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•  Background and aims  The CSR classification categorizes plants as stress tolerators (S), ruderals (R) and 
competitors (C). Initially proposed as a general framework to describe ecological strategies across species, this 
scheme has recently been used to investigate the variation of strategies within species. For instance, ample variation 
along the S–R axis was found in Arabidopsis thaliana, with stress-tolerator accessions predominating in hot and 
dry regions, which was interpreted as a sign of functional adaptation to climate within the species.
•  Methods  In this study the range of CSR strategies within A.  thaliana was evaluated across 426 accessions 
originating from North Africa to Scandinavia. A  position in the CSR strategy space was allocated for every 
accession based on three functional traits: leaf area, leaf dry matter content (LDMC) and specific leaf area (SLA). 
Results were related to climate at origin and compared with a previous study performed on the same species. 
Furthermore, the role of natural selection in phenotypic differentiation between lineages was investigated with 
QST–FST comparisons, using the large amount of genetic information available for this species.
•  Key Results  Substantial variation in ecological strategies along the S–R axis was found in A. thaliana. By contrast 
with previous findings, stress-tolerator accessions predominated in cold climates, notably Scandinavia, where late 
flowering was associated with traits related to resource conservation, such as high LDMC and low SLA. Because of trait 
plasticity, variations in CSR classification in relation to growth conditions were also observed for the same genotypes.
•  Conclusions  There is a latitudinal gradient of ecological strategies in A. thaliana as a result of within-species 
adaptation to climate. Our study also underlines the importance of growth conditions and of the methodology 
used for trait measurement, notably age versus stage measurement, to infer the strength and direction of trait–
environment relationships. This highlights the potential and limitations of the CSR classification in explaining 
functional adaptation to the environment.

Key words: Arabidopsis thaliana, adaptive differentiation, climate, CSR classification, ecological strategy, 
functional trait, genetic diversity, Grime triangle, latitudinal gradient, QST–FST, trait–environment relationships.

INTRODUCTION

Screening approaches allow species comparison on the basis 
of key functional traits, i.e. traits representative of major func-
tions, such as growth, stress resistance, defence and reproduc-
tion (Keddy, 1992; Violle et al., 2007). Trait-based approaches 
in plant ecology have a long history of classifying plant species 
into functional groups according to the combination of pheno-
typic traits they exhibit (Garnier et al., 2016). Such approaches 
have been mainly applied for comparative analyses at the inter-
specific level to identify general patterns of trait variation and 
covariation. However, recent comparative analyses argue for a 
better integration of intraspecific variability for understanding 
the role of trait covariation in plant adaptation, ecosystem func-
tioning and community assembly (Albert et  al., 2010, 2011; 
Violle et al., 2012; Siefert et al., 2015).

Amongst the prominent examples of plant species classi-
fication, Grime (1977) defined ecological strategies based on 

the idea that there are two main ecological drivers of plant 
diversification: (1) the effect of stress related to the shortage of 
resources (e.g. nutrient, water and light); and (2) the effect of 
disturbance. Stress is viewed in this context as any environmen-
tal factors or combination of factors that reduce plant growth, 
although the shortage of nutrients, water or light can each affect 
specific traits (Grime and Hunt, 1975; Grime, 1977; Hodgson 
et al., 1999). By contrast, disturbance is viewed as factors that 
cause the partial or total destruction of plant biomass, which 
include grazing, trampling and mowing, but also extreme cli-
matic events such as severe drought, frost and fire (Grime and 
Hunt, 1975). Differences in disturbance and stress intensity are 
expected to result in quantitative variation in three ecological 
strategies: (1) stress tolerators (S) in stressed, resource-poor 
habitats with low disturbance, which invest resources to pro-
tect tissue from stress damages; (2) ruderals (R) in resource-
rich environments associated with repeated disturbance, which 
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invest resources in rapid reproduction and propagule dispersal; 
and (3) competitors (C) in highly productive habitats with low 
stress intensity and disturbance, which invest resources in the 
rapid growth of large organs to outcompete neighbours. The 
S–R axis is traditionally viewed as an axis of resource-use vari-
ations at the leaf level (Pierce et al., 2013), where ruderality is 
associated with acquisitive resource use (characterized by short-
lived, flimsy leaves with high nutrient concentration and high 
net photosynthetic rate), and stress tolerance is associated with 
conservative resource use (characterized by long-lived, tough 
leaves with low nutrient concentration and low net photosyn-
thetic rate). By contrast, variation in competitive ability along 
the C axis is thought to reflect variation in plant and organ size, 
and it is expected to operate where the impacts of stress and dis-
turbance are low (Grime, 1977; Hodgson et al., 1999).

