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Abstract

Background: Mutators are common in bacterial populations, both in natural isolates and in the lab. The fate of these
lineages, which mutation rate is increased up to 100×, has long been studied using population genetics models,
showing that they can spread in a population following an environmental change. However in stable conditions, they
suffer from the increased mutational load, hence being overcome by non-mutators. However, these results don’t take
into account the fact that an elevated mutation rate can impact the genetic structure, hence changing the sensitivity
of the population to mutations. Here we used Aevol, an in silico experimental evolution platform in which genomic
structures are free to evolve, in order to study the fate of mutator populations evolving for a long time in constant
conditions.

Results: Starting from wild-types that were pre-evolved for 300,000 generations, we let 100 mutator populations
(point mutation rate ×100) evolve for 100,000 further generations in constant conditions. As expected all populations
initially undergo a fitness loss. However, after that the mutator populations started to recover. Most populations
ultimately recovered their ancestors fitness, and a significant fraction became even fitter than the non-mutator
control clones that evolved in parallel. By analyzing the genomes of the mutators, we show that the fitness recovery is
due to two mechanisms: i. an increase in robustness through compaction of the coding part of the mutator genomes,
ii. an increase of the selection coefficient that decreases the mean-fitness of the population. Strikingly the latter is due
to the accumulation of non-coding sequences in the mutators genomes.

Conclusion: Our results show that the mutational burden that is classically thought to be associated with mutator
phenotype is escapable. On the long run mutators adapted their genomes and reshaped the distribution of mutation
effects. Therewith the lineage is able to recover fitness even though the population still suffers the elevated mutation
rate. Overall these results change our view of mutator dynamics: by being able to reduce the deleterious effect of the
elevated mutation rate, mutator populations may be able to last for a very long time; A situation commonly observed
in nature.

Keywords: Bacteria, Mutators, Robustness, Genome structure, in silico Experimental evolution

Background
Variation and selection together form the core engine
of evolution. However, their contributions to the engine
are different. While variation fuels the engine with raw
energy, selection regulates it and transform this raw
energy into the “evolutionary kinetics”, generally – but
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not systematically – forward, i.e., toward fitness improve-
ment. Consequently, regulating the evolutionary kinetics
requires to play on both sides: regulation of variability and
regulation of selection. Ultimately, heritable variations are
caused by mutations altering the genetic sequence. This
process is indeed regulated: it is well known that all organ-
isms reduce their mutation rates by proofreading and
repair mechanisms. On the opposite, mechanisms that
temporarily or permanently increase the mutation rates
have been described in many species and especially in
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bacteria [1, 2]. In many situations, including experimen-
tal evolution [3] and clinical isolates [4], lineages have
been observed that present alterations of their repair path-
ways, resulting in 50× to 100× increase of their mutation
rates. Similar elevated mutation rates are also observed
in endosymbiotic bacteria [5] where they have been sug-
gested to trigger genome streamlining [6].
Increasing the mutation rate by several orders of mag-

nitude is a high risk strategy for a bacteria: It increases
the probability to find beneficial mutations at the price
of detrimental accumulation of deleterious ones. This
risk is classically associated with how well bacteria are
adapted to their current environment. When they are
poorly adapted, bacteria can quickly evolve a raised muta-
tion rate known as the stress response [7], hence acquiring
the “mutator” phenotype. Indeed, mutator phenotype has
been suggested to be directly selected for under poor con-
ditions [8]. Additionally, the mutator phenotype appears
in novel environments ranging from the presence of
antibiotics [9] to the immune response of the infected
host [10] or the acquisition of novel functions (such as
the incorporation of citrate into metabolism [11]). On the
opposite, when well adapted, mutators have been shown
to evolve to lowermutation rate. This prevents deleterious
mutations from reversing the gained fitness [12].
In modeling terms, novel environments are thought to

move the population away from their previous fitness
peak in the fitness landscape. In strictly asexual organisms
without horizontal gene transfer, when there are many
beneficial mutations, the speed of evolution is limited by
the time between the discovery of new beneficial muta-
tions in a single lineage. Mutator lineages can accumulate
mutations more rapidly than their non-mutator counter-
parts and outcompete them [3, 13]. Indeed, modeling has
shown that mutator identity can be expected to hitchhike
with improvements, provided enough possible improve-
ments still exist and the population is large enough [14].
However, when beneficial mutations become too rare (i.e.
when the population gets closer to the optimum), the high
number of mutations in the mutators offspring will prove
deleterious [15] and the subsequent decrease of the effec-
tive population size will limit the fixation of favourable
mutations [16]. If a well adapted population cannot filter
out deleterious mutations, they’ll accumulate and bring
the population back to the mutation-selection balance:
Mutators would be expected to bring an increased muta-
tional load, hence being counter-selected on the long run
in a constant environment.
Rich Lenski’s Long Term Evolutionary Experiment

(LTEE) provides a test to the theory. In this experiment
12 strains of E. coli evolved independently in a glucose-
minimal medium for 30 years. Mutator phenotypes with a
50-100 fold increase of mutation rates have been observed
to appear in 6 out of the 12 parallel runs [17]: Mutator

identity have hitchhiked along with the improvements in
fitness as the bacteria adapted to the new conditions [18].
However, counter to classical expectations, in the LTEE

some mutator populations have been shown to take over
relatively late in evolution. In some of the repetitions, they
have been observed to appear over 20,000 generations
after first being exposed to the new (stable) environment,
when the increase in fitness has already started slowing
down [17]. Additionally, once established a raised muta-
tion rate can stay in the population for long periods of time
under the isolated conditions the small populations are
kept in, even though compensatory mutations can reduce
the mutational rate [12]. Moreover, mutator phenotypes
are observed ubiquitously and often at high frequencies
in natural environments [1]. These observations raise the
question of the fate of mutator phenotypes once estab-
lished in stable environments: how do well adapted popu-
lations that have previously adopted the mutator identity
continue to evolve and cope with the increased muta-
tional load? Indeed, all models predicting their conditions
of fixation [14, 19, 20] do not take into account possible
adaptation to the mutator identity through e.g., reorgani-
zation of their genotype. On the opposite, several studies
have shown that themutational robustness of an organism
is directly linked to its genomic structure [21, 22].
To tackle this question we have used the Aevol in sil-

ico Experimental Evolution platform [22–24] in order to
study the fate of a population of bacteria acquiring the
mutator identity while already close to a stable optimum,
hence mimicking the situation observed in the LTEE Ara-
1 population where the mutator phenotype has been
acquired after generation 25,000 [12, 17]. By simulating
the long-term fate of mutators, we study how the popula-
tions respond to high mutation rates by reorganizing their
genome and therewith their mutational neighborhood on
the fitness landscape.

