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Abstract: 

Phospholipids are major building blocks of cell membranes and as such they have a key 

structural role in maintaining their integrity as a hydrophobic barrier. However, phospholipids 

not only have structural but also regulatory functions that are involved in a myriad of signaling 

pathways. Integrative approaches in plants recently revealed that certain phospholipids have 

distinct patterns of accumulation at the tissue or organ scales, which turned out to be important 

cues in a developmental context. Using examples on different phospholipid classes, including 

phosphatidylinositol-4,5-bisphosphate, phosphatidylserine, phosphatidylcholine and 

phosphatidic acid, we review how spatio-temporal lipid patterns arise at the organismal level 

and what are their downstream consequences on plant development. 
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Abbreviations: 

PI4P, phosphatidylinositol-4-phosphate; PI(4,5)P2, phosphatidylinositol-4,5-bisphosphate, PS, 

phosphatidylserine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, 

phosphatidylglycerol, DAG, diacylglycerol; PIPs, phosphoinositides; ER; endoplasmic 

reticulum; PM, plasma membrane; PH, pleckstrin homology; Lact, Lacthaderin; PLC, 

Phospholipase C; PSS1, PHOSPHATIDYLSERINE SYNTHASE1; PIP5K, 

PHOSPHATIDYLINOSITOL-4-PHOSPHATE 5-KINASE; CVP, COTYLEDON 

VASCULAR PATTERN; CVL , CVP2-LIKE; ROP, RHO-OF-PLANTS; PECT, 

CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE; FT, FLOWERING 

LOCUS T; LHY, LONG ELONGATED HYPOCOTYL; CCA, CIRCADIAN CLOCK 

ASSOCIATED. 

 

Highlights: 

• PI(4,5)P2 tissue-specific accumulation patterns control cell differentiation  

• PI4P/PI4Ks accumulate at the cell plate of dividing cells and regulate cytokinesis 

• PS variations at the tissue scale regulate membrane activities at the nanoscale 

• Diurnal phospholipid oscillations regulate flowering and the circadian clock 

 

Graphical abstract: 
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Introduction 

Phospholipids, also referred to as glycerophospholipids, are a class of lipids whose structure is 

based on a glycerol backbone that connects a hydrophobic tail - consisting of two long-chain 

fatty acids linked at the sn-1 and sn-2 position (diacylglycerol) - and a hydrophilic head group 

(Figure 1a). Because of their amphiphilic nature, phospholipids are key structural components 

of membrane bilayers, with the fatty acid chains aggregating together in the core of the bilayer 

and the hydrophilic heads on both sides. The simplest phospholipid class, with only a phosphate 

group at position sn-3, is phosphatidic acid (PA). The phosphate head group can be further 

modified to form the different classes of phospholipids, by addition of a choline, serine, 

ethanolamine, inositol or glycerol molecule, forming phosphatidylcholine (PC), 

phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI) or 

phosphatidylglycerol (PG), respectively (Figure 1a). PG main functions are in plastids and 

mitochondria and will not be discussed hereafter [1]. Phosphatidylinositol can be further 

phosphorylated on the 3rd, 4th and/or 5th position of the inositol head group to form 

phosphoinositides (PIPs, also referred to as polyphosphoinositides) such as 

phosphatidylinositol-4-phosphate (PI4P) and phosphatidylinositol-4,5-bisphosphate 

(PI(4,5)P2) (Figure 1a) [2].  