Originally designed in the context of temperate herbaceous 
vegetation, the CSR scheme has been extended to other types 
of vegetation (Caccianiga et  al., 2006; Navas et  al., 2010; 
Schmidtlein et al., 2012), including a recent worldwide applica-
tion (Pierce et al., 2017). An algorithm has recently been devel-
oped to quantify the CSR scores of diverse plant species based 
on the measurement of three leaf traits: leaf area (LA); specific 
leaf area (SLA); and leaf dry matter content (LDMC) (Pierce 
et al., 2013, 2017). Albeit less precise than methods that con-
sider whole-plant traits, which are more closely associated with 
stress response, competitive ability and ruderality (Hodgson 
et al., 1999), classification tools based on a few leaf traits have 
the advantage that many measurements can be performed with 
minimal effort. This makes it possible to compare very ecologi-
cally disparate species (Pierce et al., 2017), or many genotypes 
and populations within species (May et al., 2017).

Arabidopsis thaliana is a small, rosette-shaped species that 
is widely used in molecular biology and quantitative genetics. 
It has recently gained renewed interest in evolutionary ecology 
due to the large collection of natural accessions collected from 
various climates and genotyped at high density (Weigel, 2012). 
Furthermore, A. thaliana has been shown to exhibit a significant 
range of phenotypic variation in relation to climate, making it 
possible to investigate the genetic and evolutionary drivers of 
functional diversification (Vasseur et al., 2018). For instance, 
QST–FST analysis has been proposed as a powerful way to dis-
criminate adaptive and non-adaptive processes at the origin of 
phenotypic differentiation between genetic groups, populations 
or lineages (Leinonen et al., 2013). Indeed, this method allows 
one to compare the level of phenotypic differentiation (QST) 
with the genetic differentiation (FST) expected under the neu-
tral model of population divergence. In plants, this has been 
used to investigate the role of selection at the origin of between-
population phenotypic differences related to resource-use traits 
(Brouillette et al., 2014), drought resistance (Ramírez-Valiente 
et al., 2018), life history traits (Moyers and Rieseberg, 2016) 
and functional adaptation to an elevation gradient (Luo et al., 
2015).

Arabidopsis thaliana is generally described as a ruderal spe-
cies that, like most annual plants, reproduces quickly and pref-
erentially invests resources in the production and dispersal of 
propagules (Díaz et al., 2016; Pierce et al., 2017). In a recent 
paper, May et al. (2017) used the CSR framework to investi-
gate intraspecific variation in ecological strategies within this 

species. Using 16 accessions originating from contrasted cli-
mates in Europe, they found that A. thaliana actually exhibits a 
wide range of variation from ruderals to stress tolerators, with 
most accessions being classified as intermediate (SR) and none 
as a competitor. Interestingly, May et al. (2017) also found that 
ruderality was negatively correlated with the temperature at the 
site where the accession originated. For instance, stress tolera-
tors originated predominantly from sites in hot climates (Libya, 
Sicily and Cape Verde Islands). However, May et  al. (2017) 
used a relatively low number of accessions, which prevents 
examination of the evolutionary and adaptive bases of CSR 
variations with the environment.

In the present study, we analysed CSR variations in a set of 
426 A.  thaliana accessions originating from contrasting cli-
mates in Europe, North Africa and East Asia. Using the classifi-
cation method based on three leaf traits (LA, SLA and LDMC) 
(Pierce et al., 2017), we tested the range of ecological strate-
gies exhibited by these accessions. We investigated whether the 
variation in strategies can be attributed to adaptive processes, 
using the genetic data available in this species to perform QST–
FST analysis. We also examined how CSR strategies measured 
with leaf traits correlated with whole-plant traits related to 
competitive ability (rosette size) and propagule dispersal (fruit 
number). Finally, we compared our results with the findings of 
May et  al. (2017), and discuss the possible causes of differ-
ences between studies, such as the direction of trait–environ-
ment relationships.

MATERIALS AND METHODS

Plant material

Two experiments were performed in this study: the first one in 
the PHENOPSIS automaton (see below) and the second one in 
a greenhouse. In the first experiment we used a total of 400 nat-
ural accessions of Arabidopsis thaliana representative of a geo-
graphical sampling from the worldwide lines of the RegMap 
population (Horton et  al., 2012) (n  =  214) and from French 
local populations (Brachi et al., 2013) (n = 186). In the second 
experiment, we used a total of 200 accessions from a random 
sampling from the worldwide lines of the RegMap popula-
tion. Overall, 426 accessions ranging latitudinally from North 
Africa to Scandinavia were phenotypically characterized, 172 
of which were common to the two experiments (Supplementary 
Data Tables S1 and S2).

Experimental design

In Experiment 1 (PHENOPSIS), plants were grown in the 
high-throughput phenotyping platform PHENOPSIS (Granier 
et al., 2006) in 2014, using one replicate plant per accession, 
except for Col-0 for which there were ten replicates. Seeds were 
stratified in the dark at 4 °C for at least 1 week before sowing 
to ensure homogeneous germination among genotypes. Four to 
six seeds were sown at the soil surface in 225-mL pots filled 
with a 1:1 (v:v) mixture of loamy soil and organic compost. 
Prior to sowing, the soil surface was moistened with one-tenth 
strength Hoagland solution, and pots were kept in the dark for 
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48 h under controlled environmental conditions (20 °C, air rela-
tive humidity 70 %). Pots were then placed in the PHENOPSIS 
automaton growth chamber at 20  °C, daylength12 h, relative 
humidity 70 % and photosynthetic photon flux density (PPFD) 
175  µmol m−2 s−1. Pots were sprayed with deionized water 
three times per day until germination, and soil water content 
was then adjusted to 0.35 g H2O g−1 dry soil (soil water poten-
tial –0.07 MPa) to ensure optimal growth (Aguirrezábal et al., 
2006; Vile et al., 2012; Vasseur et al., 2014). After emergence 
of the fourth leaf, seedlings were thinned to keep only one plant 
in each pot.