Results
Evolution of the Wild-Type strains
Starting from naive individuals at Generation 0 (see
“Methods”), all WT strains quickly adapt, getting close
to the phenotypic target in less than 100,000 genera-
tions (Additional file 1: Figure S1). As already shown in
[23], given the mutation rates used in our experiments,
the genomes converge toward bacteria-like structures (see
Table 1), although the genomes remain small compared
to real bacterial ones: genomes contain a “large” number
of genes (mean: 95 genes) organized in operons (with a
mean of 1.83 genes per coding RNA) and typically 80%
of the genome is coding. This genomic organization is
similar to E. coli [25]. At generation 300,000, all popula-
tions are well adapted to their environment even though
there is still room for further adaptation (other experi-
ments with themodel show that gradual improvement can
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Table 1 properties of the best individual of each WT strain at
generation 300,000

WT ID Metabolic
error

Genome
length

RNAs Genes Coding
fraction

1 0.0079 6517 54 78 0.84

2 0.011 7222 65 80 0.82

3 0.0068 7494 48 95 0.81

4 0.0072 7340 50 82 0.85

5 0.0057 8957 45 105 0.77

6 0.0070 8053 47 101 0.80

7 0.010 7457 46 88 0.75

8 0.0098 10539 63 140 0.82

9 0.0071 8914 53 101 0.83

10 0.0099 8022 50 83 0.82

Mean 0.0082 8052 52.1 95 0.811

continue for more than 10,000,000 generations in a con-
stant environment – data not shown). Indeed, the speed of
adaptation substantially slows-down after the first 100,000
generations (Additional file 1: Figure S1). We thus con-
sider that all wildtypes have been sufficiently pre-evolved
at generation 300,000 to start the in silico experimental
evolution.

Evolution of the mutator strains
All WT strains have been cloned 20 times and propa-
gated for 100,000 further generations in the same constant
environment. Among these 20 populations, 10 were carry-
ing the mutator phenotype (point mutation rate increased
100× - see “Methods”) while the remaining 10 were con-
trol experiments (keeping the same mutation rate as the

WT strains). Figure 1 shows the evolution of themetabolic
error for the 100 mutators and the 100 control ances-
tral lineages averaged for each Wild-Type (ancestral lin-
eages were reconstructed from the fittest individual at
the end of the each experiment – see “Methods”). Since
the populations coalesce within less than 10,000 gener-
ations, the ancestors between generations 300,000 and
390,000 are used as the representative throughout the
results from now on, allowing us to study the short and
long term effects of mutations in a direct line of descent.
As explained above, the control populations are already
well adapted. They can still slightly improve (Fig. 1a),
but at a rate that is considerably lower than the ini-
tial improvement rate of the wild-types. In contrast, the
mutator populations experience a rapid increase of the
metabolic error due to the 100 fold increase of the point
mutation rate (Fig. 1b). However, surprisingly, this effect
does not last for the whole experiment: after a while (gen-
erally a few thousands of generations, see Additional file 1:
Figure S2), the metabolic error of the mutators decreases
again, often (62/100) reaching at generation 390,000 val-
ues below the ones of their non-mutator ancestor at the
beginning of the experiment (generation 300,000).
Figure 2 shows the metabolic error of the ancestor at

generation 300,000 (stars), the worst metabolic error in
the lineage (+ signs, we took the median per 100 gen-
erations to exclude extremely negative mutations that
are quickly compensated), and the final metabolic error
at generation 390,000 for the 10 mutator replicates of
each WT population (circles). It shows that all mutator
clones experienced the mutational burden (the increase
of the metabolic error being mostly WT-dependent, yet
not dependent on the WT metabolic error at generation
300,000) and that a partial recovery of the metabolic

Fig. 1 Evolution of the metabolic error in the control and mutator experiments. Mean change in metabolic error of the ancestral lineages between
generations 300,000 and 390,000 for the 20 replicates of each WT (see Additional file 1: Figure S6 for the metabolic error of individual replicates). a
Control strains (10 replicates). bMutators strains (10 replicates). Color code: Red: WT1; Light blue: WT2; Purple: WT3; Dark green: WT4; Orange: WT5;
Black: WT6; Grey: WT7; Dark blue: WT8; Brown: WT9; Light green: WT10
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Fig. 2 Extreme values of the metabolic error during the 100,000
propagation experiments of the mutator clones. Stars: Metabolic
error of the ancestor at generation 300,000. Plus signs: Worst
metabolic error reached in the mutator ancestral lineages. Circles:
Metabolic error of the mutators at generation 390,000. Solid
horizontal lines: Mean metabolic error of the control clones at
generation 390,000. All mutator clones experience a strong increase
of their metabolic error which intensity is clearly WT-dependent.
However, among the 100 mutator lineages, 62 completely recovered,
showing a lower metabolic error at generation 390,000 than at
generation 300,000. From those, 25 improved beyond the mean
improvement of the control lineages at generation 390,000

error occurred in all mutator populations: At generation
390,000, 62 out of the 100 replicates have reduced their
error beyond the initial metabolic error of the replicate at
generation 300,000, and 25 of those have reduced the error
beyond the average metabolic error reached at generation
390,000 by the 10 control replicates originating from the
same population (solid horizontal line). A notable excep-
tion is the fittest wild-type (WT5) for which none of the
mutator strains fully recover the ancestral metabolic error
(note that these strains are also the ones for which the
burden takes the longest time to reverse – see Additional
file 1: Figure S2 leaving it an open question if it would be
possible for these mutator stains to completely recover if
given enough time).

Evolution of the genomic structures in the mutator strains
The evolutionary dynamics of the mutators show that,
although the mutator identity is always harmful at short
term (in a constant environment), it can be neutral or
even beneficial with respect to the ancestral fitness on
the long run. This even holds in populations originally
well adapted to their environment and raises an important
question: How did the mutator clones cancel the deleteri-
ous effect of the elevated mutation rate and recover their
initial fitness. Since it has been shown that the mutational
robustness of an organism can be directly dependent on

its genomic architecture [22], we first looked at the evo-
lution of genome length, coding length and non-coding
length during the 90,000 generations of the experiment.
As Fig. 3 shows, the evolution of genome length and

structure strongly differs between the mutator strains and
the control strains. While we observed no general trend
across the average variation of the full genome size in the
controls lineages (Fig. 3a), all mutators strains showed an
increase of the genome length with a mean increase of
954 bp (Fig. 3b and Additional file 1: Table S2) resulting in
a significantly larger genome (Wilcoxon signed rank test,
p-value < 0.002). This contradicts intuition, which sug-
gests controls would increase their genome size as they
became fitter, while mutators would lose parts of their
genome that they were unable to retain, hence losing
fitness. However, both these predicted effects concern
the coding sequence. We thus had a closer look at the
evolution of the length of the two main genomic com-
partments: essential “coding” genome and non-essential
“non-coding” genome (see “Methods”).
In accordance with the initial intuition, the number

of essential base pairs slightly increase in the control
clones (mean increase: 31 bp, Fig. 3c and Additional
file 1: Table S2) while it clearly decreases in the muta-
tor clones (mean decrease: 359 bp, Fig. 3d and Additional
file 1: Table S2) resulting in a significantly smaller essen-
tial genome (Wilcoxon signed rank test, p-value < 0.002).
Interestingly, in the mutator clones the number of essen-
tial base pairs declined all along the experiment even
when the clones started to recover. This is accomplished
both through a reduction of the number of transcribed
sequences and a reduction of genetic material (both in
number of genes and in base pairs per gene, see Additional
file 1: Table S3). This demonstrates the extent to which
these populations could optimize their coding structure
under the mutational pressure and encode more informa-
tion in a shorter sequence.
Looking at non-essential base pairs, control and muta-

