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Abstract

The management of an invasive species presents some similari-
ties with renewable resources. However, the objective function is the
sum of two positive and often increasing components : environmental
damages and management costs. The paper stresses the importance
of stock externalities to ensure that a non zero stock is optimal. In
a static approach, the paper shows that when the damage function is
always increasing, the absence of stock externalities leads to a solution
of eradication (zero stock) under usual assumptions. If the damage
is decreasing (and negative as sometimes assumed) it is still possible
that a non zero stock to be optimal. In the presence of externalities it
is more likely that an interior solution be optimal, although it needs
not to be the case. If the cost externalities tend to be infinitely large
for low stock levels, then an eradication is ruled out. In the dynamic
approach, conditions are given for an interior solution to exist. Again
it is shown that the existence of externalities helps satisfy both first
and second order (convexity) conditions for a solution stopping short
from full eradication. An empirical illustration for Ludwigia spp. will
be given at the conference.
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MANAGEMENT STRATEGIES FOR AN INVASIVE SPECIES:
THE IMPORTANCE OF STOCK EXTERNALITIES

Introduction

The spread of non indigenous invasive species raises important ecologi-
cal and economical problems in many countries. They can be animal or
plant, land or aquatic species. Biological invasions are responsible for the
degradation of ecosystems and ecological services: modification of both
biodiversity and habitats associated with competition among species, de-
terioration of water quality and changes in the flow of waters in the case
of aquatic species, etc. These deteriorations of ecosystems may inflict sub-
stantial economic losses to the users of the invaded natural resources. In
France, Ludwigia spp. is one of the most intrusive aquatic plant species,
threatening the environment. World-wide, it is classified among the worst
plant pests. Its dynamic power of colonization is strong in France where
numerous sites exhibit conditions favorable to its growth. It holds a wide
ecological magnitude and presents an important potential of geographical
distribution. It prefers stagnant or weak water flow environment such as
still waters and wet zones. When Ludwigia spp. spreads over, it is re-
sponsible for important damages on ecosystems and their functionalities.
It may lower the oxygen content and alter the quality of watersheds. It
also causes physical nuisances through hindrance to water flows and silting
up. As a result some biotopes lose complexity and biodiversity decreases
in the colonized environment. Recreational uses of natural resources such
as fishing, hunting, water-based recreation, may also suffer from significant
damages.

The users and managers of the affected sites are striving to develop
methods to keep Ludwigia spp. under control. The characteristics of the
species are crucial in the design of the strategy regarding management and
spread risk. Some actions can have unpredicted effects on the structure of
the ecosystem and its functionality. Besides, these actions tend to require
costly techniques and hence large financial means. The control may consist
of heavy ground works to avoid the settlement and the development of the
species. Curative approaches consist of manual, mechanical or chemical
techniques.

According to the managers, it seems that the complete eradication is
not feasible once the colonization has started. Depending on the sites and
the degree of colonization, the management objectives are either to keep
the invasion at very low levels or simply to minimize the nuisances and the
dispersion. However, the objective of controlling the invasion to a given



physical target may not always be optimal from an economic point of view.
The management level should be given by a trade off between costs and
benefits.

The control of invasive species has features similar to the problems of
pollution management. In both cases the spread entails damages to the
society. However, unlike pollution, biological invasions face limiting fac-
tors to a species spread on a given site, due to ecological and biological
conditions. In this respect they are similar to renewable resources such
as fisheries stocks. But the main difference is that in the case of renew-
able resources extraction provides a valuable output, and the problem is
to maximize the present value of the profit generated by catches. While in
the case of invasive species the problem is to minimize the present value of
the sum of the cost of control and of the current flow of damages generated
by the stock. Eiswerth and Johnson (2002) stress that very few economic
studies have been conducted on the biological invasions management. To
our knowledge, (Junqueira Lopez, Michel, and Rotillon 1993) , Knowler
and Barbier (2000), and Eiswerth and Johnson (2002) developed dynamic
models that we can compare with those used for renewable resources.

Junqueira Lopes and al (1993), have studied a population of scraw-
fishes deteriorating irrigation channels. Eiswerth and Johnson (2002) have
modeled an invasive plant which slows down the productivity of pasture.
They derive solutions for stationary stocks of invasive species and to opti-
mal levels of control. We note that these studies are limited to theoretical
modelization and do not include fully empirical applications.

