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Dilute suspensions of repulsive particles exhibit a Newtonian
response to flow that can be accurately predicted by the par-
ticle volume fraction and the viscosity of the suspending fluid.
However, such a description fails when the particles are weakly
attractive. In a simple shear flow, suspensions of attractive
particles exhibit complex, anisotropic microstructures and flow
instabilities that are poorly understood and plague industrial
processes. One such phenomenon, the formation of log-rolling
flocs, which is ubiquitously observed in suspensions of attrac-
tive particles that are sheared while confined between parallel
plates, is an exemplar of this phenomenology. Combining exper-
iments and discrete element simulations, we demonstrate that
this shear-induced structuring is driven by hydrodynamic cou-
pling between the flocs and the confining boundaries. Clusters of
particles trigger the formation of viscous eddies that are spaced
periodically and whose centers act as stable regions where par-
ticles aggregate to form flocs spanning the vorticity direction.
Simulation results for the wavelength of the periodic pattern
of stripes formed by the logs and for the log diameter are in
quantitative agreement with experimental observations on both
colloidal and noncolloidal suspensions. Numerical and experimen-
tal results are successfully combined by means of rescaling in
terms of a Mason number that describes the strength of the
shear flow relative to the rupture force between contacting par-
ticles in the flocs. The introduction of this dimensionless group
leads to a universal stability diagram for the log-rolling struc-
tures and allows for application of shear-induced structuring as
a tool for assembling and patterning suspensions of attractive
particles.

attractive suspensions | pattern formation | hydrodynamic stability

Spherical particles suspended in a viscous fluid constitute a
canonical system for rheological analysis and have played a

key role in our fundamental understanding of multiphase flow
(1). From the seminal work of Einstein on the viscosity of a
dilute suspension of spheres (2, 3) to the recent progress in
simulations of large numbers of particles interacting hydrody-
namically (4), model suspensions have allowed physicists and
engineers to attack complex problems such as energy storage in
flow batteries and flow capacitors (5, 6), food texture and shelf
life (7), or more recently collective dynamics in active matter
(8, 9). The case of purely repulsive particles, e.g., hard-sphere–
like particles, is now well understood at least up to packing
fractions of 40% where the mechanics of frictional contacts
between the particles do not play a significant role (10–13).
Nonetheless, in most practical cases, suspended particles dis-
play weak attractive interactions, which result in the formation
of clusters that can be disrupted by the stresses induced under
flow. As a consequence, the overall behavior of a suspension
of weakly attractive particles is dictated by a subtle competi-
tion between shear and attraction, which controls both cluster
size and cluster shape (14). This competition yields a wealth

of rheological behaviors, including wall slip (15), flow hetero-
geneities (16), and steady-state shear-banded flows (17) that
are at the core of ongoing and intense scientific investigation
(18, 19).