In Experiment 2 (greenhouse), plants were grown in four rep-
licates per accession in a greenhouse between December 2015 
and May 2016. Seeds were sown on organic soil and stratified at 
4 °C for 4 d. At the emergence of the first two true leaves, plants 
were transplanted into 300-mL individual pots filled with a 1:1 
(v:v) mixture of loamy soil and organic compost. Pots were 
randomly distributed among four blocks that were rotated every 
day in the greenhouse. All pots were watered twice a week. To 
reduce environmental heterogeneity in the greenhouse, walls 
were painted white and a semi-transparent curtain was installed 
below the glass roof. Additional light was provided to reach 
~65  µmol m−2 s−1 PPFD. Photoperiod and temperature were 
kept constant at day length 12 h and day/night temperatures of 
18/16 °C, respectively.

Trait measurement

In both experiments, traits were measured following stand-
ardized protocols (Perez-Harguindeguy et al., 2013) at a fixed 
phenological stage when flower buds were macroscopically 
visible [i.e. bolting stage, used as measurement of flowering 
time (FT)]. The lamina of a fully expanded, adult, non-senes-
cent leaf exposed to light was detached from the rosette, kept 
in deionized water at 4  °C for 24 h for water saturation, and 
then weighed (mg). After determination of water-saturated 
mass, individual leaves were scanned for determination of 
LA (mm2) using ImageJ (https://imagej.nih.gov/ij/). Dry 
mass of the leaf lamina was obtained after drying for 72 h at 
65  °C. We calculated LDMC (mg g−1) and SLA (mm2 mg−1) 
as the ratio of lamina dry and water-saturated masses and the 
ratio of lamina area to lamina dry mass, respectively (Perez-
Harguindeguy et al., 2013). In the PHENOPSIS, plants were 
harvested at first opened flower and rosette fresh mass (mg) was 
measured. In the greenhouse, plants were harvested after full 
senescence and the total number of fruits was manually counted 
on the inflorescence. Overall, out of the 400 and 200 acces-
sions in PHENOPSIS and the greenhouse, respectively, 357 
and 198 accessions were completely phenotyped for all traits 
(Supplementary Data Tables S1 and S2), with 152 accessions 
common to both experiments.

We calculated CSR scores (i.e. percentages along the C, S 
and R axes) for all accessions in the PHENOPSIS and the green-
house based on the three traits LA, LDMC and SLA, using the 
recent method developed by Pierce et al. (2017). The method 
is based on an algorithm that combines data for three leaf traits 
(LA, SLA and LDMC) that were shown to reliably position the 
species in the CSR scheme. We calculated CSR scores for each 

accession using the average trait value per experiment using the 
calculation table provided in the supplementary information of 
Pierce et al. (2017).

Re-analysis of published data

In our study there were several accessions in common with a 
previously published analysis of CSR variations in A. thaliana 
(May et al., 2017). Ten accessions were common between May 
et al. and the PHENOPSIS experiment and six accessions in 
common with the greenhouse experiment. In May et al., CSR 
scores were calculated based on six traits with a method previ-
ously proposed by Hodgson et al. (1999). To compare the two 
datasets, we first recalculated CSR scores from data given by 
May et al. with Pierce’s method, using LA, LDMC and SLA 
provided for their 16 accessions (May et al., 2017), and com-
pared them with the CSR scores they measured with Hodgson’s 
method.

Genetic analysis and QST–FST comparisons

Genetic groups in A.  thaliana were determined by clustering 
of 395 accessions for the PHENOPSIS dataset and 198 acces-
sions for the greenhouse dataset, both using the 250  K sin-
gle nucleotide polymorphism (SNP) data available in Horton 
et  al. (2012). Clustering was performed with ADMIXTURE 
(Alexander et  al., 2009) after linkage disequilibrium pruning 
(r2 < 0.1 in a 50-kb window with a step size of 50 SNPs) with 
PLINK (Purcell et al., 2007), resulting in 24 562 independent 
SNPs. We assigned each genotype to a group if >60 % of its 
genome derived from the corresponding cluster. The acces-
sions not matching this criterion were labelled ‘admixed’ and 
were not used for the FST and QST calculation. Cross-validation 
for different numbers of genetic clusters revealed that the 
PHENOPSIS dataset was composed of six genetic groups 
(group 1, 74 accessions; group 2, 48; group 3, 18; group 4, 55; 
group 5, 5; group 6, 71; admixed, 123), while the greenhouse 
dataset was composed of four genetic groups (group 1, 38 
accessions; group 2, 16; group 3, 83; group 4, 7; admixed, 54). 
Consistent with the hypothesis of genetic divergence because 
of isolation by distance, these genetic groups were geographi-
cally clustered (Supplementary Data Fig.  S1). We calculated 
Weir and Cockerham FST value for all 24 562 SNPs, and QST 
as the between-group phenotypic variance divided by the total 
phenotypic variance, using mixed-effect models with group as 
random factor. We used a parametric bootstrap method to gen-
erate 95 % confidence intervals (CIs) around QST values with 
the package MCMCglmm in R (R Core Team, 2014) (100 000 
iterations).