Eiswerth and Johnson (2002) developed a dynamic model of optimal
control about an invasive species management. The model is close to bioe-
conomic models applied to fisheries and is followed by a numerical illus-
tration. They derive optimal solutions for steady state level of invasion.
The comparative statics shows that the impact of ecological, biological and
technical factors on the optimal control is ambiguous and strongly depends
on the species characteristics and on the colonized site. However, they do
not examine the impact of economic parameters on the solution. The dam-
age function they use depends on the invasion level, whereas the costs only
are a function of the quantity withdrawn from the biomass.

The problem of controlling invasive species with a dynamic model in-
cluding externalities has already been considered (Olson and Roy undated).
Their contribution is to give the implications of non classical assumptions
on the cost functions, the growth function and on the optimal management
policy. They determine the economic and biologic conditions under which
the optimal policy leads either to eradication, to inaction or to partial with-
drawal. The implications in terms of optimal management are ambiguous;
they can lead to complex and cyclical dynamics of control. Simulations are



realized. Eiswerth and Van Kooten (2002) study the stochastic case, using
probabilities from surveys of experts in the field.

The aim of this study is to identify and quantify optimal control strate-
gies for various French sites invaded by Ludwigia spp. Unlike Eiswerth
and Johnson, we allow for a stock externality to exist. Under reasonable
circumstances, this assumption seems to be a necessary condition for the
existence of a non zero-solution, hence different from eradication. A static
approach is first used to identify and simulate management solutions. A
dynamic model is also developed, and leads to formal steady solutions. We
also examine existence and stability conditions. Although we have no gen-
eral conditions on the technology and the biological characteristics which
ensure that a non corner solution exists and is stable, we find that stock
externalities appear to make these conditions easier to fulfill.

1 Static model : the importance of stock exter-
nalities

We consider a site invaded by species such as Ludwigia spp. . Their spread
is responsible for nuisances or negative impacts on recreational and other
uses. In order to cope with economic damage, the manager of such a site
would like to control the species proliferation. He has to bear the manage-
ment cost of the invaded site. We assume that the cost function depends
not only on the amount of biomass retrieved but also on the invasive species
stock. In the static case, the sole owner is indifferent between present and
future. The manager aims at finding an efficient trade off between the
current costs of control and future damages generated by the stock. The
optimal management of the affected site requires to minimize the sum of
control costs and damages induced by the biological invasion subject to the
growth function.

Let Y be the control i.e. the amount of the invasive species extracted,
and S the stock of biomass. Total and marginal economic damages are
assumed to be increasing with the biomass stock. They are both zero before
the invasion i.e. when the stock is nul. The damage function represented
by F(S) is assumed to be continuous and twice differentiable, increasing
and strictly convex in S. Hence, except for specified cases, the following
assumptions are made on the damage function (where indices denote partial
derivatives):

Fs>0; Fss>0; F(S)>0; F(0)=Fs(0)=0 (1)

Managing the invaded species incurs a cost wich in general will depend
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on both the ‘ouput’ Y and of the stock of biomass S. The latter assumption
expresses the possibility of a stock externality. The assumptions on the
control cost function are summarised in the following expressions:

Cy(Y,5)>0; Cyy(Y,8) >0 (2)
Cs(Y,8) <05 Cys(Y,5) <0; Css(Y,8) >0 (3)
CyyCss — Cyg >0 (4)

When stock externalities do not exist relations 3 are strict equalities. In
the presence of externalities they are strict inequalities and we add the
following realistic assumptions for extreme points:

C(0,8)=0,S5>0;Cy(0,5)>0,5>0 (5)
C(Y,0) =00 ; Cy(Y,0) = co; Cy(0,0) = 00; Cs(0,0) = —o0 ; Cys(0,0) = —oco (6)

Expression 2 implies that total and marginal costs of managing the
invasive species are non decreasing in Y. Expressions 3 mean that the
stock externality is weakly negative and decreasing in magnitude: total and
marginal costs are non increasing in the biomass stock. The cost function
is also assumed to be continuous and twice differentiable, strictly convex
inY, in S and jointly convex in § and Y, according to expression 4. Ex-
pressions 3 reflect the increasing difficulty to eradicate the species from its
environment as the amount of biomass becomes scarce and, conversely, the
relative easiness to remove a unit when the stock is large. We also assume
in general that the cost is zero for a no control strategy and that marginal
cost is a non negative number when the stock is strictly positive.