Here, we investigate a striking experimental observation
reported ubiquitously in dilute suspensions of attractive particles
with a wide variety of shapes and chemistries: When sheared in
a confined geometry at low enough shear rate, attractive parti-
cles suspended in a Newtonian fluid tend to self-organize into
log-rolling flocs aligned along the vorticity direction that result
in a characteristic striped pattern (Fig. 1). Such a phenomenon,
commonly referred to as shear-induced structuring, has been
indirectly evidenced by light-scattering measurements and scan-
ning electron microscopy and quantified by optical microscopy
in a broad range of colloidal (sensitive to thermal fluctuations)
and noncolloidal (insensitive to the same) systems, including
colloid–polymer mixtures (20), attractive emulsions (21), and
suspensions of carbon nanotubes (22) as well as carbon black (23,
24), alumina (25), microfibrillated cellulose (26), and graphene
oxide (27) dispersions. To date, shear-induced log formation
has been associated with the emergence of negative normal
stresses (21, 23), suggesting that vorticity alignment could be
the consequence of an elastic instability occurring locally within
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Fig. 1. Vorticity-aligned log-rolling structures obtained from experiments
and simulations by shearing attractive particles in confined gaps. The hor-
izontal direction corresponds to the velocity direction v and the vertical
direction to the vorticity direction ∇× v so that the flow-gradient direc-
tion ∇v is perpendicular to the pictures. The control parameters are [a, h,
φ, γ̇ ], where a is the mean particle radius, h the gap width of the shear-
ing device, φ the volume fraction of the suspension, and γ̇ the applied shear
rate. (A) Dispersion of colloidal carbon black particles in mineral oil [135 nm,
173 µm, 1.5%, 0.9 s−1]. The yellow and red arrows indicate the floc width d
and the pattern wavelength λs, respectively. (B) Suspension of noncolloidal
polyamide particles in water [9.4 µm, 1.5 mm, 5%, 0.8 s−1 ]. (C) Suspension
of noncolloidal hollow glass spheres in mineral oil bridged by water [6 µm,
1.5 mm, 3.1%, 20 s−1]. (D) Dynamic simulation of sheared attractive particles
with h/a = 15, φ= 16%, and Mason number Mn = 0.08. See also additional
pictures in SI Appendix and Movies S1–S11. The sketch below the images
shows the geometry of the array of log-rolling flocs in the velocity–velocity
gradient plane.

individual flocs (21, 22). However, clear experimental evidence
for such an interpretation is lacking, and there is no detailed
model that establishes a link between the floc viscoelastic prop-
erties and shear-induced structuring. Actually, no theory has yet
been proposed to explain the physical mechanism responsible for
the formation of these shear-induced patterns or to predict the
wavelength or their stability.

To elucidate the mechanism underlying log formation in con-
fined suspensions of attractive particles, we perform experiments
on three different types of particles, both colloidal and non-
colloidal, that we compare with discrete element simulations
for volume fractions φ ranging from 0.01 to 0.2. Such simu-
lations resolve the dynamics of individual particles among the
aggregates. Of the many discrete element simulation methods,
we have selected one that accurately treats the particle dynam-
ics as overdamped and that takes into account the long-range
hydrodynamic interactions mediated by the suspending fluid.
Indeed, such interactions were shown to be crucial for recov-
ering the flow-distorted microstructure observed in experiments
on confined colloidal dispersions under shear (28) as well as

the structural anisotropy associated with nonlinear rheology of
colloidal gels (29). An important piece of previous work on
attractive suspensions under shear was devoted to high packing
fractions (φ> 0.4) and used a simulation model in which only the
lubrication forces between two neighboring particles were taken
into account. In these simulations, particles were observed to
form strings aligned in the flow direction and some more complex
crystalline patterns, depending on the packing fraction and shear
rate (30). None of these structures has been observed experimen-
tally, and they do not correspond to the log-rolling flocs that we
investigate here.

We show that shearing attractive particles in a confined geom-
etry naturally leads to the formation of log-rolling flocs aligned
along the vorticity direction through a purely hydrodynamic
mechanism. Our dynamic simulations capture quantitatively the
periodicity of the patterns and the size of the flocs observed
experimentally using a variety of attractive particles. We argue
that small fluctuations in the particle number density trigger
hydrodynamic perturbations that lead to an array of corotat-
ing eddies in which particles aggregate to form the log-rolling
flocs. This scenario is supported by an analysis of the simu-
lated streamlines of the solvent flow. Finally, we provide mea-
surements of the critical shear rate above which patterns do
not form due to breakage of the aggregates by shear. This
allows us to build a universal stability diagram for the log-
rolling flocs in terms of a Mason number that measures the
ratio of the shear force acting on particles to the interparticle
attraction.