tor clones also behave completely differently. The control
clones consistently reduced their number of non-essential
base pairs (mean decrease of 203 bp - see Fig. 3e and
Additional file 1: Table S2) but strikingly the mutator
clones strongly increased the length of the non-essential
compartment (mean increase: 1314 bp, see Fig. 3f and
Additional file 1: Table S2). This results in a significantly
larger non-essential genome in the mutators (Wilcoxon
signed rank test, p-value < 0.002) which is the source of
the net increase of their genome size.
Per definition, non-essential base pairs do not con-

tribute to the phenotype and do not affect the metabolic
error directly (see “Methods”). In a first approximation,
mutations affecting non-essential base pairs are neu-
tral. However, the size and frequency of chromosomal
rearrangements are coupled to genome size, including



Rutten et al. BMC Evolutionary Biology          (2019) 19:191 Page 5 of 17

Fig. 3 Evolution of genome structure in the ancestral lineages. Evolution of the genome structure in the ancestral lineages of control and mutator
populations between generation 300,000 and 390,000. a Genome size in the control populations. b Genome size in the mutator populations. c
Number of essential base-pairs in the control populations. d Number of essential base-pairs in the mutator populations. e Number of non-essential
base-pairs in the control populations. f Number of non-essential base-pairs in the mutator populations

essential and non-essentials base pairs. Even though an
increase of the number of non-essential base pairs is
neutral, it induces an effect on rearrangements that are,
in mean, longer and more numerous, hence increasing
the genome variability and decreasing genome robustness
[22, 26]. Hence, we observe a paradoxical response to the
100× increase of point mutation rate. In line with expec-
tations, we observe an increase of robustness to point
mutations (through streamlining of the essential genome).
However mutators evolve simultaneously a decrease of
robustness to chromosomal rearrangements that are, in
mean, larger and more numerous due to the accumulation
of non-essential base pairs.

Analysis of the fixed mutations
The simplest hypothesis to explain the increase of non-
essential genome is that these sequences accumulate

through an hitch-hiking process: if the mutator clones
undergo many favorable events that increase genome size
(e.g. gene duplication), non-coding sequences may accu-
mulate without having any direct or indirect effect on
the fitness. In Aevol, there are two kinds of mutational
events that can contribute to an increase of the genome
size: small insertions and large duplications. Looking at
the number and size of the fixed events, it clearly appears
that, although small insertions are more numerous than
large duplications (Additional file 1: Table S4), the former
only marginally contribute to the variation of genome size
increase while the latter clearly drive the genome inflation
(Additional file 1: Figure S3).We thusmeasured the effects
of large scale duplications on fitness in the ancestral lin-
eage of the mutator clones. Figure 4 shows that there is no
tendency for duplications to reduce the metabolic error.
Globally, during the 90,000 generations of the experiment,
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Fig. 4 Distribution of the effect of duplications on metabolic error in
the ancestral lineages of all the mutator populations. Duplications are
deleterious when they increase metabolic error (i.e., variations are
positive). The large red bar of error rate increasing events at the right
edge shows the prevalence of deleterious duplications with effects
equal to or larger than 0.01

the 100 mutator clones together fixed 4140 large dupli-
cations (Additional file 1: Table S4), the overwhelming
majority of which being exactly neutral (Fig. 4). Only a
tiny fraction of the duplications have a positive effect (i.e.
reduce the metabolic error) and a much larger propor-
tion is deleterious, with often strongly deleterious effects
(right bar on Fig. 4). Therefore, increase of the genome
size cannot be due to non-essential base pairs hitch-hiking
favorable duplications. On the opposite, the growth of the
non-essential part of the genome is in spite of, rather than
driven by, the direct effect of duplications on fitness.
With direct fitness effects excluded, we turned our

attention towards the indirect effects. To study this we
focused on how non-essential base pairs affect the fitness
landscape.
It is well known that the fate of an evolving population

depends on the relationship between the rate of mutation
accumulation and the local shape of the fitness landscape
[21]. Moreover, the variations of the genomic structure
is likely to change this local shape by e.g. increasing the
proportion of neutral or deleterious events [22, 26]. To
measure this effect, we sampled the mutational neighbor-
hood of the mutator clones at generations 300,000 and
390,000 (see “Methods” section). We then compared the
frequency of offspring with a larger/same/lower fitness
(i.e. lower/same/larger metabolic error respectively) than
their parent at both time points: Fig. 5 presents the dis-
tribution of the variation of the differences between par-
ents and offspring metabolic error between generations
300,000 and 390,000, binned in 6 bins. First, the fraction of
offspring showing an increased fitness (i.e. a negative vari-
ation of the metabolic error) comparatively to their parent

Fig. 5 Difference in mutational neighborhood of the mutator clones
between generation 390,000 and 300,000. For each mutator lineage 2
million offspring were generated from the ancestor at generation
300,000 and 2 million from the ancestor at generation 390,000 (see
“Methods”). For each offspring, we measured �g, the variation of
metabolic error relatively to its parent. We then binned these
differences in 6 bins and measured the variation of frequency in these
bins between generations 300,000 and 390,000 for each lineage
(Stars). Areas represent the maximum density of presence in the plot.
We observe a slight increase in the number of offspring that gain
fitness relatively to their parent (negative variation of metabolic error),
no variation of neutral offspring, a decrease in slightly deleterious
offspring (bin 0.00025) and an increase in highly deleterious offspring
(bin 0.001)

is slightly increased during the experiment (bin “nega-
tive”). However, since the Wild-Types are well adapted to
their environment, it remains very low (0.31% at gener-
ation 300,000 and 0.55% at generation 390,000), hence it
is strongly dependent on sampling errors and the varia-
tion is difficult to analyze. Similarly, there is no variation
of the neutral fraction (bin “neutral”) that remains close
to 37% in mean during the experiment. However, surpris-
ingly, we observe a net decrease of the fraction of offspring
undergoing a small loss of fitness (bin “0.00025”) and a net
increase of the fraction of offspring undergoing a strong
loss of fitness relatively to their parents (bin “0.001”).