We assume a logistic growth function. Then, as the species is spreading,
competition between species increases and pests and biological interactions
appear. The biomass proliferates at a diminishing rate from some level and
then stabilizes. The natural growth function of the species, represented
by G(S), is then assumed to be strictly concave with a maximum at Sy
which is the maximum sustainable yield of the species. It is increasing when
the stock is below S and decreasing otherwise. We make the usual and
classical assumptions, of renewable resources management models such as
fisheries, where a quadratic form is often assumed for G:

Gs(S)>0,0<85<8y; Gs(S) <0, §>8u;Gs5(8) <0; G(0)=G(K)=0 (7)

When management is implemented, the natural growth of the stock is
cut down by the biomass extracted, hence the following usual assumption
for the net growth when the control is set at level Y:

dS/dt = G(S;) - Yz (8)
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The optimal management of the biological invasion is defined as the
social planner problem. In a static approach he tends to minimize V'(S),
the sum of damages and management costs, subject to a stationary stock
biomass, i.e. to equation 8 set to zero. Then, the static optimal stock,
uniquely determines the amount Y to be extracted in order to maintain the
stock and keep the entailing damage under control in an efficient manner.

Replacing Y by G(S) in the cost function, the problem is then reduced
to find an optimum without constraint excepted for the non negativity of
the stock S and the condition that the stock cannot be larger than K, as

msi'nV(S) =F(S)+C(G(S),S); S>0; (K—-85)>0 9)
The first order necessary condition for a solution is the following:

Vs=Fs+Cy-Gg+Cs>0;5-Vg=0 (10)
Vs> 0; (K- 8)-Vs=0 (1)

if Vg > 0 for all S, then S* is zero and the optimal solution is eradi-
cation,

if Vg < 0 for all S, then K —S* = 0 and the optimal solution is laisser
faire,

if V¢ = 0 for some S and V(S) is strictly convex, then 0 < §* < K
and the optimal solution is controlled invasion.

The sufficient condition for an interior solution to be a true minimum
is:

Vss=Fss+ny-G%-}-CSS-%-QCYS-Gs-i—Cy-Gss>0 (12)

Assumptions 2 to 4 do not ensure that this condition is always met. The
value function V(S) could in principle be increasing for the whole range of
stock levels. In order to minimize the total loss, the condition 10 requires
the stock to be zero if the value function V(S) is strictly increasing in
S. There is no interior solution. Indeed, it turns out that it is the most
likely case when the damage function is strictly increasing and when the
stock externality is either zero or small in comparison with the marginal
damage. As a result, the planner should either prevent the species from
proliferation at the outset or completely eradicate the biomass on the site
subject to invasion. The absence of an externality does not guarantee that
the function V(S) is strictly increasing because when S > Sy, the natural
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production function is decreasing (Gg < 0). Nevertheless, even in that
case, it turns out that a weaker condition justifies eradication under our
realistic assumptions. Let’s examine different cases leading to several types
of control strategies.

1.1 No stock externality

Without stock externalities, the necessary condition for a minimum is :

Ve=Fs+Cy-Gs2>20;5-Va=0 (13)

For S < Sp, Gy is strictly positive and the value function is increasing.
Then, an optimal solution is not possible in this interval. When S > Sy,
Vs is likely to have a zero value. However, it is not a minimum even if we
can not conclude from the simplified second order condition:

Vss = Fgs+Cyy - G4+ Cy - Gss > 0 (14)

This condition is not guaranteed because in theory, the concavity of G
can offset the other two positive terms and the value function V(S) can
either keep on increasing after a turning point or be decreasing after a
maximum. This will be clearly the case if marginal damages and marginal
costs are constant.

Nevertheless, we can check that, in the absence of stock externalities,
the loss function V' has a global minimum at a zero stock level if damage
function is non decreasing as assumed :

V(S) = F(S) + C(G(S),S) > V(0) = F(0) + C(0,0) =0 (15)

Result 1: In a static approach, whenever stock externalities are absent
and the damage function is non decreasing, the optimal solution is to drive
the stock to zero i.e. to eradicate completely the invasive species from the
environment.