Results
Experiments. Our experimental observations of shear-induced
pattern formation are summarized in Fig. 1 A–C for a variety
of attractive suspensions sheared in confined geometries, namely
(i) a colloidal gel of soot particles (carbon black) suspended in
mineral oil and sheared under simple planar shear, (ii) a sus-
pension of noncolloidal polyamide particles in water, and (iii)
a capillary suspension of noncolloidal hollow glass spheres in
mineral oil; both of the latter suspensions are sheared in a con-
centric cylinder (Taylor-Couette) cell. Attraction between the
particles results, respectively, from (i) van der Waals interac-
tions (31–34), (ii) “hydrophobic” forces (35, 36), and (iii) water
capillary bridges (37, 38) (see SI Appendix, Table S1 and Mate-
rials and Methods for details). Going beyond previous reports
on shear-induced structuring (21–26), Fig. 1 demonstrates that
log-rolling flocs form perpendicular to the shearing direction
whatever the origin of the attractive forces between the parti-
cles. Moreover, such a phenomenon is not restricted to colloidal
dispersions since noncolloidal suspensions of particles up to 20
µm diameter display similar shear-induced patterns (Fig. 1 B and
C). This prompts us to look for a universal mechanism medi-
ated by hydrodynamic forces rather than by the nature of the
interparticle forces or by the viscoelastic properties of the flocs.
The discrete element simulations shown in Fig. 1D and detailed
in the next paragraph exhibit a strikingly similar pattern of
vorticity-aligned flocs.

Fig. 2 provides a full, quantitative characterization of the log-
rolling floc patterns observed in the three experimental systems
discussed above as well as in the simulations. For different gap
spacings h , we systematically report the average floc width d and
the average pattern wavelength λs in Fig. 2 A and B, respectively
(Materials and Methods). When normalized by the mean particle
radius a , all of the experimental data collapse remarkably onto
master curves that span over two decades in the gap-to-particle
size ratio h/a: We find that, up to experimental uncertainty,
d ≈ h and λs ≈ 2.5h . These results are robust to changes in the
particle volume fraction φ, up to at least φ=0.1 (Fig. 2 C and
D). To provide further insight into these experimental results,
we turn to analysis of dynamical simulations.
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Fig. 2. Steady-state characteristics of the shear-induced patterns observed
in experiments and in simulations. (A and B) Apparent diameter d of the
vorticity-aligned flocs (A) and wavelength λs of the pattern normalized by
the mean particle radius a and shown as a function of the gap width h
normalized by a (B). (C and D) d/h (C) and λs/h (D) as a function of the
volume fraction φ. Solid lines in A, C and B, D indicate d = h and λs = 2.5h,
respectively. Experiments are performed with carbon black particles (black
squares), polyamide particles (green circles), and hollow glass spheres (blue
circles). Simulations in A and B are performed at φ= 10% (solid triangles)
and φ= 15% (open triangles).

Simulations. We perform discrete element simulations of non-
colloidal particles. Athermal simulations yield faster computa-
tion and allow exploration of a greater parameter space while
probing particle and flow geometries consistent with the exper-
iments. The particles are suspended in a fluid of viscosity η
and are subject to short-range attractive interactions. The sus-
pension is confined by hard, parallel walls in a box of height
h in the flow-gradient direction that is periodic in the flow-
vorticity plane. The strain rate is set by the Mason number,
Mn=6πηa2γ̇/F , which is the ratio of the shear forces exerted
on a particle (by viscous shearing of the surrounding solvent)
relative to the interparticle bond force at contact, F . The Rotne–
Prager–Yamakawa (RPY) tensor (39) is used to account for the
long-range hydrodynamic interactions among the particles and
between the particles and the walls (see Materials and Methods
for details).

Under all conditions explored, the suspension reaches a steady
state under external shear after a strain γ= γ̇t ≈ 100. For a large
range of Mason numbers, we observe strong vorticity alignment
and the formation of log-rolling structures with a well-defined
diameter and periodic spacing, very similar to that observed in
the experiments (Fig. 1D and Movies S1–S11). We measure the
average floc diameter d together with the wavelength λs of the
pattern in steady state. Both quantities exhibit the same scaling
with the gap size h as observed in the experiments (Fig. 2 A and
B). The floc width and the pattern spacing are also independent
of the particle volume fraction, φ, as in the experiments. Simula-
tions allow us to explore a range of volume fractions up to 20%
(Fig. 2 C and D). These results confirm that fixing the ratio of
wall gap to particle size while increasing φ leads to flocs with a
denser internal structure.

