.6 kb GC% = 63.9

Methanol

(3.0 ± 0.2)

30,337,270

37,414,003

98.6

98.2

18.3

14.3

Chloromethane

(5.4 ± 0.4)

53,790,411

36,665,352

96.3

97.5

18.6

25.4

DM4 chromosome 5.9 Mb GC% = 68.1

p1METDI 141.5 kb GC% = 65.3

p2METDI 38.6 kb GC% = 63.7

Methanol

(3.4 ± 0.4)

48,154,448

38,757,418

99.1

97.9

12.3

23.0

Dichloromethane

(9.0 ± 0.7)

43,101,981

32,066,920

95.0

95.0

34.7

20.0

a In strain CM4, the CM utilization pathway is encoded by cmu genes located on plasmid pCMU01 (Roselli et al., 2013). In strain DM4, dcm genes involved in DCM utilization are located

on 5.5 kb dcm islet (Muller et al., 2011b) within a 126 kb genomic island on the chromosome (Vuilleumier et al., 2009).
bAerobic growth in M3 medium with 10mM one-carbon substrate provided as sole source of carbon and energy.
c Illumina HiSeq2000.
dPercentage of total reads.

analyzed and included 1,245 and 301 genes for the genomes of
strain CM4 and strain DM4, respectively.

Transcript abundance of strains grown with chlorinated
methanes CM or DCM and with methanol, the reference
methylotrophic growth substrate for M. extorquens, were then
compared. A total number of 150 genes for CM4 and 190
genes for DM4 were detected as differentially abundant genes
(Table 2). Overall gene expression of common genes during
growth with methanol was similar in strains CM4 and DM4,
as expected (Figure S1). More pronounced differences were
observed between patterns of gene expression for common
genes of M. extorquens strains CM4 and DM4 grown with
CM or with DCM (Table S4), with only few genes showing
the same trend with CM and DCM relative to methanol
(Figure 2). Strikingly, essentially all 163 CDS only shared by
the 2 dehalogenating strains and not found in any of the 3
other non-dehalogenating M. extorquens strains (Figure 1A)
lacked differential expression between chlorinated methanes and
methanol (with the exception of METDI4814, less abundant
with DCM) (Table S3; Figure S3B). Among those, 42 genes
were plasmid-borne and co-localized on the largest plasmids in
both strains (Table S3), with some displaying high transcript
abundance (Figure S3).

Of the 12 common genes encoded by the core genome more
highly expressed during growth with either CM and DCM
than with methanol (Table S4; Figure 2), only 2, degP and
hppA, have predicted functions. Gene degP encodes a putative
periplasmic serine protease whose Escherichia coli homolog
HtrA (39% amino acid identity) is a central housekeeping
molecular chaperone protein controlling the production of
functional, properly folded outer-membrane proteins (Ge et al.,
2014). In Carboxydothermus hydrogenoformans, the membrane-
bound proton translocating pyrophosphatase HppA (48% amino
acid identity to M. extorquens homologs) uses energy from
pyrophosphate hydrolysis to build up a proton motive force by
proton extrusion (Belogurov and Lahti, 2002). In Rhodospirullum
rubrum, the closely homologousHppA (72% amino acid identity)
is involved in stress bioenergetics and in particular salt stress
(Lopez-Marques et al., 2004).

TABLE 2 | Differential expression of core, variable, shared and strain-specific CDS

during growth with chlorinated methanes.

Strain Genomea CDS

number

Differential transcript abundance

with chlorinated methanes

Ratio (%) Higherb Lowerb

CM-degrading

M. extorquens

CM4

Core 3,489 1.6 45 11

Variable 1,098 1.8 19 1

Shared only

with DM4

163 0 0 0

Specific to

CM4

1,512 4.9 73 1

DCM-

degrading

M. extorquens

DM4

Core 3,489 1.8 31 32

Variable 1,097 5.9 28 46

Shared only

with CM4

163 0 0 0

Specific to

DM4

952 5.6 10 43

aCommon, variable, shared only by dehalogenating strains CM4 and DM4, and strain-

specific genomes, as defined in Material and Methods.
bNumber of CDS with higher (log2 fc > 2) or lower (log2 fc < −2) transcript abundance in

cultures grown with chlorinated methanes compared to with methanol.