If for low levels of the invasion damages are decreasing over some range
and then increasing, as the weeds may provide shelter to fish for spawning,
we may still have an interior solution. Expressions 13 can then be zero for
some non zero S and be a minimum of V(S) as the second order condition
14 is negative. Such a case, which violates the more relevant assumptions
stated in 1, will occur for some species which first provide benefits so that
damages are negative and decreasing for small values of the stock biomass,
then increasing after a minimum and then positive. As a result, a non zero
stock can be optimal and the optimal policy will not be eradication.
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Result 2: In a static approach, whenever stock externalities are absent,
it is necessary for the optimal solution to occur at a (strictly) positive stock
level that the damage function be decreasing over some range.

With no stock externalities and an increasing damage function the first
order conditions do no provide the global minimum but a maximum, or a
turning point. Eiswerth and Johnson (2004) used cost functions which are
independent of the colonization size, hence they can not ensure that their
solution is a true minimum even if the model is dynamic.

1.2 Stock externalities

When it is hardly feasible or impossible to eliminate the last individuals,
eradication costs become prohibitive as the stock becomes very low. The
optimal management may consist of maintaining the stock at the positive
level derived from expression 10, which means that the optimal stock is such
that the marginal savings on costs due to an extra unit of stock should offset
the corresponding increase in damage.

dC
—— = = 5 = 1
S [Cy -Gs + Cs] = Fs (16)
This condition can also be written as Gg = —[Fs + Cs]/Cy which

requires the marginal productivity of the stock (the slope of the growth
function) to be the opposite of ratio of the marginal damage net of the
stock externality to the marginal cost of extraction. Depending on the
relative importance of externalities and marginal damages, Gg is positive
or negative, hence the optimal solution can then be on the left or on the
right of Syy.

This condition leads to a non zero solution for S, as long as the second
order condition 11 is also met for all positive S. We cannot conclude about
the convexity of V(S) under the weak assumptions made in 1 to 4. Given
these assumptions on cost and damage functions, the first three terms are
positive. The fourth is negative if S < Sjps and positive otherwise. The last
term is always negative. The sign of Vgg is thus ambiguous. Consequently,
the conditions to get a non zero optimal solution S* are fairly restrictive.
We may add that strongly increasing damage function (large Fsg ) and
rapidly decreasing externalities in absolute value (large Csg) make an inte-
rior solution more likely. The nature of the solution, eradication, controlled
invasion, or laisser faire seems very sensitive to parameters and to the func-
tional forms for costs, damages and growth. Regulation and action levels
are different and strongly depend on the characteristics of the colonized
sites. As a matter of illustration in figure 1 and 2 we provide typical forms



of the V(S) curve under different parameters of the following functionnal
forms:

C(Y, S) = (aY +0.58Y?)/(S/K)* (17)
F(8) =6+ ¢(S —7)* (18)
G(S) = vS(1 - S/K) (19)

Figure 1 corresponds to the case of no externalities (v = 0). A mono-
tonic damage function (7 = 0) gives curves V1(S) and V12(S) which are
two cases for eradiction. A damage function, decreasing for low stock lev-
els and increasing after (curve V11(S)), may lead to an interior solution.
Figure 2 synthetises the main cases with a strictly monotonic damage func-
tion. Curves V1(S)and V11(S) are just the previous ones with no exter-
nalities. Curves V2(.S) and V4(S) correspond to stock externalities. V2(5)
illustrates the corner solution of laisser faire S* = K (damages are small
compared to costs, and (dC/dS + Fg is always negative). V4(S) is a com-
bination of strong externalities and large and increasing damages.

200000 V(S)
150000~ a”
100000 VI02£S)
50000~ 5@ af VII(S)
Vl(S)
om

-50000

Figure 1: No stock externalities: two corner solutions (S* = 0: Eradication)
and a case of positive solution (Fs negative for small S )

1.3 A few empirical results

To complete the empirical application to Ludwigia spp. we need to estimate
the cost, damages and growth functions. To that purpose, managers who
are in charge of controlling the spread were surveyed to collect data, identify
strategies and assess the benefit cost efficiency of the actions. So far, data
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Figure 2: Four Strategies for selected cases: two with and two w/o exter-
nalities

are too scarce to estimate a cost function. Nevertheless we have calibrated
a cost function for both manual (51 to 64 Euro/tonne) and mechanical
(1100 to 1300 Euro/tonne) techniques (figure 3). This heterogeneity is due
to differences between sites characteristics and degree of invasion.