The simulations also reveal that there is a critical initial pack-
ing fraction φmax' 0.2 beyond which the suspension is too dense
to separate into stable logs. We estimate φmax using conservation
of the total number of particles. The particles initially occupy
a volume LxLyh , where Lx and Ly stand for the box dimen-
sions in the flow-vorticity plane, before being redistributed into
N logs of diameter d and interlog space of λs . The maximum
packing fraction that can be reached inside a log corresponds
to random close packing; e.g., for spheres, φrcp≈ 0.63. The con-
servation of the number of particles expressed per unit length
along the vorticity direction reads φrcpNπ(d/2)

2 =φmaxLxh ,
where N =Lx/λs is the number of logs in the flow domain.
Therefore the maximum volume fraction admitting a periodic
array of logs is φrcp(πd

2)/(4λsh), which is about 0.2 when d = h
and λs =2.5h .

Although the total computational time for the simulations
becomes prohibitive for large systems, the simulations probe sus-
pensions and geometries that are only slightly more confined
(h/a =8–50) than in experiments (h/a =25–2,500). Where the
range of confinement overlaps between the experiments and the
simulations, good correspondence in the properties of the flocs
is observed. Fig. 2 validates the use of discrete element simu-
lations with long-range hydrodynamic interactions to model the
steady-state properties of the vorticity-aligned flocs. Using this
same modeling approach, we explore the mechanism responsible
for shear-induced pattern formation.

Discussion
Wavelength Selection Mechanism. Consider first the case of force-
and torque-free solid cylinders immersed in a shear flow perpen-
dicular to their axis and centered between counter-translating
parallel walls. By symmetry, any periodic cylinder pattern with
intercylinder spacing, λs , is stable and such a configuration
would be persistent in time (42). Therefore, a periodic array
of solid cylinders has no wavelength selection mechanism. On
the contrary, the logs observed experimentally are not solid
but porous and built from shear-induced aggregates of freely
suspended attractive particles. Given these considerations, we
treat a single aggregate as a rotating body between two sta-
tionary parallel plates as depicted in Fig. 3. When the aggre-
gate is infinite in extent, the induced flow fields to the left
and right of the aggregate resemble that in a lid-driven cav-
ity, for which the cavity is very deep (43). It was first shown by
Moffatt (40) that such a configuration should generate an infi-
nite set of counter-rotating eddies all of the same size and spaced
periodically. If a simple shear flow with shear rate equal to the
rate of rotation of the aggregate is superimposed onto this flow
field, the symmetry is broken and the eddies that counter rotate
with aggregate are canceled out and the corotating eddies are
enhanced (41). This superposition of the flow due to a rotat-
ing cylinder and a simple shear between parallel walls leads
to a periodic array of corotating eddies spaced by λs ' 2.78h ,
very close to the spacing between logs measured in experiments.
Moffatt’s set of eddies is driven not by a solid cylinder, but
by a line torque oriented along the vorticity direction of the
imposed shear flow. In the near field such a superposition fails
to satisfy a no-slip condition of the surface of the aggregate.
However, in the far field (on distances farther than the chan-
nel spacing) hydrodynamic screening ensures that Moffatt’s flow
field dominates. This makes it the appropriate analytical base
flow for understanding coordination among vorticity-aligned
aggregates.