The number of genes of the core genome with significantly
lower expression on chlorinated methanes is also low (9 genes,
Figure 2). These may rather be methanol-induced rather than
genes repressed by chlorinated methanes, since 7 of these genes
belong to predicted operons associated with the alternative
alcohol dehydrogenase ExaF to the paradigmatic methanol
dehydrogenase encoded by mxa genes (Good et al., 2016;
Table S4).

The 10 most highly transcribed genes during growth with
chlorinated methanes in strains CM4 and DM4 (Figure 3)
included 3 common to both strains, albeit with values of log2fc
<2 compared to growth with methanol. Of the other 7 genes
highly transcribed on chlorinated methanes, only strain-specific
genes directly associated with dehalogenation (5 for strain CM4,
2 for strain DM4), and not common genes, showed log2fc values
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FIGURE 2 | Carbon source-dependent transcript abundance of common core genes in M. extorquens CM4 and DM4. Different categories were defined on the basis

of the log2 fold-change (log2fc) values of RNA-Seq reads for M. extorquens CM4 grown with CM (green circle) and for M. extorquens DM4 grown with DCM (purple

circle) versus methanol (blue cercle). Complete gene names, log2fc values for each category are detailed in Table S4.

FIGURE 3 | Genes with highest transcript abundance in cultures grown with chlorinated methanes compared to with methanol. Black rectangles indicate values of

log2fc (values higher than 2.0 or lower than −2.0 mean normalized reads more abundant in cultures grown with chlorinated methanes or with methanol, respectively).

Gray rectangles represent normalized read numbers divided by gene length in kb. RNA-Seq data from cultures of (A) M. extorquens CM4, (B) M. extorquens DM4.

>2. Transcription responses for growth with CM and DCMwere
analyzed in more detail.

The Chloromethane Transcriptome of
Strain CM4
Under the conditions tested, a total of 137 genes (2% of the
CM4 transcriptome) had higher transcript abundance with CM
than with methanol. Only 43 of these belong to the core
genome defined here for M. extorquens (log2fc ≥ 2; Table S5;

Figure 4A). Among these, 11 core genes only differentially
expressed in strain CM4 had not previously been associated
with M. extorquens growth with CM. They include the pnt
gene cluster encoding a NADH/NADPH transhydrogenase with
cross-membrane proton translocation activity (Chou et al., 2015);
two consecutive paralogs of pqqA, a precursor of the redox
active dehydrogenase cofactor PQQ (Ochsner et al., 2015); ykuD,
encoding a transpeptidase of a large enzyme family associated
with cell wall biology (Bielnicki et al., 2005); ada encoding
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FIGURE 4 | Involvement of plasmid pCMU01 in the chloromethane transcriptome. (A) Expressed percentage of total genes per log2fc range. Genes encoded by

plasmid pCMU01 (in green) and by the M. extorquens CM4 chromosome (in black) were grouped according to their log2fc values. Chromosome and plasmid

pCMU01 encode 6,262 and 361 genes, and the total percentage of expressed genes is 1.4 and 17.5%, respectively. (B) Differential expression of pCMU01- and

chromosome-encoded paralogs.

a bifunctional transcriptional activator which acts in response
to alkylation damage (51% amino acid identity with the well-
characterized E. coli homolog) (McCarthy and Lindahl, 1985);
ibpA encoding a small heat shock protein (sHSP) with 57% amino
acid identity to E. coli IbpA, which protects enzymes against
oxidative stress (Kitagawa et al., 2002).