1.4 Comparative statics

We examine two schocks on the optimal solution: an increase in the cost
C(Y, S, ) due to an input price change da and a shift dé in the damage
function F(S,48) . These two schocks relate to economic variables and are
relevant to an interior solution, where Vgg is strictly positive. We note that
Eiswerth and Johnson (2004) studied shocks on the technology only. Total
differentiation of 10 gives :

VsdS + Fspdp + GsCywdw + Csydw =0 (20)

Hence the impacts of the shocks on the optimal stock:

GYw ' GS i c'S'u.s
— >0 21
Ves > (21)

0S* /0 = —% <0 (22)

05* ow =

The partial effect of an input price on optimal stock is then positive
under usual assumption Cy, > 0 et Cgy = Cyps < 0, with no doubt
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Figure 3: Some empirical evidence on total costs of control

if §* > Sy or when the the stock externality effect on input demand is
strong. This is consistent with a negative effect on the control effort Y.
When the valuation of damages increase, the optimal stocks should also
be cut down. Our comparative statics of exogenous economic shocks are
therefore consistent with economic intuition.

2 Solutions for the dynamic model

In the dynamic approach the manager has a preference for the present and
faces the trade off between current and future value of damages and costs.
A typical formulation of the problem in renewable resource is to minimize
the discounted value of the losses subject to the dynamics of the growth
function. Our model is similar to that of Eiswerth and Johnson (2002)
except that we allow for stock externalities, which seems to be relevant to
our case study. The problem is written as

maox ¥ e THE(S,) + C(Y, S1))dt 23)
t 0

subject to the non negativity of the control variable Y;, to an initial value
of the stock Sy and to the growth function 8. The general conditions 1 to 6
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on the damage and cost functions are also assumed. To solve this classical
optimal control problem with an infinite time horizon we construct the
current value Hamiltonian (where time subscript is deleted).

H=-F(S) - C(Y,8) + u(G(S) - Y) (24)

Where p is the current value of the costate variable, i.e. the shadow value
of the stock which should be negative on the optimal trajectory. u and the
present value costate variable, called ), are related through A = pe=". An
optimal trajectory must satisfy the following conditions for a maximum:

Z_I;=—cy(1f,5)—u50,¥20 (25)
Y- (Cy(Y,8)+u)=0 (26)
OH
[1,—7'/1/=—%=—‘HGS+FS+CS (27)
0H
ou =9=06(9-Y (28)
tlirn p-e™.8=0 (29)

The necessary condition 25 says that the marginal cost of effort should
be equal to the (negative of the) shadow cost of the biomass stock for the
optimal control to be non zero .

(@)Cy() > -u=>Y =0 (30)
bB)Cy()=-pu=Y>0 (31)

If the cost function is strictly convex in Y, the optimal value of Y will
be unique and between zero and the maximum admissible for Y (no bang-
bang solution). Under strictly increasing marginal costs, expression 31 can
be inverted to give the optimal value of Y as a function of y and S.

Cy(Y,8)=-peYW,S5) >0 (32)

This function is the (restricted) supply function of control effort Y in terms
of the shadow price p and the stock. From differentiation of 31 and the
assumption of diminishing returns, Y appears to be increasing in —y and
increasing in S.

BY(Mv S) _ CYS

35 S Cvy >0 (33)
Y (p,S) 1
o - Cyy <0 (34)
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Another necessary condition for a unique (interior) solution to be a
maximum of problem 21 is that the Hamiltonian is strictly concave with
respect to the state variable S along the optimal trajectory (u # 0;Y =
G(9)) , i.e.