Statistical analyses

Genotypic means in the greenhouse experiment were esti-
mated as the fitted genotypic values from the linear models, 
using the lsmeans function. The genotype effect on trait vari-
ation and broad-sense heritability (H2) were assessed using 
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individual data from the greenhouse experiment (Supplementary 
Data Table S3). The genotype effect was tested with one-way 
ANOVA following linear modelling, using genotype and block 
as explanatory variables. We measured H2 as the ratio of pheno-
typic variance attributable to genotypic effect to total phenotypic 
variance, using mixed-effect models with block as fixed factor 
and genotype as random factor, using the package nlme in R.

Climate variables at the collection points of each acces-
sion were extracted from the Worldclim database (http://www.
worldclim.org/bioclim), with resolution 2.5 arc-min. Trait–trait, 
trait–environment and trait–CSR relationships were examined 
with Spearman’s rank coefficients of correlation (ρ) and associ-
ated P-values, using the function cor.test (Supplementary Data 
Table S4). Pearson coefficients of correlation (r) between traits 
and climatic variables were also calculated (Supplementary 
Data Table  S5). Regression lines were drawn from Standard 
Major Axis (SMA), using the package smatr. All analyses were 
performed in R 3.2.3 (R Core Team, 2014).

RESULTS

Trait variation and covariation

All traits varied significantly among accessions (all P < 0.001; 
Supplementary Data Table S3). We found that FT ranged between 
30 and 101 d (57 d on average) in the PHENOPSIS and between 
25 and 115 d (61 d on average) in the greenhouse. Trait variation 
was mainly due to genetic variability among accessions, as meas-
ured by the high amount of phenotypic variance accounted for 
by the genotype effect (H2 ranged between 0.58 for LA and 0.73 
for SLA, 0.88 for FT; Supplementary Data Table S3). Most traits 
were correlated with each other (Supplementary Data Fig. S2, 
Tables  S4 and S5): SLA and LDMC were negatively corre-
lated (Spearman’s ρ = −0.94 and −0.88 in the PHENOPSIS and 
the greenhouse, respectively; both P  <  0.001) (Supplementary 
Data Fig. S2F), and FT was positively correlated with LDMC 
(ρ = 0.63 and 0.86; P < 0.001) (Supplementary Data Fig. S2B) 

and negatively with SLA (ρ = −0.73 and −0.92; both P < 0.001) 
(Supplementary Data Fig. S2D).

CSR classification

Arabidopsis thaliana accessions mainly varied along the S–R 
axis, between purely ruderals (R) and moderate stress tolerators 
(S/SR) (Fig. 1). We found only three accessions (together <1 %)  
classified as CS, CR or CSR. The accessions were mainly 
R-oriented: R, R/CR, R/CSR and R/SR represented 84 and 91 %  
of all accessions in the PHENOPSIS and the greenhouse, 
respectively (Table  1). Although we calculated CSR scores 
with only three leaf traits using Pierce’s method, whole-plant 
traits were consistent with our classification. For instance, the 
C-axis is expected to be related to plant size and height, while 
the R-axis is expected to be related to FT and seed dispersal 
(Grime, 1977; Hodgson et al., 1999). Accordingly, we found 
that the C- and R-axes were positively but poorly correlated 
with rosette fresh mass and the total number of fruits, respec-
tively (ρ < 0.50, P < 0.05; Supplementary Data Fig. S3).

The CSR scores were significantly correlated between the 
PHENOPSIS and greenhouse experiments, as measured across 
the 152 accessions common to both experiments (ρ  =  0.34, 
0.41 and 0.54 for C, S and R, respectively, all P  <  0.001; 
Supplementary Data Fig.  S4). However, they were also sig-
nificantly different between the two experiments (P < 0.01 for 
all the three scores). Accordingly, 78 accessions (51 %) were 
classified in different CSR groups between the two experi-
ments (‘plastic’ accessions hereafter). Globally, plastic acces-
sions shifted towards more ruderal strategies in the greenhouse 
compared with the PHENOPSIS, as reflected by the differences 
in S and R scores between experiments (Fig. 2). Twenty-two 
percent of the plastic accessions were classified as R in the 
PHENOPSIS and R/CR in the greenhouse (inversely, 18 % 
were classified as R/CR in the PHENOPSIS and R in the green-
house). Comparatively, C scores did not differ a lot between the 
two experiments (Fig. 2B).