Effect of non-essential genome in evolution on robustness
and anti-robustness
Figure 5 showed two opposite effects of mutator iden-
tity on the distribution of offspring fitness: An increase
in highly deleterious offspring and a decrease in slightly
deleterious offspring. To contrast this evolution with that
of the controls, we plotted the distribution of deleterious
offspring at generations 300,000 and 390,000, binned in
7 bins, for the different experiments (Fig. 6). This shows
how the mutational neighborhood of the populations
have varied in the different conditions. The mutational
neighborhood of the controls is shown in Fig. 6a. Both
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at generation 300,000 and 390,000, the majority of off-
spring either conserve the fitness of their parent or have
undergone highly deleterious mutations, resulting in a “U-
shape” distribution. This is a common motif when the
evolving genome structure can itself evolve [27]. In the
control lineages, the variations of the “U-shape” between
generation 300,000 and 390,000 is a symmetric deepening:
Neutrality increases as well as the number of highly dele-
terious offspring (hence depleting the number of inter-
mediately deleterious offspring – Fig. 6c). When looking
at the mutators, the “U-shape” is not simply becoming
deeper during the 90,000 generations of the experiment:

It evolves a right-skewed distribution: The number of
neutral offspring increases only minimally while the num-
ber of slightly deleterious mutations decreases and the
number of highly deleterious mutations increases (see
Fig. 6b, d). However, this dynamic is specific of mutator
strains that were pre-evolved under low mutation rates.
Indeed, in “Native Mutators” which evolved with the high
mutation from generation 0 (see “Methods”), the deepen-
ing of the “U-shape” shows the same symmetric pattern
as the controls (Additional file 1: Figure S8). Hence the
evolutionary dynamics of the mutator strains is not simply
due to the mutational pressure. It is a specific response

Fig. 6 Top: Evolution of the mutational neighborhood of the Control (a, c) and the Mutator (b, d) lineages between generations 300,000 (red) and
390,000 (blue). In both cases the distribution of offspring evolves a deeper “U-shape” where the vast majority of offspring are either neutral or highly
deleterious. In the Control lineages the increase in neutral offspring and highly deleterious offspring is balanced. In the Mutator strains, the U-shape
becomes right skewed towards highly deleterious mutations and there is a strong reduction of slightly deleterious offspring. Bottom: Evolution of
the mutational neighborhood of artificially reduced Mutator genomes (at generation 390,000) compared to the Mutator lineage at generation
300,000 (e, g) and 390,000 (f, h). The former comparison enables to isolate the effect of coding genome streamlining (g). The latter comparison
enables to isolate the effect of non-coding genome expansion (h). The coding genome evolves to be far more neutral, skewing the distribution to
the left (g). Non-coding genome expansion cancels most of the former effect and strongly skews the distribution to the right (h). These two effects
(g, h) sum up to the right skew observed in (d). All distributions are binned in 7 bins. The first bin contains neutral offspring (�g = 0). Bins 2 through
6 contain the intermediately deleterious offspring binned in 0.002 intervals (�g from 0.002 to 0.004; 0.004 to 0.006; 0.006 to 0.008 and 0.008 to 0.01).
The last bin contains all heavily deleterious offspring (�g > 0.01). See main text and Methods for details
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to the mutational pressure in genomes that evolved with-
out it.
To better understand how this right-skewed “U-shape”

evolved in the mutator lineages, we separated the effect of
the variation of essential genome length on the local muta-
tional neighborhood from that of the variation of non-
essential genome length. To this aim, starting from the
100 mutators lineages at generation 390,000, we randomly
reduced the length of the non-essential genome compart-
ment down to its length in the ancestor at generation
300,000 (while leaving essential base pairs untouched and
making sure the removal of non-essential base pairs had
no effect on fitness – see “Methods”). By comparing this
reduced genomes to the ancestors at generation 300,000,
we can isolate the effect of the essential genome stream-
lining on the mutational neighborhood. As expected, the
reduction of the essential genome leads to more neutral
offspring, hence skewing the “U-shape” left (Fig. 6e, g).
Now, by contrasting the reduced genomes to the mutator
individuals at generation 390,000, we can isolate the effect
of non-essential base pair increase (Fig. 6f, h).
Overall these results show that the increase in non-

essential base pairs causes a strong skew that reduces the
fraction of neutral offspring (counterbalancing the effect
of essential genome streamlining) and increases the highly
deleterious ones.When considering only point mutations,

this result may seem counter-intuitive. However, in Aevol,
organisms undergo different kinds of mutational events,
including large-scale rearrangements (duplications, dele-
tions, translocations and inversion). Here the increase
fraction of highly deleterious offspring is due to the effect
of non-coding inflation on the number and size of these
events [22]. Finally, in the bottom part of the “U-shape”,
the increase of non-essential base pairs also skews the
mutational neighborhood to the right by reducing the
number of slightly deleterious offspring and increasing the
number of mildly deleterious ones.

Evolution of fitness at the population level
Throughout the results, we have taken the ancestor as
a representative for the population as a whole. Indeed,
everything that happens in the line of descent directly
affects offspring, and after coalescence, all individuals
alive in the population are descendants from the ances-
tral lineage. But the ancestral lineage does not have to
be typical for the population at any given time. Indeed,
in our simulations, it appears that the ancestral lin-
eage is not always representative of what happens at the
population level: While, in the controls, the fitness of
the lineage and the average fitness both decrease in all
populations (see Fig. 7a), in the mutators the ancestral
lineage improves (hence decreasing its metabolic error)

Fig. 7Metabolic error of the populations (top curves) and metabolic error of the ancestral lineages (bottom curves), averaged per WT and per 1000
generations. a) Metabolic error of the controls populations and lineages. Both the average metabolic error and the metabolic error of the ancestral
lineages decrease in all populations. b) Metabolic error of the mutator populations and lineages. While the metabolic error of the ancestral lineage
decreases (after the initial increase), the average error of all populations typically increases beyond their initial value at generation 300,000 and goes
on increasing even while the metabolic error of the lineage started decreasing: Mutators lineages improve their fitness at the expense of the general
population
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while the average metabolic error of the population rises
(see Fig. 7b).
Overall we have seen that, in response to a harsh

mutational pressure, mutator populations evolve a new
genome structure, hence a new evolutionary dynamic:
The coding genome shrinks as coding becomes more
efficient, decreasing the risk to be affected by a point
mutations. Conversely the non-coding genome increases
in size, decreasing the number of neutral offspring and
the number of offspring with slightly deleterious muta-
tions and increasing the proportion of highly deleterious
offspring. This reduces the average fitness in the popula-
tion but enables fitness recovery in the ancestral lineage:
through evolvability of the genome structure the lineage
successfully adapted to the new mutational context.