This scenario suggests the following process occurs during
shear-induced structure formation. The imposed shear flow dis-
rupts an initially homogeneous suspension microstructure, lead-
ing to the formation of aggregates. These aggregates play the
role of local, rotlet-like (point torque) disturbances generating
a series of eddies separated by stagnation points. Free-floating
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Moffatt eddies from number density fluctuationsA Superposition of eddies with shear flowB Aggregation between separatricesC

Fig. 3. The hydrodynamic mechanism responsible for the log-rolling phenomenon. (A) The flow field around a randomly formed particle aggregate or
log (dark gray) resembles a lid-driven cavity in which the cavity is very deep. Therefore, it contains a roughly periodically spaced set of counter-rotating
separatrices (cells with arrows) moving along the channel with periodic spacing (40). (B) If this perturbation flow field is superimposed with simple shear
flow at the upper and lower boundaries, the shear flow cancels out cells that counter rotate and enhances the corotating separatrices that have a stable
spacing of λs∼ 2.78h (41). (C) In an attractive suspension, the centers of the eddies act as stable stagnation points for the particle flow, where particles
further aggregate into logs.

particles and small aggregates are driven away from the separa-
trices to concentrate within the eddies and eventually grow to
form stable logs. These vorticity-aligned flocs maintain their sep-
aration due to the hydrodynamic forces induced by the shear flow
between the parallel walls. Within this hydrodynamic framework,
free particles in solution may generate fluctuations that can cause
partially formed logs to oscillate back and forth between adjacent
eddies (see Movies S6 and S7 for simulations and Movie S5 for
similar effects in experiments). Prior work on inertial pipe flows
has used a similar analysis of streamlines in the frame moving
with the mean flow to explain alignment of particles in sus-
pension. In this scenario, a recirculating flow at finite Reynolds
number leads to stagnation points that align particles in trains
along the flow direction (44). When an aggregate that does not
span the entire vorticity direction already occupies one of the
eddies, defects may arise as other logs will bend to occupy two
stable locations along their length, as evidenced in SI Appendix,
Figs. S1, ii; S2, iii; and S3D. These bends are observed only in
periodic arrays of vorticity-aligned flocs and can be thought of
as defects in a crystal of flocs that are sustained by the same
hydrodynamic forces (45).

Approach to Stable Spacing. If the separatrices located between
rotating eddies are indeed responsible for the pattern formation,
then a sheared dispersion under confinement should naturally
evolve toward the periodic spacing that the log-rolling struc-
tures exhibit in steady state. To examine this, we perform a set
of simulations where the initial particle number density along
the flow direction is periodically modulated. An initial periodic
number density profile is imposed with a wavelength λ0 along
the flow direction and fixed total particle volume fraction φ0:
φ(x , γ=0)=φ0[1+ sin(2πx/λ0)]. We vary λ0 relative to the

stable wavelength λs and track the evolution of the instanta-
neous characteristic spacing in the pattern, λ(γ), as a function of
the accumulated strain γ. Irrespective of λ0, the system evolves
toward the stable periodic spacing observed experimentally and
in the previously unseeded simulations (Fig. 4A). There does not
appear to be a competing stable steady state for the sheared
dispersion, which provides strong support for the proposed
hydrodynamic scenario.

The exact path of the dynamical system to steady state does,
however, strongly depend on λ0 and more specifically on whether
the imposed density fluctuations have a wavelength smaller or
larger than λs . For λ0>λs the dominant instantaneous wave-
length steadily decreases toward the stable state, λs , and displays
a power-law decay (λ−λs)∼ γ−0.67 (Fig. 4B). As shown in
Fig. 4D for λ0 =4λs , the initially broad distribution of particles
(at γ=1) separates early on into several particle-rich regions
(at γ=5–40) until the particles are eventually aggregated into
logs with the stable spacing λs =2.5h . In contrast, for λ0<λs ,
λ(γ) exhibits a maximum as the length of the periodic box tran-
siently becomes the dominant wavelength and no algebraic decay
with strain is observed (Fig. 4C). As seen in Fig. 4E, when
starting with a shorter seeded wavelength, the initial straining
leads to a more homogeneous, uniform state (γ=5–20). In this
uniform dispersion, similar to the randomly distributed initial
configurations discussed above, local fluctuations lead to the
growth of density variations in the flow direction and the char-
acteristic spacing gradually develops with accumulating strain
(γ=40–100).