The major contribution in the CM transcriptome involves
strain-specific genes either directly or indirectly associated with
dehalogenation (Figure 5). First, 40 genes known from previous
work to be associated with cmu gene clusters in CM-degrading
strains, and found on the pCMU01 plasmid in strain CM4,
showed highest relative expression (log2fc values 7.7–10) during
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FIGURE 5 | Overview comparison of the chloromethane and dichloromethane transcriptomes. Differentially abundant genes with predicted function are clustered in

different functional categories (see Tables S6, S7). The fractions of genes of the core and variable genomes are indicated in plain and dotted rectangles, respectively.

Transcript with higher abundance in chloromethane, dichloromethane or methanol are in green, purple or blue, respectively.

growth with CM (Table S5; also see Figure 4A). Most of these
genes are involved in metabolism and transport of the corrinoid
and H4F cofactors essential for CM dehalogenation by the cmu
pathway (Studer et al., 2001) (Table S5; Figure 4B). A gene
cluster specifically shared between sequenced genomes of CM
degrading isolates [acxABC, Roselli et al., 2013 >81% amino acid
identity with the characterized aerobic bacterium Xanthobacter
autotrophicus acetone carboxylase components (Sluis et al.,
2002)] was also more expressed in cells grown with CM (see
Figure S3A for log2fc values and expression level) although
its functional connection with the cmu pathway remains to
be characterized. Second, half of the plasmid pCMU01-borne
genes more highly expressed on CM had homologous copies
located on the chromosome (31 genes out of 62 plasmid-borne
genes with higher transcript abundance; Table S5; Figure 3B).
All the corresponding chromosomal paralogs were, in contrast,
not differentially expressed. Again, a majority of plasmid-borne
homologs were associated with the essential corrinoid and
tetrahydrofolate cofactors of CM dehalogenation by the cmu
pathway (Figure 3B). Similarly, the pCMU01 plasmid homolog
of the clc H+/Cl− antiporter gene was more highly expressed on
CM (log2fc value of 5.5), unlike its chromosomal homolog (68%
identity at the protein level; Figure S3A). Taken together, this
argues strongly for a key role of plasmid pCMU01-borne genes
in adaptation to growth with CM in strain CM4.

The Dichloromethane Transcriptome of
Strain DM4
Under the conditions tested, only 3% of the DM4 transcriptome
was altered in growth with DCM relative to methanol.

Among these, 69 genes (1% of the transcriptome) showed
higher transcript abundance in cultures grown with DCM
(Table 2). These included the 4 genes of the dcm islet,
i.e., dcmA coding for the DCM dehalogenase essential for
growth with DCM; dcmR involved in its own transcription
as well as that of dcmA (Leisinger et al., 1994; Kayser et al.,
2002); and dcmB and dcmC genes of unknown function
(Table S6). This is the first reported evidence for transcription
of dcmC and its modulation by DCM, and confirms previous
results for dcmB (Muller et al., 2011b). Transcripts of dcmA
and dcmB were among the most abundant with DCM
(Figure 3B).

The majority of genes showing differential abundance
with DCM only (33 genes) belong to the core genome of
M. extorquens, and significantly exceeds the number of
M. extorquens genes of the core genome also more highly
abundant during growth with CM (12 genes), or those
only more highly expressed during growth with CM but
not DCM (11 genes) (Figure 2). The specific functions of
most of these genes remain elusive, although an association
with redox status is suggested, with a putative glutathione
peroxidase (METDI0190) and 2 sets of genes associated
with uncharacterized molybdenum-dependent enzymes
(METDI2693, METDI0091- METDI0093) showing increased
transcript abundance (Table S6). Of those, the gene encoding the
glutathione peroxidase was highly expressed (Figure S3B).

The contribution of the 2 plasmids of DCM-degrading
strain DM4 (Table 1) in the DCM transcriptome is limited
(2 uncharacterized genes among 186 CDS were differentially
expressed). This suggests that unlike for the CM-degrading
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strain, DM4 plasmids do not play a role in adaptation to DCM
in strain DM4.

The set of genes from strain DM4 with higher expression on
methanol is also larger than that of strain CM4 (Figure 5). The
majority of these genes is found in gene clusters with redundant
gene content (Figure S4), and often associated with genomic
islands (GEIs) (Table 3, and see next subsection).