Discussion
By evolving virtual bacteria with the mutator pheno-
type in a constant environment we show that mutator
strains initially pay a strong fitness cost, as is classically
expected [20]. However, our experiments also show that,
after a few thousands generations, all the mutators are
able to recover at least partly. More precisely, in 62% of
the simulated mutator strains, the mutator were able to
recover their ancestral fitness. Moreover, despite muta-
tional load, the lineage of mutators can even reach higher
fitness than the wild-type strains that evolve in parallel
(25% of the mutator strains). By analyzing the evolution
of the mutators genomes during the recovery phase, we
have been able to show that in all cases, the mutators
adapt to the increased mutation rate by reorganizing their
two main genomes compartments: in mean the coding
part of the genome (“essential genome”) is reduced by 6%
while simultaneously the non-coding part (“non-essential
genome”) increased by 86%, resulting in a slight increase
of the whole genome (12%).
The model simulates a population of asexual organisms

experiencing a strong increase of their point mutation
rate. Hence these strains experience the effect of Muller’s
ratchet [16]: The strong increased mutation rate leads
to the accumulation of deleterious mutations (Additional
file 1: Figure S5) and the absence of recombination makes
it impossible to eliminate them, hence the initial loss of
fitness observed in the populations and in the fixed lin-
eages. Given that the mutation rate is kept high and the
environment is constant, the fitness recovery observed
in the fixed lineage (but not in the population) is much
more surprising. To the best of our knowledge, no pre-
vious model ever predicted that mutators could be able
to recover their initial fitness when evolving in a con-
stant environment. Classical models predict that mutator
strains can become better than wild-types only in case
of a sudden change in the position of the fitness peak
[28–30]. However these models are generally based on

a linear genotype-to-phenotype map that cannot evolve
to adapt to the new mutational conditions. This setup
enables convenient calculations, but fails to take into
account that changing the mutation rate may induce
changes on the genotype-to-phenotype map, hence on the
fitness landscape, allowing for new discoveries that were
previously unavailable.
The model we used, Aevol, is amongst a class of models

that have both a complex genotype-phenotype mapping
and a complex fitness landscape. This kind of model was
first studied in the context of RNA folding [31, 32], but
has recently also been applied in studying bacterial evo-
lution [22, 23, 27, 33, 34] (see [35] for a review). In this
kind of model, the Genotype-to-Phenotype map offers
many degrees of freedom that are accessible to evolu-
tion. In particular different sequences can have the same
fitness, and many distinct mutants of a same genotype
can code for the same phenotype. Even so, these differ-
ent sequences, although being equivalent in terms of fit-
ness, may differ in their robustness/evolvability properties
[22, 36]. In particular, one of the specificities of the Aevol
model is to allow for different levels of compactness of
its coding sequences: genes can be grouped on operons
or overlap, hence increasing the mutational robustness
[37, 38], on the opposite, genomes can accumulate non-
coding sequences, hence increasing the mutational vari-
ability due to large chromosomal rearrangements [22, 26].
Moreover, when compared to simpler models, complex
models are likely to show a very different fitness landscape
structure [39]. While most models generally suppose a
single-peak landscape, complex models are likely to have
many plateaus rather than peaks, some being very far away
from the others (indeed, when we look at the controls
strains, we see that in all cases where populations appear
stuck, there is at least one lineage where there is signif-
icant improvement, see Additional file 1: Figure S4). We
argue that the fitness recovery we observed in our experi-
ments is due to a combination of these two phenomenon:
escape of the local fitness plateau to reach another one
– higher and/or flatter – through adaptation of the cod-
ing structure (reduction and restructuring of the coding
compartment), and the gradual increase of the non-coding
compartment.

Mutators adapt their mutational neighborhood
As Fig. 3d and f show, all mutator strains react to the
mutator phenotype by (i.) decreasing the total num-
ber of coding base pairs and (ii.) increasing the total
number of non-coding base pairs. The former effect is
easy to understand through evolution towards robustness
[21, 40]: since the number of mutations expected at each
replication is proportional to the number of base pairs in
the genome and since all mutations affecting only non-
coding bases are almost surely neutral (the only situation
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where a mutation in a non-coding base is not neutral
is when it creates a new gene, which is highly improb-
able), the streamlining of the coding sequences offers a
protection against the increase of the mutation rate and
organisms with less coding sequences are likely to produce
more fit offspring. Indeed, such a dynamics has already
been observed in digital genetics experiments using the
Avida software [41, 42]. Following a similar idea, Marais
and Tenaillon have shown, using a error threshold model,
that elevated mutation rates can lead to genome stream-
lining in endosymbiotic and oceanic bacteria [6]. Note
however that, given the amount of coding base pairs lost
(6% in mean) and the 100 fold increase of point mutation
rate, the reduction of the coding sequence is insufficient
by far, hence the loss of fitness at the population level
(see Fig. 7).
We could not find any positive effect brought by

the increase in non-essential base pairs nor any hitch-
hiking mechanism that could explain their accumula-
tion. Moreover, as show by Fig. 6f, h, the increase of
non-coding sequences is responsible for a reduction of
the proportion of neutral offspring (taking up most of
the increased neutrality due to the decrease of coding
sequences, as seen in Fig. 6e, g), as well as an increase
in the proportion of highly deleterious mutants. Despite
the fact that mutations exclusively affecting non-coding
base pairs do not affect fitness, the number of non-
coding base pairs does positively affect the size and fre-
quency of rearrangements per cell, hence indirectly affect-
ing genes [22]. Thus, what could be the benefit of this
change in mutator strains? Since the increase of the non-
coding genome decreases the fraction of neutral offspring,
this is not due to selection for mutational robustness
(“survival of the flattest” [21]).
Muller’s ratchet is due to the selection coefficient of

the best phenotype being too small to prevent slightly
deleterious mutations from being accepted into the lin-
eage. Here, rather than increasing neutrality, the mutator
strains evolve a new population structure in which the
selection coefficient of the best individual is increased
through the reduction of slightly deleterious offspring and
an increase of highly deleterious ones. This increases fix-
ation probability of mutants carrying beneficial mutations
through the reduction of the mean population fitness.
Such an antirobustness strategy, in which individuals are
selected for their ability to undergo more heavily delete-
rious mutations, has been suggested as a mechanism able
to mitigate the effect of Muller’s ratchet [43] and has been
shown to be selectable for under a soft-selection scheme
[44, 45]. Three conditions are necessary for this strategy
to be effective: It requires that (1) more offspring are pro-
duced than will actually survive at the next generation, (2)
survival of a set number of individuals is guaranteed, and
(3) competition over the ability to replicate is mostly with

closely related individuals. When all these conditions are
met, an increase in highly deleterious mutations can be
beneficial if the number of slightly deleterious mutations
is decreased [45]. In this case, even though the average fit-
ness of the offspring declines, the selective pressure on the
fittest offspring increases, which can allow populations to
maintain a genome of a larger size than those with a less
deleterious local neighborhood.
Our Aevol populations meet all three conditions. At