There are different ways to classify phospholipids based on for example: i) their relative 

abundance (abundant vs minor lipids, i.e. less than 5% of total phospholipids), ii) their net 

charges (neutral vs anionic), iii) their metabolic fluxes (relatively stable concentration vs acute 

production/interconversion and fast turn-over), iv) their site of production (produced at the site 

of action or exported), v) their shape (conical, straight or inverted conical) or vi) their fatty acid 

chains (number of carbons:number of unsaturation) (Figure 1a and b). Overall, abundant 

phospholipids (e.g. PC, PE) are often considered as “structural” lipids in the sense that they are 

essential to establish a hydrophobic barrier. These phospholipids are produced by biosynthetic 

enzymes mainly in the endoplasmic reticulum (Figure 1b and c). Low abundant lipids (e.g. PA 

and PIPs) are labelled as “signaling” lipids in the sense that they mostly have regulatory effects 

on membrane functions. These signaling lipids are negatively charged, which enable specific 

interactions with proteins. In addition, they have fast turn-over and can be produced in an acute 

manner by lipid kinases, phosphatases or phospholipases at their site of action outside of the 

endoplasmic reticulum (Figure 1b and c) [2]. 

However, the frontiers between the “structural” and “signaling” lipids are not always clear-cut. 

Indeed, these categories mostly arise from considerations at the cellular scale, initially drawn 

from studies using single cell systems such as yeast or in vitro cell culture. As such, 
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phospholipid biosynthesis and localization are often depicted in a single cell. However, recent 

evidence suggests that specific pattern of phospholipid accumulation arise at the tissue or organ 

level in plants, particularly for classical “signaling” lipids but also for “structural” lipids. These 

patterns have downstream consequences on cell behaviors ultimately impacting plant 

development. Here, we review three examples in which spatiotemporal phospholipid pattern 

impacts plant development in different ways, highlighting the importance of integrative 

approaches to study phospholipid biology.  

 

Phosphatidylinositol-4,5-bisphosphate patterns and their roles in tissue differentiation 

Phosphoinositides are minor phospholipids, making less than 1% of total phospholipids (Figure 

1a). They have specific accumulation patterns in the different compartments of the cell and as 

such they determine organelle identity [2,3]. Furthermore, because of their respective charges 

and shape, they are key determinants of membrane physicochemical parameters (Figure 1b) 

[2]. Some of these parameters appears to be invariant between different tissues. For example, 

in all cell types analyzed so far, the plasma membrane is the most electronegative compartment, 

a feature that specifies its identity [4]. The strong electrostatic field of the plasma membrane is 

powered by the accumulation of PI4P in this membrane, the most abundant phosphoinositide 

species in plants (Figure 1a) [4]. PI4P accumulation at the plasma membrane appears to be 

invariant when analyzing different tissue and organ [4]. However, during cell division, PI4P 

strongly accumulates at the cell plate, which is therefore highly electrostatics [4][5]. The 

accumulation of PI4P at the cell plate correlates with the localization of PI4K in this 

organelle and the double mutant pi4k12 is defective in cytokinesis and phragmoplast 

establishment [6,7]. By contrast, PI(4,5)P2 is not only patterned at the level of the cell but also 

at the tissue/organ scales.  

Evidence for PI(4,5)P2 patterning at the tissue scale comes from quantitative imaging studies 

of PI(4,5)P2 sensors lines [8]. These transgenic lines stably express PI(4,5)P2 binding domains 

fused to a fluorescent protein as an indirect way to localize this phospholipid [9-12]. Indeed, 

such fusion proteins are recruited to membranes that accumulate this lipid [12]. By contrast, in 

the absence of its target lipid, the sensor accumulates in the cytoplasm as a default localization 

[12]. In some cases, the chronic absence of the biosensor cognate lipid induces its subsequent 

destabilization and degradation. For example, the C2 domain of the bovine Lacthaderin protein 

(C2Lact), a PS-binding domain, is unstable and degraded when expressed in a mutant 

background that lacks PS biosynthesis [13]. Quantitative 3-D imaging revealed that the 

PI(4,5)P2-binding Plekstrin Homology (PH) domain of Phospholipase C (PHPLC) accumulates 
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to a low extent at the center of the shoot apical meristem in Arabidopsis, while it is stabilized 

in the boundary region (Figure 2a) [8]. By analogy to the C2Lact sensor, one may speculate that 

destabilization of PHPLC occurs when PI(4,5)P2 levels are low. This hypothesis was recently 

substantiated in cotyledons, as PHPLC accumulates about four fold when seedling are treated 

with a high concentration of NaCl (a condition known to induce PI(4,5)P2 synthesis [10]) or U-