Expression of Genomic Island-Borne
Genes in Dehalogenating M. extorquens

Strains
As plasmids, GEIs are major agents of rapid genome
evolution and adaptation of catabolic pathways in bacteria,
and are often found integrated in the chromosome (van
der Meer and Sentchilo, 2003). The potential role of GEIs
in adaptation of M. extorquens to growth with chlorinated
methanes was investigated. Out of the 14 and 11 specific
GEIs detected in strains CM4 and DM4, respectively, only 3
GEIs contained genes with differential expression (Table 3).
Such genes only represented a minor part of GEIs, and their
roles beyond that of genes associated with dehalogenation
remain unknown. It is striking that no other genes of the
126 kb dcm GEI of strain DM4 were differentially transcribed
beyond those of the 5.5 kb dcm islet, unlike many genes
associated with cmu gene clusters on plasmid pCMU01
(Table 3).

DISCUSSION

Dehalogenation-Specific Gene
Complement
The number of strain-specific genes, as such potentially
associated with dehalogenative metabolism, was relatively
small (Figure 1A) and genes with an annotation suggestive
of a role in this context were not detected (Table S3).
Moreover, apart from dehalogenase genes, such genes were
not especially prone to differential expression with chlorinated
methanes (Tables S5, S6; Figures 3–5). Further, none of
the few genes shared only by CM- and DCM-degrading
strains among a small group of 5 M. extorquens strains
were differentially expressed during growth with chlorinated
methanes. Nevertheless looking for upregulated genes in
CM/DCM-grown cultures vs. methanol-grown cultures will not
detect constitutively expressed genes that support dehalogenation
growth, and other complementary approaches need to be
assessed (Ochsner et al., 2017). Among highly transcribed genes,
a few had predicted functions in plasmid transfer and replication
(genes icmL, repA, repB, traD; Figure S3). Thus, the part of the
transcriptional response common to both chlorinated methanes
was limited (Table S3). Adaptation to growth with chlorinated
methanes seems to be largely a function of fine-tuning gene
content/expression rather than large-scale changes as discussed
in the following.

TABLE 3 | GEIs containing genes with differential transcript abundance.

GEIa Length

(kb)

CDS (start-end) Structurea Number % CDS

of GEI

Genes and potential relevant

functions

CM or DCM Methanol

STRAIN DM4

dcm 126 METDI2550–METDI2682 (none) tRNA-int-mob-misc_RNA-SIGI-AH

(none)

4 0 3 DCM utilization (dcmRABC)

GEI160 160 METDI0225–METDI0426 (tRNA)-int-SIGI-AH (int) 1 35 18 Carbon metabolism (ackA-like,

adh-like, xfp, fabI, phbC); energy

(ATPase, cyt. c, cyt. c oxidase);

stress (clpB, DnaJ)

GEI197 197 METDI4320–METDI4570 (none) tRNA-int-mob-SIGI-AH (IS) 1 34 14 Carbon metabolism (ackA-like,

adh-like, xfp); energy (ATPase,

cyt. c, cyt. c oxidase); members

of ANAH-like superfamily

STRAIN CM4

GEI107 107 Mchl4758–Mchl4844 tRNA-int-SIGI-IVOM-Specific_Region 4 0 5 Putative porin; others without

predicted function

pCMU01b 194 Mchl5386–Mchl5736 Unknown 63 0 18 CM utilization (cmu); corrinoid

cofactor biosynthesis (cob, czc,

bluB2); H4F cofactor metabolism

(bluB2, folC2); carbon

assimilation (acx)

a Identified with “Regions of Genomic Plasticity” tool (MaGe plateform, Vallenet et al., 2017 using M. extorquens CM4, DM4, AM1, PA1, and BJ001 genomes). Int, integrase; mob,

mobility determinant; AH, region rich in genes detected by Alien Hunter based on variable-length k-mers bias (Vernikos and Parkhill, 2006); SIGI, region with biased codon usage (Waack