As the simulations account for the hydrodynamics implic-
itly through the interparticle hydrodynamic interactions, we
introduce a few tracer particles in our simulations to probe
the fluid streamlines. Such tracers do not interact with other
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Fig. 4. Simulations confirm that there exists only one single stable wavelength for the log-rolling pattern, λs = 2.5h. (A) The evolution of the pattern
wavelength λ with strain γ toward steady state after imposing an initial particle number density distribution in the flow direction with wavelength λ0

for an overall volume fraction φ0 = 0.15 and gap width h = 10a. The details of the dynamical approach to λs strongly depend on λ0. (B) For λ0 >λs, the
absolute distance to λs normalized on the initial distance, λ0−λs decays as a power law with an exponent of about−2/3. (C) For λ0 <λs, the dynamics do
not display a continuous algebraic decay. (D and E) The local particle number density distribution n(x) in the (v,∇v) plane plotted for increasing total strain
γ for (D) λ0/λs = 4 and (E) λ0/λs = 1/4. In the second case, the distribution first becomes increasingly uniform at intermediate strains (γ= 5–20) and the
final pattern emerges only for γ > 100. (F) Trajectories of noninteracting tracer particles in simulations with λ0/λs = 4.0 for γ > 100.
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particles and passively follow the fluid flow. As shown in Fig. 4F,
the tracer motion is mostly localized, corotating around in the
eddies with occasional exchanges between neighboring eddies.
We observe that the tracers concentrate at the exact same posi-
tions as the peaks in the final particle number density distribution
n(x ), supporting the hydrodynamic mechanism for log formation
and propagation. This confirms our hypothesis that the shear-
induced patterns observed experimentally indeed arise due to the
well-known hydrodynamics of the lid-driven cavities.

Stability Diagram for Pattern Formation. In the experiments, as
well as in the simulations, the steady-state features of the pattern
are independent of the imposed shear rate over a large range
of values. However, when a strong shear rate is applied above
a critical value γ̇c , log-rolling flocs do not form and the suspen-
sion remains fully dispersed (Fig. 5, Inset). Direct comparison
between the transitions observed in experiments and simulations
is made on the basis of a critical Mason number Mnc . Fig. 5
shows that all experimental data collapse onto a single master
curve Mnc vs. h/a that nicely extends the stability boundary of
the simulations, provided an appropriate interparticle force F is
used to define the Mason number for the various suspensions
(see SI Appendix, Table S1 for the parameters used in Fig. 5).

As detailed in SI Appendix, the order of magnitude found for
F is reasonable for all experimental systems and even supported
quantitatively by direct force measurements through atomic
force microscopy in the case of polyamide particles. Thus, the
stability boundary is independent of the type of dispersion and
can be described by a power-law behavior, Mnc ∼ (h/a)−1.4,
over almost three orders of magnitude in the gap-to-particle size
ratio. Such a scaling can be understood in terms of a simple force
balance between the viscous drag force acting on an aggregate
and the attractive interparticle forces that keep individual parti-
cles together. In the process of forming the logs, aggregates of
characteristic size h must form. The stresslet exerted on such a
floc scales as ηγ̇h3. Such a stresslet can break a floc by severing
the interparticle bonds in the plane of shear. For a floc having

Fig. 5. Stability diagram for shear-induced patterns: critical Mason number
Mnc above which log-rolling flocs are unstable as a function of the gap
width h normalized by the mean particle radius a. The solid line is Mnc =

2.5 (h/a)−1.4. Shown are the same symbols as in Fig. 1. Light green (dark
green resp.) circles refer to polyamide particles with a = 2.4 µm (a = 9.4
µm resp.). Inset shows the raw experimental data together with their best
power-law fits in terms of the critical shear rate γ̇c above which log-rolling
flocs do not form. In the main graph, experimental Mason numbers were
scaled to collapse the data on a single master curve. All fitting and scaling
parameters are gathered in SI Appendix, Table S1.