73122 (which inhibits PI(4,5)P2 hydrolysis by phosphoinositide-specific-PLC (PI-PLC) and 

thereby promotes its accumulation) [14]. Although the exact role of the PI(4,5)P2 pattern in the 

shoot apical meristem needs to be defined, it could be involved in the two main functions of the 

meristem: stem cell maintenance and organogenesis. For instance, in the clv3-17 mutant, which 

displays a larger central zone with more stem cells, the PI(4,5)P2 pattern tends to disappear, 

suggesting that destabilization of the PHPLC sensor correlates with stem cell maintenance [8]. 

The shoot apical meristem is also characterized by a typical mechanical stress pattern, with 

strong and highly anisotropic tensions in boundaries compared to the central zone (Figure 2a) 

[15]. A positive correlation between the accumulation of PI(4,5)P2 sensors and mechanical 

stresses in the boundary zones suggests that the PI(4,5)P2 pattern could be linked with tissue 

mechanics and mechanical signal transduction [8]. Future work will reveal how this PI(4,5)P2 

pattern is established and what its function is in shoot meristem biology. 

Lipid sensors are not the only clues pointing at the importance of specific PI(4,5)P2 patterns at 

the tissue level. Indeed, PI4P 5-kinases (PIP5K), PI(4,5)P2 5-phosphatases and PI-PLCs have 

tissue specific expression patterns [16-21]. For example, PIP5K1, PIP5K2, PLC3 and PLC5 

are expressed in the root meristem and in vascular tissues and PIP5K2 expression is regulated 

by the phytohormone auxin [16-18][19,20]. Furthermore, the plasma membrane-localized 5-

phosphatase COTYLEDON VASCULAR PATTERN2 (CVP2) is expressed in developing 

vascular cells in various organs and displays exquisite expression specificity for the 

protophloem in the root [22-25]. CVP2 and its homolog CVP2-LIKE1 (CVL1), as well as 

PIP5K1 and PIP5K2 are involved in venation pattern establishment in cotyledons, while plc2, 

plc3 and plc5 mutants have root architecture phenotypes [17,19,20,22]. The cvp2 cvl1 double 

mutant root protophloem fails to fully differentiate, as revealed by the presence of 

undifferentiated “gap” cells within protophloem strands (Figure 2b) [25]. Surprisingly, CVP2 

overexpression, which promotes PI(4,5)P2 processing into PI4P, also induces protophloem gap 

cells and phenocopies the cvp2 cvl1 double mutant, which accumulates PI(4,5)P2 (Figure 2b) 

[25]. Furthermore, inducible overexpression at the plasma membrane of a highly processive 

PIP5K, which boosts PI(4,5)P2 production at the expense of the PI4P pool, also induces gap 

cells in developing protophloem (Figure 2b) [24]. Therefore, it appears that the PI(4,5)P2/PI4P 
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balance, specifically in protophloem cells, rather than the absolute amount of PI(4,5)P2 is 

critical for the correct differentiation of this tissue (Figure 2b).  

Cellular analyses revealed a correlation between increased vacuolar trafficking upon the 

alteration of the PI(4,5)P2/PI4P ratio and protophloem differentiation, suggesting that vacuole 

biogenesis and/or related endocytic trafficking regulated by these phosphoinositides could be 

linked with phloem development [24]. Furthermore, PIP5K1 and PIP5K2 are not only localized 

at the plasma membrane but also in the nucleus [17,18]. Nuclear targeting is actively regulated, 

at least in the case of PIP5K2 [26]. These localizations suggest that PI(4,5)P2 could also have a 

direct role in gene expression regulation, which has been reported in animal systems [27,28]. 