et al., 2006).
bPlasmid pCMU01 (380 kb, 350 predicted CDS) was only found so far in M. extorquens CM4 (Roselli et al., 2013), precluding analysis with the RGP tool except to remove extensive

regions of synteny with DM4 plasmid p1METDI (Mchl5546-Mchl5579, Mchl5591-Mchl5621 in plasmid pCMU01). Hence, the 239 CDS without hits to the other 4 M. extorquens

genomes were conservatively defined maximal GEI.
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Adaptive Stress Response
Indications for a transcriptional adaptive stress response to
the utilization of chlorinated methanes in M. extorquens
obtained here confirm previous suggestions frommutant growth
phenotypes in the case of DCM (Muller et al., 2011b) and
proteomic data in the case of CM (Roselli et al., 2013).
Whereas expression of several genes associated with the
general stress response was modulated (Tables S3, S5, S6;
Figure 5), genes potentially associated with dehalogenation-
specific stress were of particular interest. Since bacteria that
grow with chlorinated methanes have to cope with production
of intracellular hydrochloric acid production, one key question
to address was which of intracellular proton or chloride buildup
represents a larger stress forM. extorquens.

Intracellular generation of protons during growth with
chlorinated methanes is expected to be detrimental for growth
through intracellular acidification and also through dissipation of
the proton-motive force and associated ATP production. It thus
seems significant that the membrane-bound proton translocating
pyrophosphatase hppA was one of only 12 genes of the core
genome with higher expression on both chlorinated methanes.
HppA-driven proton extrusion and restoration of the proton-
motive force involves an additional energy expense through
pyrophosphatase hydrolysis (Belogurov and Lahti, 2002).

Similarly, the H+/Cl− antiporter ClcA involved in adaptation
to chloride stress affords chloride efflux at a cost for the proton-
motive force. The corresponding gene was expressed at high
constitutive levels in strain DM4 (Figure S3B), as shown recently
for DCM-degrading isolates including strain DM4 (Michener
et al., 2014b). In case of strain CM4, clcA displayed moderate
constitutive expression, but a pCMU01 plasmid-borne paralog
clcA2 (69% amino acid identity) was significantly more highly
expressed in cultures on CM (Table S5; Figure S3A). This suggests
that clcA-driven chloride extrusion is crucial for growth with
both chlorinated methanes, and may involve different paralogs
of this large gene family. Recent work showed that clcA, when
transcribed from its native promoter cloned from strain DM4,
confers higher fitness for growth with DCM but not with CM in
Methylobacterium strains not previously exposed to chlorinated
methanes (Michener et al., 2014a, 2016). It is noteworthy that
the uncharacterized RND efflux transporter CliABC previously
identified as chloride-induced in strain DM4 (Muller et al.,
2011b) was found here to be even more expressed than gene clcA
(Figure S3B). Taken together, the obtained data suggest that an
increase in intracellular chloride levels represents more of the
problem for growing strains of M. extorquens than intracellular
proton production.

Regulation under Dehalogenative
Methylotrophic Conditions
Strain-specific genes were among the most transcribed genes,
especially those within gene clusters involved in chlorinated
methane dehalogenation, i.e., dcmA and cmuAB genes
(Figure 3). Here, CM-dependent transcription involved much
larger changes in expression compared to DCM-dependent
transcription (log2fc of 10 vs. 4, respectively). This confirms
previous studies with RT-qPCR and transcriptional fusions of
the cmuA promoter (Farhan Ul Haque et al., 2013). Among

genes with increased expression levels with chlorinated methanes
identified in this work, a significant number are annotated as
putative regulatory genes (9 for CM and 6 for DCM respectively;
Tables S5, S6). The transcriptional regulator of dcmA has been
preliminarily characterized (La Roche and Leisinger, 1991;
Muller et al., 2011b). In contrast, the genetic determinants
involved in regulating the expression of the cmu pathway remain
to be identified (Roselli et al., 2013).