fractal dimension df , the shear strength scales with the number
of bonds in the shear plane,∼hdf−1, and with the attractive force
between the particles. The stresslet balances the shear strength
at the critical Mason number so that Mnc ∼ hdf−4. Using the
scaling exponent of −1.4 observed in both experiments and simu-
lations, we infer a fractal dimension of the flocs, df =2.6, which is
consistent with the fractal dimension expected for shear-induced
flocculation (46).

Conclusion
Pattern formation in suspensions of attractive particles confined
and sheared between parallel plates results from hydrodynamic
coupling between the particle-rich flocs and the confining bound-
aries. The flow field generated by a local particle number density
fluctuation coupled to the externally applied shear flow gener-
ates a succession of corotating eddies. Separatrices between the
eddies cause particles to accumulate within each eddy, producing
a periodic array of log-rolling flocs. The mechanism is insensi-
tive to particle-level details, which explains why shear-induced
structuring is observed for a wide range of both colloidal and
noncolloidal attractive particles. The stability of the log-rolling
states is given by a balance between viscous drag on the fractal
aggregates and the cohesive force due to interparticle attraction.
The scaling relations derived from the experimental, theoreti-
cal, and computational results in this work open the way for
better control of the structure of attractive suspensions under
confined shear and the possibility of using flow fields for assembly
of dispersed microscale particles into macroscale patterns with
long-range order.

Materials and Methods
Experiments. Four different suspensions are used in the present study
(SI Appendix, Table S1). In addition, three different shearing setups are
involved in imaging the suspensions. Carbon black gels are sheared in a
homemade plane-shear cell consisting of two parallel glass plates separated
by a constant gap and in a rheo-optical setup consisting of a parallel-
plate geometry attached to a stress-controlled rheometer (Anton-Paar; MCR
301). Shear-induced structuring in noncolloidal suspensions of polyamide
particles and of hollow glass spheres is achieved in concentric-cylinder (or
Taylor-Couette) shear cells, the inner cylinder being connected to a stress-
controlled rheometer (TA Instruments; AR1000 and ARG2). Pictures and
movies of the sheared suspensions are taken with standard CCD cameras.
Electron microscopy images of the polyamide particles were recorded by
a scanning electron microscope (SEM) (Zeiss Supra 55VP). We also used an
atomic force microscope (AFM) (JPK Nanowizard 4) to estimate the attrac-
tive force between polyamide particles. Full experimental details are given
in SI Appendix.

Simulations. The positively split Ewald (PSE) (47, 48) is used for discrete
element simulations of spherical particles with low Reynolds number hydro-
dynamic interactions accounted for by the RPY approximation. Particles in
suspension have a mean radius a and an imposed polydispersity of σ= 5%.
The short-ranged interparticle attraction is modeled with an Asakura–
Oosawa form (49) of width δ/a = 0.2 and depth U. We focus on athermal
systems and therefore set the thermal energy scale to kBT = 0. The strength
of shear is varied by adjusting the strain rate γ̇ and the dispersion is strained
for γ= 600 strain units. The Mason number Mn = 6πηa2γ̇δ/U characterizes
the ratio of the shear force exerted on the particles to the attractive inter-
particle force. In these simulations, hydrodynamic lubrication is neglected
for computational expediency. However, recent work has shown that in dis-
persions of rigid particulate aggregates, for which relative motion between
nearly touching particles is minimal, hydrodynamic lubrication has only a
marginal effect on the structure and dynamics (29, 50). Confining walls
are represented by a hexagonal close-packed lattice of spherical particles
connected to each other through rigid, harmonic bonds. The walls interact
hydrodynamically with particles of the colloidal dispersion and exert a hard
repulsion at contact (51).
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