Overall, these data indicate that the establishment of specific PI(4,5)P2 accumulation pattern at 

the tissue level are hallmarks of tissue differentiation, at least in some cases. Some of the future 

challenges will be to sort which of the pleiotropic functions of this signaling lipids could be 

instrumental to regulate tissue differentiation.    

 

Phosphatidylserine variations at the tissue level regulate plasma membrane organization 

at the nanoscale 

PS shares characteristics with both above-mentioned phospholipid categories. Similar to 

“structural” phospholipids, it is synthesized in the endoplasmic reticulum by a single enzyme 

called PHOSPHATIDYLSERINE SYNTHASE 1 (PSS1) in Arabidopsis and PS is not acutely 

produced in compartments outside of the endoplasmic reticulum (Figure 1b and c) [29]. 

However, it is acidic, interacts with specific proteins and is present at low levels (i.e. from 1 to 

5% of total phospholipids depending on the tissue [29]), which is a hallmark of “signaling” 

lipids (Figure 1a and b) [2]. PS in produced in the luminal leaflet of the endoplasmic reticulum 

and is then actively orientated by flippases in the cytoplasmic membrane leaflet [30]. This 

regulation is organelle specific, which allows the accumulation of PS in the cytoplasmic leaflet 

of post-Golgi compartments [30]. Localization studies using PS specific biosensors revealed 

that it accumulates at the plasma membrane and all along the endocytic pathway in Arabidopsis 

[4,13]. This accumulation gradient is critical to define an “electrostatic” membrane territory 

within the cell, which specifies the identity of plasma membrane-derived organelles [13].  

Interestingly, the relative accumulation of PS biosensors at the plasma membrane or endosomes 

varies during root epidermis differentiation (Figure 3a) [31]. Indeed, PS biosensors mostly 

accumulate at the plasma membrane in meristematic cells, while they partition more evenly 

between the cell surface and endosomes in differentiating epidermal cells (Figure 3a). 

Experimental manipulation of the PS content by knock-out, knock-down or overexpression of 
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the Arabidopsis PSS1 gene leads to the graded activation of plasma membrane auxin signaling 

pathway, which is regulated by the small GTPase RHO-OF-PLANTS6 (ROP6) [31,32]. 

Interestingly, PS is dispensable for the proper targeting of ROP6 to the plasma membrane [31]. 

However, super resolution microscopy and single molecule imaging revealed that PS is required 

for the auxin-induced clustering and stabilization of ROP6 in plasma membrane nanodomains 

(Figure 3b and c). ROP6 stabilization in nanoclusters is required for downstream auxin 

signaling. This effect is dose-dependent, with no stabilization of ROP6 in nanodomains in the 

absence of PS and therefore no downstream signaling, even when ROP6 is constitutively active 

(Figure 3c). By contrast, ROP6 is hyper stabilized in nanodomains in response to auxin in PSS1 

overexpressing plants (Figure 3c). Accordingly, these plants have the same phenotypes as 

plants expressing a constitutive active version of ROP6, including the chronic inhibition of 

endocytosis and a hypergravitropic root response [31].  

One of the future challenges will be to decipher how is the PS pattern developmentally-

controlled during cell differentiation, a process which could involve lipid flippases or regulation 

of PS transfer at membrane contact sites, which are close (below 30nm) and stable apposition 

of two membranes involves, among other functions, in lipid exchanges [30,33-36]. 

Furthermore, PS itself is present in plasma membrane nanodomains, and single molecule 

tracking experiments revealed that these PS molecules are slow moving within the plane of the 

plasma membrane [31]. This raises the question of how a phospholipid may be immobilized 

within a membrane and whether this process could also be regulated at the tissue scale. 

 

Temporal phospholipid patterns 

The last example is perhaps the least expected as it entails PC, an archetype “structural” lipid. 