The contribution of genes less expressed during growth
with CM than with methanol was limited in the case of
the core genome (11 genes) and even more so for the
CM4 strain-specific genes (2 genes; Figure 5). This suggests
that gene downregulation mediated by CM in strain CM4 is
limited. On the other hand, a striking finding was that many
plasmid pCMU01-borne paralogs but not their chromosomal
homologs had higher transcript abundance in CM cultures
(Figure 4B). This suggests the existence of as yet uncharacterized
regulation mechanisms favoring expression of plasmid-encoded
over chromosomally encoded gene paralogs in response to
growth with CM.

Effects of Dehalogenation Metabolism on
Transcription of Methylotrophy Genes
High levels of transcripts of genes mxaFI for subunits of the
canonical methanol dehydrogenase (MDH) of M. extorquens
(Amaratunga et al., 1997) were observed in methanol cultures, as
expected, but also in cultures grown with chlorinated methanes
(Figure 3). Since dehalogenation of DCM leads to formaldehyde,
one explanation might be that transcription of methanol
dehydrogenase MxaFI, which also converts formaldehyde (Nunn
and Lidstrom, 1986), is also induced by formaldehyde. However,
this does not strictly apply to growth with CM, as formaldehyde
is not a direct product of CM dehalogenation by the cmu pathway
(Vannelli et al., 1999; Figure 6) and chemical equilibrium
between free formaldehyde and methylene-tetrahydrofolate
(CH2=H4F) does not favor free formaldehyde (Kallen and
Jencks, 1966). This suggests that methanol dehydrogenase
expression may be induced by other downstream metabolites
common to CM and methanol catabolism, such as other folate-
bound C1 compounds or formate, or that mxaFI expression is
not switched off in strain CM4. On the other hand, other recently
identified dehydrogenases active with methanol did not show the
same transcriptional profile. In particular, the expression of genes
for the XoxF-type enzymes was not modulated by chlorinated
methanes. As for the PQQ-dependent ExaF-type dehydrogenase
active with ethanol, methanol and formaldehyde (Good et al.,
2016), seven genes directly upstream of gene exaF showed higher
transcript levels in methanol-grown cultures in both CM4 and
DM4 strains, including for gene exaF in strain CM4 (Table S5).
Our results suggest complex modes of cross-regulation of key
enzymes of methylotrophic metabolism in response to different
C1 substrates that mostly involve genes that belong to the core
genome (Figure 5).

Metabolic Fine-Tuning for Dehalogenative
Methylotrophic Growth
Several genes of M. extorquens strains CM4 and DM4 that
show significant modulation of expression with chlorinated
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FIGURE 6 | Transcriptional response and metabolism of chlorinated C1 compounds chloromethane and dichloromethane in M. extorquens. Chloromethane

dehalogenation and methyl transfer to tetrahydrofolate (H4F) reactions are boxed in green; dichloromethane dehalogenation to formaldehyde in purple; methanol

oxidation to formaldehyde in blue. Within C1 metabolism, black boxes delimit common methylotrophic modules (Chistoserdova et al., 2009): H4F and

tetrahydromethanopterin (H4MPT)-dependent C1 transfer reactions, and formate oxidation for C1 dissimilation with C02 production. Serine and ethylmalonyl-CoA

cycles for C1 assimilation (Ochsner et al., 2015) are schematized with two connected circles. Reactions related to essential co-factors for chlorinated methane

utilization are highlighted with colored spots; H4F (yellow), corrinoid cofactor (green), glutathione (purple), and pyrroquinoline quinone (blue). GEI-located genes in

M. extorquens DM4 or in M. extorquens CM4 (plasmid pCMU01) are shown in gray-shaded boxes. RNA-Seq data are summarized using gene color-coding for more

abundant transcripts on CM (green), DCM (purple), both CM and DCM (dark red), methanol [both M. extorquens CM4 and DM4 (dark blue), DM4 only (light blue)].