Hgg = —(Fss + Cyy - G% +Css+2Cys-Gs+Cy-Gss) <0  (35)

A stationary steady state solution should verify this condition which is
formaly the same as the second order condition of the static case (Vgs > 0).
Again, our general assumptions 1 to 7 on the functions do not ensure it is
fulfilled. It will be more likely satisfied if the damage and cost functions
are strongly convex in S and Y and if the solution occurs when Gg is
negative. Strong stock externalities help satisfy this condition. We now
study the existence and stability of a stationary solution under the general
assumptions.

A solution should verify both differential equations 27 and 28, with Y
defined in 32 by the necessary condition 26. A stationary interior solution,
if it exists, corresponds to S = 0 and i+ = 0, and should satisfy:

p=(r—-Ggu+Cs(Y(n,5),5)+Fs=0 (36)
S=G(S)-Y(u,8) =0 (37)

If a non zero stationary solution (u*, Y™, S*) exists, it will therefore be
such that

Cs+ Fg
= —— = 38

Expressions 36 and 37 define two relations between u and S in the (u, S)
space. We call them u#(S) and u°(S) respectively to trace their origin. We
first study the corresponding curves on the basis of slopes.

du’ ..

ﬁ- B —SS/S = _(CYYGS + CYS) (39)
du* . ,. _ —CyyCyGgs — FgsCyy — (CyyCss — Ci.g)
el = = 4
ds tis/ (r — Gg)Cyy — Cys (40)

The slopes of both curves are not clear cut under general conditions.
We have to consider subcases related to externalities and extreme points
when S = 0 and S = K, in order to identify likely solutions.

2.1 No stock externality
Without stock externality 39 simplifies and the slope of ° is the opposite

of that of the growth function of which it has a symmetrical shape. For
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S =0, Y also has to be zero, hence we must by 30 also have u > —Cy(0)
which is a finite negative number, say —c, in regards to the particular case
described in functions 17. Because we have no externality, u° takes the
same value for S = K. Hence the shape of the x5 curve in figure 4.

250 -
200 N
150 Ll

O'IlllIIIIIEIIIIIIIIIIIIII]IIIIl]

Figure 4: Corner solution (S* = 0: Eradication, no stock externalities,
u=0)

The slope of the p# function also simplifies to (~CyGgs—Fss)/(r—Gg).
The sign of the numerator is ambiguous. The denominator is negative (and
positive otherwise) when S is below a critical level where the p* will have
an asymptote. This critical level S is defined by:

Gs(S) —r=0 (41)

Consider first the domain where 0 < S < S. For § = 0, p* is positive
(or zero if Fg(0) = 0). When S — S—, pu# — +0o. In this domain we
have a possible solution at S* = 0 since pu#(0) > 0 > —Cy(0) = —a. The
other segment of the p#-curve will start from the asymptote at S where
w* — —oo when S — St. By 38, u# will have a finite negative value for
S = K, namely Fs(K)/(Gs(K) — r) i.e., —2pK/(y + r) in our example.
For this curve to cross the pS-curve, this will have to be greater than
—Cy(0) = —c. If this is the case, the two curves intersect in this domain,
say at S'. However for this to be a true maximum, the concavity of the
simplified Hamiltonian in 42 should be verified.

Hgs = —(Fsg+ Cyy - G% + Cy - Gss) < 0 (42)
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This condition is in general ambiguous and depends on functions and pa-
rameters. In the simulation which has generated figure 4, this virtual solu-
tion turned out to violate the concavity condition and was not an optimum.

When S = K, the necessary condition 30 is also satisfied, it is therefore a
solution candidate. We seem to have at first glance three possible solutions.
Can we still have a strong conclusion as in the static case which led to
eradication? Yes, since the steady state current value (and present value
as well) function at S > 0 is necessarily a larger negative number than
at $ =0 and Y = 0 since —F(S') — C(Y') < —F(0) — C(0), hence any
intersection between the p-curves at an interior stock level does not give
an optimum. K is not an acceptable solution either since —F(K) — C(0) <
—F(0)—C(0). Therefore the only optimal solution in the dynamic approach
without externality and with an increasing damage function is also §* = 0.

This no externality solution is consistent with the static case and implies
eradication. Again, if we had a decreasing damage function over some low
stock level, the critical value of p#(0) might be negative so that the two
pH-curve start from a negative intercept and therefore might intersect (but
Fgg < 0 makes the concavity condition 42 harder to fullfil).