Indeed, transgenic lines with imbalanced PE/PC ratio, obtained by inducible knock-down or 

overexpression of CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE1 

(PECT1, a rate limiting enzyme in PE biosynthesis), revealed that PC levels at the shoot apex 

correlate with flowering time: lines with heightened PC content flower early, while plants with 

reduced PC levels are late flowering (Figure 4a) [37,38]. The early flowering time phenotype 

observed in plants with heightened PC content is dependent upon expression of FLOWERING 

LOCUS T (FT), a master regulator of flowering time [39]. Interestingly, FT directly binds to 

PC but not PE in vitro [37]. Furthermore, PC but not PE oscillate depending of the time of day, 

with specific molecular species of PC showing various temporal pattern of accumulation 

(Figure 4b). For example, PC species containing less unsaturated fatty acids are predominant 
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during the day, while PC species with linolenic acid (18:3) increase during the night (Figure 

4b). In vitro, PC species with linolenic acid bind poorly to FT by contrast to less unsaturated 

PC species [37]. Transgenic plants that overexpress FATTY ACID DESATURASE3 (FAD3) 

show high content in PC species with 18:3 fatty acids and are late flowering (Figure 4b) [37,40]. 

Together these data suggest that FT preferentially interacts with the PC species that accumulate 

during the day to promote flowering (Figure 4b) [37]. However, it remains unclear how PC 

contributes to FT activity at the molecular level and how FT discriminates the different PC 

species based on their degree of unsaturation. 

Of note, PC is not the only phospholipid showing temporal pattern of accumulation; and some 

molecular species of PA or PS also cycle diurnally [41]. These cycling are not just regulated by 

the light/dark cycle but they are under direct circadian regulation and are abolished in clock 

mutants [42]. Interestingly, PA itself regulates the core clock components LONG 

ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1). 

PA directly binds to both LHY and CCA1, which inhibits their DNA binding capacity [42]. 

Together these results suggest that the interaction of PA with LHY/CCA1 may function in a 

negative feedback loop to integrate the circadian clock with lipid metabolism (Figure 4c).  

Concluding remarks and future perspectives 

The examples highlighted in this review show that phospholipid patterns are multiscales, from 

membrane nanodomains up to the organismal scale, with specific phospholipid patterns arising 

according to the cell type, the tissue differentiation status or the time of day. Tissue-specific 

control of lipid patterns is an emerging concept, but its exploration is somewhat limited by our 

ability to monitor their dynamics and crosstalks. By design, genetically encoded phospholipid 

biosensors reveal lipid subcellular localization, but not their respective accumulation [12]. As 

such, these biosensors are suited to detect changes in phospholipid localization, as exemplified 

for PS [31]. However, if the levels of phospholipids vary but not their subcellular localization, 

the current tools are not quantitative enough to measure these variations with spatial resolution. 

In some cases, the stability of the lipid sensor is dependent on the quantity of this lipid within 

the cell. However, we do not understand the mechanistic bases for such lipid-induced 

stabilization/destabilization. We therefore urgently need new methods to image and quantify 

phospholipid accumulation and turnover with tissue and cellular resolution. Such methods 

could include for example the design of new quantitative lipid sensors, the use of lipid 

immunolocalization or mass spectrometry imaging of lipid species. The latter is particularly 

promising since it can not only discriminate different phospholipids but also their various 
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unsaturation degree [43-46]. However, this technique is still limited to very abundant 

phospholipids, such as PC. In addition, the best resolution reported in plant samples to date is 

~10 µm, which is sufficient for analyses at the organ/tissue scales but not cellular/subcellular 

levels [43-46]. 