PHENOPSISA B

R RC C

SS

1000 1000

0 0100 100

0 100 0 100

Greenhouse

Fig. 1.  CSR variation (%) in A. thaliana. (A) CSR representation of the 357 accessions from the PHENOPSIS. (B) CSR representation of the 198 accessions from 
the greenhouse. Dots are coloured according to CSR score following the colour code provided in Pierce et al. (2017).
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Relationships between CSR scores, flowering time and climate

Ruderality was positively correlated with SLA and mean 
annual temperature (MAT, °C) at the collection point of 
the accessions, but negatively with FT and LDMC (Fig.  3; 
Supplementary Data Tables S4 and S5). Thus, our results sug-
gest that ruderality is typical of early-flowering plants with leaf 
traits representative of fast resource acquisition, as reflected by 
low LDMC and high SLA values (Wright et al., 2004; Shipley 
et al., 2006). Inversely, stress tolerators were characterized by 
late flowering, with resource-conservative trait values such as 
high LDMC and low SLA, which were negatively correlated 
with MAT (Supplementary Data Fig. S5). Consistently, S and 
R strategies were positively and negatively correlated with lati-
tude, respectively (Supplementary Data Table S4).

The QST–FST analysis suggested that the latitudinal varia-
tions in CSR strategies resulted from adaptive processes such 

as natural selection acting on leaf traits. Indeed, a value of QST 
significantly higher than FST at neutral loci is generally con-
sidered a signature of diversifying selection on the underlying 
traits (Leinonen et al., 2013). Here, we used the 95th quantile 
of the FST distribution genome-wide as a threshold of signifi-
cance for phenotypic differentiation above neutral expectation. 
In the greenhouse, both S and R scores were significantly above 
neutral FST (QST = 0.95, 95 % CI 0.72–1.00 for S; QST = 0.82, 
95 % CI 0.62–1.00 for R; mean FST = 0.09 and FST 95th quan-
tile = 0.35; Fig. 4A). In the PHENOPSIS, only R scores were 
above, but not significantly above, neutral FST (QST = 0.37 versus 
FST 95th quantile = 0.33). The S scores were slightly, and non-
significantly, below the neutral expectation (QST = 0.29, 95 %  
CI 0.10–0.80; Fig.  4C). By contrast, in both the greenhouse 
and the PHENOPSIS, QST values of C scores were close to 0, 
suggesting that this axis of plant strategies did not vary under 
the influence of adaptive processes in A.  thaliana. The lower 
QST values reported for the PHENOPSIS experiment can be 
explained by the absence of individual replicates in this experi-
ment. By contrast, using the genotypic mean in the greenhouse 
across four replicates made it possible to reduce intra-genotypic 
variance and thus total phenotypic variance compared with 
phenotypic variance between genetic groups. Consistent with 
these results, plotting the distribution of A.  thaliana ecologi-
cal strategies across Europe (Fig. 4B, D) revealed that acces-
sions with S-oriented strategies (S, SR, SR/CSR, S/CSR, S/SC, 
SC and SC/CSR) originated from northern regions, Sweden in 
particular.

Comparison with observations from May et al. (2017)

In contrast with our results, the 16 accessions in the study 
published by May et al. were mainly categorized as S-oriented: 
S/SC, S/SR, S/CSR, SR and SR/CSR (Table 1; Supplementary 
Data Fig. S6). May et al. used Hodgson’s method to calculate 

Table 1.  Proportion (%) of ecological strategies among A. thaliana  
accessions.

PHENOPSIS Greenhouse Original scores 
from May et al. 
(2017)

Recalculated 
scores with data 
from May et al. 
(2017)

R 25.5 24.2 31.3
R/CR 47.6 58.6 12.5
R/CSR 8.7 7.1
R/SR 2.2 1.5 6.2 6.2
SR/CSR 8.4 4.5 12.5
SR 0.6 3.5 56.3 25.0
S 0.2
S/CSR 3.1 0.6 18.7
S/SC 25.0
S/SR 2.8 6.3
CSR 0.3
CS 0.3
CR 0.3
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Fig. 2.  Plasticity of CSR classification in A. thaliana. (A) The 78 plastic accessions that have a different CSR classification (%) between the PHENOPSIS and 
greenhouse experiments are plotted. Arrows start at the greenhouse position and end at the PHENOPSIS position, and are coloured according to CSR scores in 
the PHENOPSIS, following the colour code provided in Pierce et al. (2017). (B) Boxplot representing the difference in CSR scores (%) between experiments 

(greenhouse values minus PHENOPSIS values).
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CSR scores with seven traits, including FT and duration, two 
important components of ruderality (Hodgson et  al., 1999). 
To compare the two classification methods, we used the trait 
values for LA, SLA and LDMC provided by May et al. to cal-
culate CSR scores with Pierce’s method and compared them 
with those calculated with Hodgson’s method. The CSR scores 
calculated with the two methods were positively correlated 

(ρ  =  0.77, 0.79 and 0.73 for C, S and R, respectively; all 
P < 0.01; Supplementary Data Fig. S7), suggesting that the two 
methods return similar categorizations (Table 1). However, and 
despite the significant correlations, CSR scores varied substan-
tially between the two methods (Supplementary Data Fig. S7). 
This showed that the traits related to ruderality (FT and dur-
ation) and competition (plant height and lateral spread) used in 
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Hodgson’s method impacted the inference of plant ecological 
strategies compared with leaf traits alone.