each generation an individual can only replicates on its
immediate vicinity, producing a maximum of 9 offspring.
However, due to the fixed population size N, competi-
tion implies that some individual will not replicate at
all (condition 1) but that at least N/9 individuals will
replicate at each generation (condition 2). Finally, both
competition and replication are local in the model (hence
competition with close kin is common). We also observe
the decrease in fitness of the average population while
the fitness of the ancestral lineage improves (Fig. 7), as is
expected under an antirobustness strategy. This, and the
strong skew we observed in the distribution of mutation
effects (Fig. 6b, d), strongly suggest that an antirobust-
ness mechanism is at work in our simulations. However,
importantly, the fact that mutators benefit from the new
distribution of mutation effects does not imply that this
distribution is directly selected. Indeed, at least three
different mechanisms could account for the increase of
the non-coding sequences that leads to the skew, hence
triggering the antirobustness mechanism. (1) Antirobust
organisms could be directly selected for. However, this
is rather unlikely as such a mechanism would be highly
sensitive to cheaters (i.e. organisms benefiting from the
decrease of the mean fitness without paying the antiro-
bustness cost) (2) The whole population could move to
a new peak of the fitness landscape, the shape of which
would be more adapted to the new mutation rate (be it
lower or higher that the original peak). This mechanism,
akin to the “Robustness Drift” proposed by [46] would
here be triggered by a change in mutation rate rather than
by a change in population size (as in [46]) but the overall
mechanism could be similar. Finally, (3) the inflating of
the non-coding genome could be due to lower selective
pressure. Indeed, in mutator populations, the fraction of
neutral offspring is lowered (see Fig. 6a and b), resulting
in a smaller effective population size [6]. This is likely to
lower the selection for genome reduction, hence leading
to inflation of the genome compartments that are not
directly affected by the increase of the mutation (i.e.
non-coding sequences). Such an effect have been shown
to account for genome expansion in subterranean species
[47] and preliminary results with Aevol show that the
genome structure (including non-coding proportion) is
indeed influenced by variations of population size [48].
Note however that, whatever the evolutionary origin of
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the genome inflation, it results in a reorganization of
the genotype-to-phenotype map that ultimately help the
mutators overcome Muller’s ratchet.

Unlike previous analyses of antirobustness, our Aevol
mutators were able to combine antirobustness with evo-
lution of robustness by evolving their genome structure
to affect the distribution of mutational effects. Like the
control wild types, mutators deepened the “U-shape” in
the frequency of mutational effects, which decreased the
fraction of slight to moderately deleterious offspring while
increasing the fraction of neutral and highly deleterious
offspring. In addition to this, mutators strongly right
skewed this “U-shape” further increasing the number of
highly deleterious offspring and further decreasing the
number of slightly deleterious offspring. This combined
shift in mutational effects lead to sustained improving
the fitness of the lineage (though not the mean fitness in
the population) beyond their initial fitness value. Indeed,
when the mutators were able to completely recover,
recovery only concerned the ancestral lineage. On the
opposite, the average fitness of the population continued
to degrade over time (see Fig. 7b). This decrease in the
average fitness occurred across almost all mutators, what-
ever the wild-type. In contrast, the average fitness of the
control populations did increase (see Fig. 7a), as they only
deepen the “U-shape”. In adapting to the change in muta-
tional frequency, evolving the structure allowed for the
very mode of evolution of the populations to be altered.

Finally, to fully understand the dynamics of the muta-
tor strains, we contrasted them against populations that
evolved under the high mutational conditions from gen-
eration 0 (“Native Mutators”, see “Methods” and Table 2).
The evolution of the metabolic error in the ancestral lin-
eage of the Native Mutators shows a dynamic far closer to
the controls than to the mutator strains (Additional file 1:
Figure S7). Unlike the mutator strains, the gains in fit-
ness made by the “Native Mutator” lineages don’t come
at the expense of the average fitness of the populations.
That is not to say that they don’t experience the same

Table 2 Per base pair per generation rates of the different types
of mutations

Mutation types Wild types & Controls Mutators & Native Mutators

point mutations 10−6 10−4

small insertions 10−6 10−6

small deletions 10−6 10−6

inversions 10−5 10−5

translocations 10−5 10−5

large duplications 10−5 10−5

large deletions 10−5 10−5

mutational pressure. As Additional file 1: Table S1 shows
it, the coding genome of the native mutators is far more
compact than that of either the controls or the mutator
strains, and the fittest pre-evolved wild-types were fitter
than the“Native Mutators”.
In terms of genome evolution, the “Native Mutators”

behave like the control populations (Additional file 1:
Table S2), as they reduce number of non-coding base-
pairs. As we might then expect, the evolution of the muta-
tional neighborhood of the “Native Mutators’ matches
that of the controls, in that they evolve to symmetrically
deepen their “U-shape” (compare Additional file 1: Figure
S8 to Fig. 6a, b, c, d). Taken together, this demonstrates
that the mutator response to the higher mutation regime
is fundamentally different from that of a population that
evolved in that regime. Through this new evolutionary
dynamic, the mutator strain is able to retain a far larger
coding region in the lineage, than would have evolved oth-
erwise, and thereby retain fitness in the lineage despite the
raised mutational pressure.

Limits of the model
As argued above, the main difference between Aevol and
“classical” mathematical models generally used to assess
the effect of mutator alleles [14, 19, 20] is that Aevol owns
many degrees of freedom in the way it encodes its phe-
notype onto its genotype. This allows, the organisms that
evolve in the model to adapt to the new mutation rate
by changing their genome structure, hence changing the
distribution of offspring fitness. However, this raises the
question of whether the dynamics observed in the model
would apply in real organisms undergoing high mutation
rates.
First, as for all models, one could of course argue that

the model has a limited degree of realism. In particular,
one could argue that the population size (103 individuals)
is much smaller than the LTEE population (of the order
of 107 individuals) and that there is not enough degrees
of freedom in Aevol – or not the correct ones. In effect,
though more complex than mathematical models, Aevol
organisms are still far from the complexity of real bacteria
(e.g. there is no regulation networks nor metabolic net-
work in our model). Indeed, a real organism could escape
the elevated mutational load by adapting its genotype-to-
phenotype map at other levels than the decrease/increase
of coding/non-coding genomic compartments or in differ-
ent respective proportions, which would result in different
trends for genome size. In the LTEE, for instance, muta-
tor strains could have evolved robustness by contracting
their genome (as shown in [49]) and antirobustness strate-
gies by acting at other levels (e.g., reorganization of their
regulation network [50, 51]). Moreover, in our model
the increase of the mutation rate comes with no bias
while “real mutators” show strong biases [52], including
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elevated rate of intra-chromosomal recombination [53].
Such biases are likely to limit genome expansion as an ele-
vated rate of rearrangements imposes strong robustness
constraints on the overall genome length [22]. Finally, our
simulations differ from the LTEE on an important point:
In our simulations, the mutator identity is acquired while
the organisms evolve in a constant environment (contrary
to the LTEE in which the experiment started with an envi-
ronmental change even though the environment is fixed
thereafter). Hence beneficial mutations are less likely. Yet,
still the dynamics observed here is of great interest since it
shows that the deleterious effects of an increase of muta-
tions on the lineage can be mitigated by changing the
shape of the distribution of offspring fitnesses (the “U-
shape”), whatever the (molecular) mechanism is. Indeed,
such an effect has been observed is other situations and in
other models [27, 54], showing that this distribution is a
target of second-order selection and that it’s shape could
evolve as a reaction to environmental or mutational stress.
Second, it must be acknowledged that the situa-

tion modeled in our experiments is somewhat artificial.
Indeed, in our experiments all the population acquires
the mutator allele at once and there is no competition
between mutators and non-mutators (in that sense the
situation is similar to the LTEE after mutators have estab-
lished). Moreover, individuals cannot lose their mutator
identity by e.g. breaking the linkage between the muta-
tor allele and the beneficial mutations [55] or by evolving
compensatory mutations [12]. However, the interest of
our experiments is precisely to show what could be the
fate of mutators if they succeed to maintain long enough
in the population. This can only be studied through the
kind of “impossible experiments” we performed here: by
modeling an artificial situation, we have been able to
show that the mutational burden is escapable, even in
the absence of recombination, and that bacteria evolving
under a very highmutational stress can thrive by rearrang-
ing their genotype-to-phenotype map (here their genome
architecture). In other words, organisms are able not only
to adapt their mutation rate to the environmental condi-
tions, they are also able to adapt to the mutation rate, a
hallmark of the “Evolution of Evolution” (aka “EvoEvo”)
process where evolution is itself changed by evolution
[35]. Doing so mutators are able to take the better of the
two states: increased probability to find improvements
and reduced deleterious mutational load.