2.2 Negative stock externality

The shape of the py-curves will be different when stock externalities prevail.
The slope of the pS-curve in 39 does not have an obvious sign throughout,
unless reasonable assumptions are made on the externality. However as-
sumptions made in 6, ensure that as S approaches zero y = —Cy(0,0) —
—o0 and the slope of the u-curve is positive and large (Cys(0,0) — —o0).
When S = K, p = —Cy(0, K) which is a finite negative number. When
S > S, the slope is positive. When S < Sjy, this will also be positive if
externalities are large so as to offset the first term. Hence the pS-curve in
figure 5.

The slope of the u#-curve was given in 40. The sign of the numerator
is ambiguous. The denominator is clearly positive when S > S, but the
slopes keeps its ambiguity. By 38 there is an asymptote at S > S. If the
externality dominates the marginal damage i.e. |Cs| > |Fs|, p#* — +o0
when § — St and p* — —oco when S — S~ . It is the converse in
the opposite case. When S = 0, u# — (Cg(0,0) + Fs5(0))/(Gs(0) —r) =
—00, under assumptions ! 1 and 6 corresponding to our functions used for
numerical simulations and the graphic illustration in figure 5.

With our functionnal forms in 17 to 19, we have obtained a non zero
solution corresponding to both strong externalities and rapidly increasing

1Other forms could sensibly imply that this limit is zero. This does not preclude our
solution to satisfy existence and stability)
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damages. These are conditions which favor the prevalence of controlled
invasion strategies. The non zero solution produced in figure 5 has proved to
satisfy both the condition of concavity of the Hamiltonian and also the local
stability condition for a saddle point described in the appendix. It is easy
to produce a subcase with externality where eradication is recommanded
as it was the case in figure 4. We can also easily produce a case where costs
dominate damages and laisser faire at S = K is the most sensible policy.

9000
6000 }1’\11
g
3000
0

-3000

-6000

-9000

-12000 B

-15000

Figure 5: Interior solution (Stock externalities, u=1.2)

3 Conclusion

The modelling of invasive species management seems to have made little
use of externalities. The first order conditions for discovering the optimal
management strategy of an invasive species are to be used with caution. In
the absence of such externalities, non zero optimal solutions in steady state
are unlikely to fulfil second order conditions and to be stable. We have
established the conditions for different strategies in the static approach
and sketched the likely structure of the solutions in the dynamic case. An
empirical application to Ludwigia spp. is in progress.

From an empirical view point, the analysis shows that eradication will
always be the best policy if no stock externality exists and if damages are
non decreasing. It does make sense, when it is easy to catch and destroy
the ultimate individuals of an invasive species, to opt for preventive policy
which consists of eradication. This case seems to be fairly rare. If however,
the costs of catching these last individuals tend to sharply raise, i.e. in
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the presence of severe stock externalities, the best policy is likely to be
a population control at a positive level and to regularly destroy a certain
amount of the biomass to keep the population stable. If damages are small
and weakly increasing and if externalities are significant, a laisser faire
policy is more likely to prevail. The existence of stock externalities are in
reality nearly necessary conditions to encounter a non corner solution.

A Stability of the steady state interior solution

The optimal control problem is autonomous with a positive discount rate.
The solution can only be locally stable along a defined time path and be, at
best, a saddle point. Assuming a steady state exists, the local stability is
studied by linearising the differential equations system around equilibrium.
Taking a first order linear approximation around the steady state, we get:

( $ ) _ ( Ss(*) Su(*) ) < (S — 8% ) N ( €(S*, pux) )
i fs(x) () )7\ (b —p) €'(:S*, pu*)
where €(S*, ux) — 0 and €'(S*, ux) — 0. If the characteristic roots of

the matrix are real and of opposite sign, then the equilibrium is a saddle
point. The correponding determinant has to be negative, i.e.:

Gs(r — Gg) — (Cy - Ggs + Fss)/Cyy + (Cys(r — Gs) (43)
+Cys — Cyy - Cs5)/Cyy <0

A sufficient condition is that, at steady state, the current Hamiltonian
is concave and also that either the stock is larger than Sy, or the discount
rate is low. The concavity of the Hamiltonian was seen to be uncertain.
However, as for existence of an interior solution, the presence of stock ex-
ternalities strengthens the negativity of the determinant.
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