While we begin to uncover some of the enzymes involved in lipid patterning at the tissue scale, 

the next challenge will be to decipher what are the downstream targets that respond to these 

patterns, and what are the developmental consequences. This is a particularly daunting task 

since phospholipids have pleiotropic targets and are therefore expected to affect the localization 

or activity of many effector proteins. Pinpointing relevant interactions will therefore require in 

depth biochemical knowledge of the protein/lipid binding interfaces in order to modulate these 

interactions both from the lipid but also protein sides. At the same time, such efforts will require 

integrative biology approaches to blend deep biochemical knowledge into their cellular and 

developmental contexts. 
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Figures 

 

Figure 1: Phospholipids properties and biosynthetic pathways. (a) Schematic representation 

of phospholipid general structure, with the relative amount of each phospholipid species 

depicted as measured in Arabidopsis leaf (data compiled from [29,47]). (b) Euler diagram 

illustrating phospholipid properties. (c) Phospholipid biosynthesis pathway. Note that 

phospholipid synthesis pathway in plastid/mitochondria are not depicted. The main rate-
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limiting enzymes involved in phospholipid interconversion are indicated (enzymes in red are 

discussed in this review). Abbreviations: DAG, diacylglycerol; PA, phosphatidic acid; PC, 

phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PS, 

phosphatidylserine; PI, phosphatidylinositol; PI3P, phosphatidylinositol-3-phosphate; PI4P, 

phosphatidylinositol-4-phosphate; PI5P, phosphatidylinositol-5-phosphate; PI(3,5)P2, 

phosphatidylinositol-(3,5)-bisphosphate; PI(4,5)P2, phosphatidylinositol-(4,5)-bisphosphate; 

LPAAT, LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE; PAP, PA PHOSPHATASE; 

AAPT, AMINOALCOHOL AMINOPHOSPHOTRANSFERASE; DGK, DAG KINASE; 

PECT, CYTIDINE TRIPHOSPHATE:PHOSPHORYLETHANOLAMINE 

CYTIDYLYLTRANSFERASE; PSS, PS SYNTHASE; CDS, CYTIDINE DIPHOSPHATE-

DAG SYNTHASE; CMP-PA, CYTIDINE MONOPHOSPHATE PA; PIS, PI SYNTHASE; 

PI4K, PI4-KINASE; PIP5K, PI4P 5-KINASE; PLC, PHOSPHOLIPASE C; PLD, 

PHOSPHOLIPASE D. 
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Figure 2: PI(4,5)P2 patterning in meristematic tissues and impact of imbalanced 

PI(4,5)P2/PI4P ratio on protophloem differentiation. (a) Schematic representation of the 

shoot apical meristem organization (top) and PI(4,5)P2 accumulation pattern together with the 

predicted tensile stress pattern (bottom). (b) Schematic representation of protophloem 

differentiation in Arabidopsis root meristem and phenotype associated with experimental 

variations in the PI(4,5)P2/PI4P balance. Root schematic was modified from B. Peret: 

https://figshare.com/articles/Primary_and_lateral_root_ai/5143987 

https://figshare.com/articles/Primary_and_lateral_root_ai/5143987
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Figure 3: Impact of PS variations on ROP6-mediated auxin signaling. (a) Variation of PS 

content at the plasma membrane during root differentiation. (b) Stabilization of ROP6 into PS-

containing nanodomains upon auxin treatment and (c) impact of experimental variations of total 

PS content on ROP6 nanoclustering and downstream auxin signaling. Root schematic was 

modified from B. Peret: https://figshare.com/articles/Primary_and_lateral_root_ai/5143987 

 

https://figshare.com/articles/Primary_and_lateral_root_ai/5143987
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Figure 4: Impact of PC variations on flowering time and of PA on circadian clock. (a) 

Impact of experimental variations of the PE/PC ratio on flowering time and (b) diurnal 

variations of polyunsaturated 18:3-containing PC. (c) Feedback regulations between the 

circadian clock and PA. Arabidopsis rosette schematic was modified from F. Bouché: 

https://figshare.com/articles/Arabidopsis_-_Rosette_drawing_steps/4688839  

  

 

https://figshare.com/articles/Arabidopsis_-_Rosette_drawing_steps/4688839
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