Conclusion
By evolving in silico populations of mutators in a con-
stant environment, we have observed a striking dynamics
with the ancestral lineage of mutators experiencing a fit-
ness loss lasting a few thousands of generations but then
being able to recover and, in a vast majority of the lineages
evolve back to their initial fitness. By analyzing the

dynamics of their genome along the lineage, we have
shown that this dynamics is due to a combination of
three processes: (i.) Mutation accumulation that accounts
for the fitness loss since our populations experience
Muller’s ratchet, (ii.) coding sequences compaction that
reduces the genomic target to mutations, hence reduc-
ing the mutational load, and (iii.) non-coding sequences
inflation that skews the distribution of offspring’s fitness
(the “U-shape”) and increases the selection coefficient.
Taken all together, these three processes show that, even
though a clonal population acquiring the mutator phe-
notype is likely to pay a strong initial fitness cost, this
cost can be escaped. It may be compensated by a reor-
ganization of the individual’s genotype-to-phenotype map
that can lower the effect of the mutations (evolution
towards robustness ), increase their effect (antirobust-
ness) or even a combination of the two as we observed
here. In our model, the main degrees of freedom for the
genotype-to-phenotype map is the genome structure and
we indeed observe changes at that level. In real organisms
the genotype-to-phenotype map contains many different
levels (genome, regulation network, metabolic network...)
that can all be reorganized in order to increase or decrease
the effect of mutations. Hence, depending on the organ-
isms and/or the environmental conditions, the adaptation
of the genotype-to-phenotype map could take place at
any of these levels and not, or not only, at the genomic
level as observed here. Nevertheless, the simple fact that
a reorganization of the genotype-to-phenotype map can
counterbalance the mutational load is a important discov-
ery that is likely to change our view on mutator strains:
contrary to what is classically expected, mutators could
very well last in population long after an environmen-
tal change has occurred by structurally adapting to their
high mutation rate. Moreover, our results emphasize the
importance of evolution of genotype-to-phenotype map
and its contribution to the evolutionary dynamics.

Methods
Aevol modeling formalism
Aevol is an individual based model, where population of
virtual organims are submitted to variation and selec-
tion processes (Fig. 8). The specificity of Aevol is that
organisms own a genome that structurally mimics bacte-
rial genome organization (Fig. 8b) and that this genome
is altered by variation operators that also mimics bacterial
ones (Fig. 8d). Hence, it is possible to study how genome
organization impacts evolution and, in turn, how evolution
influences genome organization. In Aevol each individ-
ual contains a circular double-strands genome composed
of a binary bases. To calculate the cells properties, this
genome is read for promoters (promoter being 22 bp con-
sensus sequences, the Hamming distance to the consensus
driving the transcription rate of the promoter). The
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Fig. 8 Overview of the Aevol model (a) The population is contained on a grid. It reproduces at each generation with complete replacement. (b)
Each individual owns a circular genome with scattered genes identified through initiation/termination signals (promoters, terminators, RBS,
Start/Stop codons). Genes are translated into a set of proteins, each one contributing to some phenotypic traits with a certain level (phenotypic trait,
level of contribution and level of pleiotropy are encoded in the gene’s sequence). All proteins are grouped to form the phenotype and the
difference between the phenotype and the environmental function (light red) gives the metabolic error (see main text for details). (c) Each
individual competes with its local Moore neighborhood. An individual can have 0 (if it looses all the replication competitions it participates to) to 9
(if it wins all the replication competitions) offspring at each time steps. (d) During replication, the genome can undergo large chromosomal
rearrangements (here an inversion and a translocation) and small mutations (switches, InDels)

sequence following the promoter is transcribed until a ter-
minator is reached (a terminator being a sequence able to
form a stem-loop structure analog to ρ-independent ter-
minators in bacteria). If the transcribed RNA contains a
Ribozome Binding Site (RBS) followed by a Start codon,
translation will start until a Stop codon is reached on the
same reading frame. An RNA can contain multiple genes
and a gene can be contained in multiple RNA’s depending
on the distribution of promoter and translation initiation
sequences.

Protein properties. Genes are made up of three base
long codons (hence, with a binary genome, there are
23 = 8 different codons, see Fig. 9a). Translation starts
at the START codon and then continues until the STOP
codon is encountered on the same reading frame, pro-
ducing a protein which primary structure is a chain of
“Amino-Acids” (with an alphabet composed of six AA, see

Fig. 9a and b). In Aevol, we define a mathematical space
in which all possible phenotypic traits are expressed by
real values in [ 0, 1]. Then a protein can be represented
by a [ 0, 1]→[−1, 1] function representing the distribu-
tion of phenotypic traits it contributes to and their level
of activation (negative values representing inactivation of
the corresponding traits). In Aevol this distribution is
triangular, hence defined by three parameters: its posi-
tion on the phenotypic trait axis (main trait the protein
contributes to), its height (level of contribution of the
protein to the trait) and its width (level of pleiotropy
of the protein). For each property, two codons translate
into amino acids which affect that property based on
their order in the gene (see Fig. 9a and c). Each prop-
erty has its own range of possible values. To find out
what value the series of amino acids codes for, we con-
vert the series of binary values by Gray code (Fig. 9c). The
resulting integer is then normalized and the result defines
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Fig. 9 The translation process in Aevol. a Aevol’s genetic code. The code contains 23 = 8 non-redundant codons, two of which encoding for START
and STOP (000 and 001 respectively). The six remaining codons encode for six “Amino-Acids” (AA) that are pairwise associated to three classes
respectively coding forM (AAM0 andM1),W (AAW0 andW1) and H (AA H0 and H1). b Translation of the gene into the protein’s primary structure.
The transcribed RNA sequence is parsed for Ribosome Binding Sites (RBS) followed by a START codon. The translation then started on the reading
frame of the START codon until a STOP codon is found (note that the length of the gene is not predefined). The protein’s primary structure is a
sequence of AA whose length depends on the gene’s length. c Computation of the protein’s parameters. The AA sequence is parsed into three
substructures containing respectively all AA of class “M”, “W” and “H”. These substructures are then translated into binary sequences that are
converted into an integer value via Grey code. This value is turned into a fraction that determines the actual value extracted from the range of
possible values of that property. d Graphical representation of the protein function. The protein is represented as a triangle defined by three
properties: Main phenotypic trait (M), level of contribution to the trait (H) and level of pleiotropy (W). For sake of clarity, the phenotypic target is also
represented on the figure (see Fig. 8). Note that the H value may be scaled by the activity of the gene’s promoter

the value of the corresponding protein/triangle parameter
(Fig. 9d).