Compounds associated with energy-dependent transformations are highlighted in orange. Cbi, cobinamide; Cbl, cobalamin; CoA, coenzyme A; PEP,

phosphoenolpyruvate; OXA, oxaloacetate; TCA, tricarboxylic acid cycle.

methanes have predicted functions in energy homeostasis and
redox processes. However, both the types of genes involved and
the differential transcription patterns often differed between CM-
and DCM-degrading strains. In the case of the DCM-degrading
strain DM4, several gene clusters containing cytochrome oxidase
genes displayed lower transcript counts in DCM cultures
(Table S6). In particular, a substantial set of GEI-associated genes
(Table 3), belonging to the variable genome ofM. extorquens and
potentially linked to cytochrome electron transport and thereby
the transmembrane H+ gradient, had enhanced transcript
abundance in cultures grown with methanol (Figure S4). Other
potentially energy-associated adjustments ofM. extorquens DM4

include very high transcript levels for various genes involved in
metabolism of fatty acids and polyhydroxyalkanoates (Table S6),
which are a storage form of carbon and energy (Escapa
et al., 2012), suggesting that growth on DCM vs. methanol
may involved different carbon and energy spillage control
processes.

For the CM-degrading strain CM4, in contrast, obtained
data suggest that energy balance adjustments as a function
of growth with CM or methanol involve NAD(P)-linked
metabolism. Whereas only one enzymatic step from methanol
to formate involves one molecule of NAD(P)+ (MtdA/MtdB),
for each molecule of CM transformed to formate, two molecules
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of NAD(P)H are potentially generated from NAD(P)+ in
two successive reactions specifically catalyzed by MetF2 and
FolD (Figure 6), These enzymes can use both NAD+ and
NADP+ as cofactors, although M. extorquens CM4 FolD
activity had only been assessed so far with NADP+ (Marx
and Lidstrom, 2004). The corresponding genes metF2 and
folD are two of the most differentially expressed genes in the
CM transcriptome (Table S5). Importantly, the cmu pathway
specifically features FolD rather thanMtdA and Fch for oxidation
of C1 carbon to formate (Studer et al., 2002) unlike growth
on methanol (Marx and Lidstrom, 2004). MetF2 and FolD
may thus have different preferences than MtdA/MtdB for
using NAD+ or NADP+ as cofactors. Should this be the
case, significant altering of the intracellular pools of NAD+

and NADP+ during growth with CM compared to methanol
could become growth limiting if levels of oxidized cofactors
are limiting. A candidate for metabolic fine-tuning in this
context is the membrane-bound transhydrogenase encoded by
the chromosomal pnt gene cluster. All three pnt genes were
significantly more expressed on CM at both transcription (Table
S5) and protein (Roselli et al., 2013) levels. Transhydrogenase
catalyzes the reversible reaction NADPH + NAD+ + H+

in
<=> NADP+ + NADH + H+

out (Carroll et al., 2015).
In addition to NADP+ regeneration via the membrane-
bound transhydrogenase, concomitant proton efflux could thus
potentially also help maintain internal cellular pH during CM
dehalogenation.

During growth with CM, the high demand for oxidized
NAD+/NADP+ cofactors may alter CH2=H4F flux toward
the serine cycle by limiting the carbon flux toward formate
production. A compensatory metabolic rerouting of CH2=H4F
toward formate formation could be needed and may be achieved
by the components of the so-called glycine cleavage complex
(Figure 6), which were more highly abundant at both the
transcript (GcvPHT, Table S5) and protein levels (GcvT; Roselli
et al., 2013).

In conclusion, utilization of horizontally transferred genes
for growth of M. extorquens with CM and DCM presumably
involved required several post-transfer adjustments, as shown
in recent experimental evolution experiments (Michener et al.,
2014a, 2016). The new data obtained in the present study
highlight potential global adjustments at the transcriptional
level and more generally, the importance of substrate- and

pathway-dependent genome adaptation following acquisition
of new growth-supporting abilities such as degradation
of toxic halogenated compounds. Clearly, M. extorquens
represents a model of choice to address these issues in the
future.
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