Values of FT measured in this study were strongly positively 
correlated with those measured by May et al. under controlled 

conditions (n = 10 and 6 in the PHENOPSIS and the green-
house, respectively, both r  =  0.96, P  <  0.01; Supplementary 
Data Fig. S8A). By contrast, LDMC measured by May et al. was 
negatively correlated with our measurements (Supplementary 
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Data Fig.  S8D), possibly because of three individuals with 
early FT and extremely high LDMC values (>250 mg g−1) com-
pared with our measurement (<110 mg g−1) on the same acces-
sions (red dots in Fig. 3C). As a result, FT and LDMC were 
negatively, albeit non-significantly, correlated in the May et al. 
study (ρ = −0.35; Fig. 3C). Furthermore, there was a positive 
correlation between LDMC and MAT in May et al. (P < 0.05), 
while we found the opposite in both the PHENOPSIS and the 
greenhouse (Fig. 3B). By construction of the CSR classifica-
tion method, LDMC participates strongly in the S and R axes 
(Fig. 3F; Supplementary Data Fig. S5). Consequently, the posi-
tive correlation between LDMC and MAT found in May et al. 
was associated with a positive correlation between S and MAT 
(Supplementary Data Fig. S5D), and inversely a negative cor-
relation between R and MAT (Fig.  3D), although these two 
relationships were not significant with the 16 accessions from 
May et al. when using Pierce’s method of CSR classification.

DISCUSSION

Functional adaptation to climate in A. thaliana

The relationship between CSR and climate at the interspecific 
level is still not well established (Pierce et  al., 2017). More 
broadly, trait–environment relationships remain a central ques-
tion in functional ecology and functional biogeography (Poorter 
et al., 2009; Violle et al., 2014; Borgy et al., 2017; Butler et al., 
2017; Šímová et  al., 2018). By contrast, adaptation to cli-
mate has been widely studied within species, notably genetic 
adaptation along latitudinal or altitudinal gradients in annual 
plants, and in A. thaliana in particular (Johanson et al., 2000; 
Picó et al., 2008; Banta et al., 2012; Guo et al., 2012; Brachi 
et al., 2013; Wolfe and Tonsor, 2014; Bloomer and Dean, 2017; 
Tabas-Madrid et  al., 2018). Indeed, A.  thaliana has been the 
model species in molecular biology, plant genetics and evo-
lution in recent decades (Bergelson and Roux, 2010; Weigel, 
2012). It is widely distributed in various climates, but is gener-
ally considered as a ruderal species that grows fast, reproduces 
early and dies right after seed dispersal (Pierce et al., 2017). As 
expected, we found in this study that A. thaliana was predomi-
nantly ruderal, secondly a stress tolerator and poor competi-
tor. However, we showed an important range of CSR variation 
among A. thaliana accessions along the S–R axis and associ-
ated with FT variation.

Consistent with previous studies, FT was positively corre-
lated with latitude (Caicedo et al., 2004; Lempe et al., 2005; 
Banta et al., 2012). For instance, northern accessions exhibit 
late flowering and a long life cycle even when they are grown 
under controlled conditions in a growth chamber or greenhouse 
(Vasseur et al., 2018). Our results showed that FT was positively 
correlated with LDMC, and that values for the two traits were 
higher in accessions originating from higher latitudes and lower 
temperatures. Thus, northern accessions exhibit a suite of traits 
associated with resource conservation and longevity, such as 
late flowering, high LDMC and low SLA (Wright et al., 2004; 
Shipley et al., 2006; Vasseur et al., 2012). The QST–FST analysis 
revealed that these latitudinal variations result from the adap-
tive diversification of leaf traits. These adaptive shifts can be 
explained because, in cold regions, biomass production during 

the growing season is limited by various stresses. Low tem-
peratures directly limit plant growth rate by slowing metabolic 
processes. Furthermore, cold indirectly limits plant growth rate 
because of the reduction in the availability of water and nutri-
ents. In these conditions, a slow-growing genotype with a long 
life cycle, associated with high LDMC, low SLA and low meta-
bolic activities, can be an efficient strategy. Interestingly, stress 
tolerance has been shown to be selected at both ends of the geo-
graphical range of A. thaliana, but is expressed under different 
temperature conditions (Exposito-Alonso et al., 2018; Vasseur 
et al., 2018).