Phenotype The phenotype of an individual is the sum
of all the traits its proteins activate (1 being the maxi-
mum activation value) minus the sum of all the traits its
proteins inhibit (traits that are more inactivated than acti-
vated being set to 0). The phenotype is thus a [ 0, 1]→
[ 0, 1] multilinear function.

Environment and selection. In Aevol the environment
in which the organisms live is indirectly represented by
the optimal [ 0, 1]→[ 0, 1] phenotypic function its allows.
In all experiments presented here we used a constant tar-
get function (in light red on Figs. 8b and 9d) which is the
sum of three Gaussians (see Table 3), two positive and one
negative.
The phenotype of an organism and the phenotypic tar-

get are compared to compute the organism’s “Metabolic
Error” (i.e. the integral of the difference between both
functions). This metabolic error is then converted into an
exponential fitness value. Note that the metabolic error
decreases when the individual becomes fitter.

The entire population is placed on a toroidal grid with
one individual per grid cell. The size of the grid thus
specifies the size of the population (in all experiments
presented here we used a 32 × 32 grid, i.e. 1024 indi-
viduals). Aevol uses a generational algorithm: at each
generation each individual competes with its local Moore
neighborhood (Fig. 8c). The probability of reproduction is
proportional to the fitness (i.e. inversely proportional to
the metabolic error) and a biased random wheel is used to
select for the individual that will occupy the grid cell at the
next generation.

Mutations During replication, individuals’ genomes may
undergo variation through mutations. Seven types of
mutations have been used in our simulations, three being

Table 3 The properties of the three Gaussians whose summakes
up the fixed environment

Gaussian ID top height Mean Standard deviation

1 1.2 0.5 0.12

2 -1.4 0.52 0.07

3 0.3 0.8 0.03
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small scale mutations and four being large scale muta-
tions. The small scale mutations are: point mutations,
small insertions and small deletions (InDels). Point muta-
tions switch a single base pair into the opposite base
(on both strands), while small duplications and deletions
respectively insert or remove 1 to 6 bases at a random
location. Large scale mutations consist of large duplica-
tions and deletions, which duplicate or delete a section
of the genome between two uniformly drawn breaking
points, and translocation and inversion mutations which
cut out a section of the genome and insert it somewhere
else or inverts the two strains respectively (see Fig. 8d). All
mutation rates are specified independently and the rates
are defined per base-pair per generation.

Experimental setup
We used the in silico Experimental Evolution strategy
described in [23]. Wild-type organisms are evolved in
Aevol under constant conditions for a very long time start-
ing from 5000 bp long random sequences having at least
one gene (naive individuals). Then the Wild-Type popula-
tions are cloned and evolution is resumed under different
conditions to isolate the effect of the conditions on evolu-
tion pace or on the structure of the organisms. Here, we
evolved 10 wild-type clones for 300,000 generations in a
single stable environment, with a population size of 1024
individuals (32×32 grid) and a mild mutation rate (10−6

mutations per bp per generation for all local mutations
and 10−5 mutations per bp per generation for all large
scale rearrangements). At generation 300,000 the 10 pop-
ulations have been replicated 20 times each. Half of these
replicates have had their point mutation rate increased
100 fold (up to 10−4 mutations per bp per generation, all
other mutations rates being kept constant) and let evolve
for 100,000 generations in the same environment (these
replicates are later-on referred as “mutator populations”).
The other half of the replicates continued their evolu-
tion for 100,000 generations under the same mutational
pressure as the Wild-Types and in the same environment
(“control populations”). All mutation rates used in the
experiment can be found in Table 2. This experimental
setup is similar to the one used in [56] and enables us to
study the effect of prolonged hyper mutator identity on
initially well adapted populations.
Additionally, we evolved ten wild-type populations

under mutator conditions for 400,000 generations in a
constant environment (“native mutators”). These popu-
lations were used to compare the fate of newly evolved
mutators with organisms that constantly evolved under a
high mutational pressure.

Reconstruction of ancestral lineages and ancestral
clones. To analyze the evolutionary fate of the differ-
ent clones, we reconstructed ancestral lineages from the

best individual at the end of generation 400,000 to the
beginning of the clones evolution at generation 300,000.
Ancestral lineages were reconstructed for the mutator
and control populations. Once the ancestral lineages have
been recovered, we are able to reconstruct all the muta-
tional events that led to the best final organism in each
clone. We then systematically excluded the last 10,000
generations (generations 390,000 to 400,000) to ensure
that all observed clones and mutational events have come
to fixation.

Quantification of essential and non-essential genomic
sequences. In Aevol the genome is composed of sev-
eral structures that mimics real genomic compartments
in prokaryotic organisms. In particular, one can distin-
guish the transcribed sequences from the non-transcribed
ones and the translated sequences (ORF) from the non-
translated ones. We used two aggregated measures,
namely the essential and non-essential genome length.
Essential genome contains all sequences that contribute
to the phenotype of the organism (i.e. a mutation in
essential genome will generally modify the phenotype).
Essential genome thus contains promoters and termina-
tors of coding RNAs as well as the Ribosome Binding
Site and the ORF for all genes. Non-essential genome
contains the rest of the sequence (i.e., non-transcribed
sequences, non-coding RNAs and the leaders and trailers
of coding RNAs). A mutation in non-essential genome is
very likely to be neutral (it can be non-neutral only if it
spontaneously creates a new gene).

Genetic engineering of the clones. In order to study
the consequences of the accumulation of non-essential
sequences, we developed a tool that reduces the length
of the non-essential genome down to a predefined value
without modifying the essential part of the genome. From
the evolved strain, we randomly remove one base-pair
from the genome and compute the metabolic error of the
resulting strain. If the metabolic error is different than the
original one, the base-pair is reintroduced in the genome
and another one is tested. If the metabolic error is con-
served, then the base-pair is definitively removed from
the genome and we start searching for another one to
remove. This procedure is continued until the length of
the non-essential genome reaches the desired value (typi-
cally the length of non-essential genome in the ancestor of
the strain).

Quantification of the mutational neighborhood.
Given the complexity of the genotype-to-phenotype map-
ping, the combinatorics of the genomic sequences and
the diversity of the mutation operators, it is impossible
to characterize the whole fitness landscape of Aevol’s
organisms (exactly as for real organisms). Therefore we
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developed a procedure that sample the local structure
of the fitness landscape around a given position. To
this end, given an individuals genotype, we used the
same replication procedure as the one used during the
evolutionary experiments (including the same mutation
procedure) and produced large number offspring of this
individual (2 million in the current experiment). We then
measured the fitness distribution of these offspring. This
distribution represents the local structure of the fitness
landscape (note that this structure is dependent on the
mutation rates). By comparing the neighborhoods of
different individuals, we can gain an understanding of
the effect of changes that don’t directly affect fitness but
that nevertheless modify the effect of mutations (e.g.
evolution of genome structure).
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