Conversely, ruderal strategies were more abundant in tem-
perate and hot environments. Ruderal plants are typically 
associated with a short life cycle, low LDMC and high SLA, 
and presumably high metabolic rate and low tissue protection 
(Grime, 1977). In temperate climates with a relatively long 
growing season and high resource availability, these charac-
teristics may allow A.  thaliana individuals to complete their 
growth cycle early and avoid competition with taller species. 
Furthermore, in hot and dry climates with a shorter growing 
period (e.g. the Mediterranean climate), fast-growing strate-
gies may allow A. thaliana individuals to complete their growth 
cycle and disperse before the onset of drought, which oper-
ates as a disturbance rather than a stress, and should therefore 
be more favourable to ruderality (Madon and Médail, 1997; 
Volaire, 2018). This result is consistent with interspecific stud-
ies at global scale that reported a positive relationship between 
SLA and temperature in herbaceous species (Borgy et  al., 
2017; Šímová et al., 2018). This can be interpreted as a sign of 
selection for fast-growth ruderal strategies in hot and stressing 
environments at both intra- and interspecific levels (Anderegg 
et al., 2018).

The lack of adaptive differentiation between genetic groups 
along the C axis, as reflected by the low QST values compared 
with neutral FST, can be explained by the low variation in com-
petitive ability among A.  thaliana accessions. Additionally, it 
could suggest that competitive environments can be found in 
various climates as long as stress does not dominate vegeta-
tion processes. This would also explain the lack of a clear geo-
graphical pattern and latitudinal gradient of competitive ability 
across plant populations and species (Damgaard and Weiner, 
2017).

Influence of classification methodologies, trait measurement and 
growth conditions on trait–environment relationships

Trait–trait, trait–CSR and trait–environment relationships 
were sometimes opposite between May et al. (2017) and our 
study. For instance, May et al. reported a positive correlation 
between stress tolerance and mean temperature, while we 
found the opposite. A first explanation of these differences is 
the methods used to calculate CSR scores among accessions. 
Although Pierce’s and Hodgson’s scores were all positively cor-
related when performed on the same set of traits and accessions, 
scores obtained from the two methods varied substantially. For 
instance, an accession had an S score of 35 % with Hodgson’s 
method but 0 % with Pierce’s method (Supplementary Data 
Fig. S7B). The re-analysis of the data of May et al. (2017) made 
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by the authors of that paper (A. Wingler, University College 
Cork, Ireland, pers. comm.) indicated that the three accessions 
with very high values for S identified using Hodgson’s method 
(Mt-0, Cvi-0 and Ct-1) were no longer in the top three ranked 
accessions for S when using Pierce’s method, which led to a 
lack of correlation of S and R with temperature when using 
this method. This can be explained because life history traits 
at whole-plant level, notably FT and plant size, are important 
components of ruderality and competitive ability in herbaceous 
species (Violle et al., 2009; Hodgson et al., 2017), but they are 
not included in Pierce’s method of CSR classification. Here, 
we found that C and R axes calculated with leaf traits were 
positively, but poorly, correlated with rosette fresh mass and 
fruit number, respectively. Additionally, many early-flowering 
accessions were similarly classified as purely ruderal (R = 100 
%), although they displayed variations in leaf traits and FT, and 
consequently in their level of ruderality. This was translated 
into no or small differences in CSR strategies between acces-
sions from temperate and Mediterranean climates (Fig.  4), 
although Mediterranean accessions can be very short-lived and 
thus more ruderal than accessions from less stressing environ-
ments (Vasseur et al., 2018). Together, this suggests that clas-
sification methods based on leaf traits can be a powerful means 
of screening large databases or performing many measurements 
at global scale, but might be of limited value in the examina-
tion of subtle variations within species and/or in specific taxa. 
For instance, including other, easily measurable traits might be 
necessary to better describe ruderality in annual plants, such 
as phytomer miniaturization and the number of juvenile phy-
tomers, because each promotes early maturity (Hodgson et al., 
2017).

A second explanation of the opposite trait–environment rela-
tionships found between this study and May et  al. (2017) is 
the difference in the protocols used for trait measurement. In 
our experiments, we followed the recommended procedures 
to phenotype traits of all individuals at the same ontogenetic 
stage (Reich et  al., 1999; Perez-Harguindeguy et  al., 2013). 
Specifically, LDMC and SLA were measured at the transition 
to flowering (i.e. bolting stage). By contrast, leaf traits were 
measured in a growth chamber at the same age by May et al. 
(61 d for LDMC), although FT in the growth chamber varied 
from 30 to 82 d (and some accessions did not flower at all), and 
although it is widely recognized that leaf traits strongly vary 
during plant ontogeny (Walters et al., 1993; Hérault et al., 2011; 
Pantin et al., 2012). In other words, LDMC was measured 30 d 
after flowering for the earliest accessions and before flowering 
for the latest ones. With such a procedure, the leaves compared 
might have been in contrasted physiological stages. In particu-
lar, leaves measured on the early-flowering accessions might 
have been – at least in part – senescing, which may result in 
much higher LDMC values – and lower SLA values – in these 
accessions (Fig.  3C). In agreement with this hypothesis, the 
LDMC values measured on the early flowering accessions in 
our experiment were approximately half of the values estimated 
by May et al. As LDMC strongly participates in the S–R axis, 
this could explain the opposite correlations between CSR and 
environment between the two studies. Furthermore, we found 
that FT was positively correlated with LDMC, consistently 
with previous studies in a smaller set of accessions (Vile et al., 
2012), as well as in recombinant inbred lines (El-Lithy et al., 

2010; Vasseur et al., 2012, 2014). Previous studies have notably 
reported that early-flowering genotypes have resource-acquisi-
tive strategies, characterized by high SLA but low LDMC and 
short lifespan (El-Lithy et al., 2010; Vasseur et al., 2012, 2014, 
2018; Blonder et al., 2015).

Finally, opposite correlations between studies might also 
result partly from trait plasticity to growth conditions. In 
A.  thaliana FT is expected to vary with light conditions and 
temperature (Mouradov et al., 2002). For instance, A. thaliana 
does not generally flower under short-day conditions. In our 
study, traits were measured in controlled and constant condi-
tions, on plants grown in a 12-h photoperiod and without cold 
exposure (i.e. vernalization). However, we could expect FT and 
leaf traits, and thus CSR–environment relationships, to be dif-
ferent when measured on plants grown outside, as in May et al. 
(2017), after vernalization or in short- or long-day conditions. 
Consistent with this idea, we found that half the accessions 
common to the PHENOPSIS and the greenhouse did not have 
the same position in the CSR space: plants grown in the green-
house were generally shifted towards the R end of the spectrum 
compared with plants grown in the PHENOPSIS. This can be 
explained by the relative low light intensity provided by arti-
ficial lamps in the greenhouse compared with the phenotyp-
ing platform (65 versus 175 µmol m−2 s−1 PPFD). In addition, 
plants were grown in the greenhouse at higher density than in 
the PHENOPSIS, which could have increased competition for 
light between plants. The shade-avoidance syndrome has been 
described as a suite of leaf trait responses to low light and com-
petition (Kim et al., 2005; Mullen et al., 2006). This includes 
an increase in leaf angle and SLA, associated with a reduction 
in LDMC and FT (Kim et al., 2005; Vasseur et al., 2011). This 
is consistent with a shift towards resource-acquisitive strategies 
in the greenhouse. Importantly and more broadly, controlled 
conditions are very different from the natural conditions that 
plants experience in the wild, and where plants should ide-
ally be measured to properly infer their ecological strategies. 
However, it remains difficult to take into account genotype × 
environment interactions when screening genotypes in natural 
conditions. Consequently, trait-based approaches for the func-
tional classification of plants were initially proposed as a tool to 
infer the adaptive significance of traits in controlled conditions 
(Grime and Hunt, 1975).

Conclusions

Intraspecific variation in functional strategies varied sub-
stantially along the S–R axis in A. thaliana. Tolerance to stress 
seems to be favoured in cold environments at higher latitudes 
while ruderality is predominant in temperate and hot climates. 
However, CSR categorization within species, specifically in 
a herbaceous species like A.  thaliana, is sensitive to several 
parameters, such as the type of traits used to classify accessions 
and the protocols used for trait measurement. Furthermore, our 
results suggest that phenotypic plasticity to growth conditions 
can significantly impact trait values and thus the determina-
tion of plant ecological strategies. This suggests that the use of 
trait databases for local or global analyses of trait–environment 
relationships at species level might suffer from biases due to 
both phenotypic plasticity and intraspecific trait variation. In a 
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recent analysis, ruderality has been demonstrated to correlate 
positively with the probability of naturalization of alien spe-
cies (Guo et al., 2018). In future studies it will be interesting to 
examine in more detail the response of traits, trait combinations 
and strategies to environmental conditions. For instance, ana-
lysing the plasticity of CSR strategies to different temperatures 
and water stresses could reveal whether S-related strategies 
are constitutive or stress-induced, and whether invasive spe-
cies show greater plasticity in ecological strategies than other 
species.

SUPPLEMENTARY DATA

Supplementary Data are available online at https://academic.
oup.com/aob and consist of the following. Table  S1: pheno-
typic traits measured in the PHENOPSIS experiment. Table S2: 
phenotypic traits measured in the greenhouse experiment. 
Table S3: heritability and genetic effects on traits measured in 
the greenhouse experiment. Table S4: Spearman’s pairwise cor-
relations between traits and environments. Table S5: Pearson’s 
pairwise correlations between traits and environments. Fig. S1: 
geographical location of the genetic groups defined by SNP 
clustering. Fig.  S2: trait–trait relationships in A.  thaliana. 
Fig. S3: correlations between C and R axes, plant biomass and 
fruit number. Fig. S4: correlations between CSR scores in the 
PHENOPSIS and greenhouse experiments. Fig. S5: CSR–trait 
and CSR–environment relationships in A.  thaliana. Fig.  S6: 
CSR representation of the 16 accessions from May et al. (2017). 
Fig. S7: correlation between Hodgson’s and Pierce’s methods 
for quantifying CSR. Fig. S8: correlations between traits meas-
ured by May et al. (2017) and the present study.
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