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Abstract

The conformal anomaly in curved spacetime generates a nontrivial anomalous vertex, given by the three-point correlation function
TTT of the energy-momentum tensor T µν. We show that a temperature inhomogeneity in a gas of charged massless particles
generates, via the TTT vertex, a pressure anisotropy with respect to the axis of the temperature variation. This very particular
signature may provide an experimental access to the elusive gravitational coefficient b which determines the anomaly contribution
of the Weyl tensor to the trace of the energy-momentum tensor in curved spacetime. We present an estimate of the pressure
anisotropy both for fermionic quasiparticles in the solid-state environment of Dirac semimetals as well as for a quark-gluon plasma
in relativistic heavy-ion collisions. In both cases, the pressure anisotropy is small compared to the mean thermal pressure.
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1. Introduction

A physical system is defined to be scale invariant at the clas-
sical level when all the parameters of the system are dimension-
less quantities. In all known physical theories, scale invariance
is naturally extended to conformal invariance, and no reason-
able counterexamples have been found where such an enhance-
ment is absent [1].

In interacting theories, classical conformal invariance may
break at quantum level, thus revealing the presence of a confor-
mal anomaly [2, 3]. A quantum anomaly, in general, regularly
leads to the emergence of an associated anomalous transport
law, which describes the appearance of a particular, usually un-
expected in a classical theory, charge flow under the influence
of specific external conditions [4].

While the quantum anomalies were predominantly discussed
in the past in the context of particle physics [5], nowadays
anomalies are addressed in solid-state systems as well. This
may offer a reliable and systematic way for the experimen-
tal studies of their phenomenological implications [6, 7, 8, 9,
10]. Specifically, Dirac semimetals manifest several quantum
anomalies which lead to various anomaly–related transport phe-
nomena [11].

Dirac semimetals are three dimensional crystals whose low–
energy excitations are solutions of the massless Dirac equa-
tion. Their S O(1, 3) Lorentz symmetry is naturally enhanced
to a classical conformal S O(2, 4) symmetry, provided that the
fermion interaction in the bulk of such materials is also trans-
lational invariant. The conformal anomaly (see [3] for an
overview) in these materials reveals itself via the appearance
of a logarithmic dependence of the photon polarization func-
tion on the renormalization scale [12, 13, 14, 15, 16]. For such

reasons topological semimetals have attracted wide research in-
terests [17, 18].

The anomalous charge and energy flows can be described
in terms of the chiral/conformal/gravitational anomaly actions,
depending on the case, which play a key role in high–energy
phenomenology [19] and in heavy–ion collisions at high en-
ergy scales [4]. The axial anomaly [20, 21, 22, 23] generates –
via the chiral magnetic effect [24] – an electric current parallel
to the axis of a background magnetic field [25] which can be
measured in appropriate experiments. For example, the mixed
axial-gravitational anomaly [26] leads to a positive magneto-
thermoelectric conductance for collinear temperature gradients
and magnetic fields [27, 28]. Related axial-torsional anoma-
lies can also be studied at experimental level, for generating
an alternating electric current driven by sound waves in Weyl
semimetals [29].

It has been also suggested that the conformal anomaly may
generate – via the scale magnetic effect [30] – an anomalous
thermoelectric current in topological semimetals, whenever a
temperature gradient is present in the material [31, 32]. The
conformal anomaly produces an electric current and a current
density at a boundary of a conformal system, if subjected to a
background electromagnetic field [33, 34, 35]. It may provide
an experimental access to the beta function associated with the
running of the electric charge [36].

Certain quantum anomalies, such as conformal and mixed
axial-gravitational anomalies, may reveal themselves in curved
spacetimes because they involve the energy-momentum ten-
sor and, consequently, the metric tensor. In condensed mat-
ter systems, these “gravitational” anomalies may be probed in
an off-equilibrium regime using the Luttinger theory of ther-
mal transport coefficients [37, 38], which was used, for exam-
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ple, in studies of the thermal imprints of the axial-gravitational
anomaly [27, 28].

The basic idea is that the effect of a temperature gradient ∇T
– that drives a system out of equilibrium – can be compensated,
at linear order, by a non-uniform gravitational potential Φ

1
T
∇T = −

1
c2∇Φ , (1)

where c is the speed of light. For a weak gravitational field (in
the Newtonian limit), the gravitational potential Φ,

g00 = 1 +
2Φ

c2 , (2)

is related to the g00 component of the metric, while other com-
ponents of the metric tensor are unmodified. This observation is
closely related to the Tolman–Ehrenfest effect [39, 40], which
states that in a stationary gravitational field, the local tempera-
ture of a system at thermal equilibrium is not constant in space.
The temperature depends on the spatial coordinates as

T (x) = T0/
√

g00(x), (3)

where T0 is a reference temperature at a selected point with
g00 = 1.

The Luttinger formula (1) may be derived from simple ther-
modynamic considerations (see, for example, Ref. [41]). Con-
sider a closed system divided arbitrarily into two subsystems, 1
and 2. A thermal equilibrium happens when the total entropy,
S = S 1 + S 2, takes its maximum, implying dS 1 + dS 2 = 0. If
the quantity of heat dE leaves the first subsystem, dE1 = −dE,
it always enters the second subsystem, dE2 = dE, because the
system is closed. For any heat exchange between the subsys-
tems, one gets therefore dS 1/dE1 = dS 2/dE2. Given the defi-
nition of temperature, T = dS/dE, the last relation implies that
in a thermal equilibrium, the temperatures of the two subsys-
tems should be equal: T1 = T2.

In a static gravitational field Φ, the heat quantity dE pos-
sesses an inertial mass dm = dE/c2. In accordance with
the equivalence between inertial and gravitational masses, the
heat has a weight in a gravitational field. Therefore, the heat
dE leaving system 1 and entering system 2 changes its en-
ergy by performing the work against the change of the gravi-
tational potential ∆Φ = Φ2 − Φ1 between the two subsystems:
dE2 = dE + (Φ2 − Φ1)dm = dE2(1 + ∆Φ/c2). Therefore,
T2 = T1(1 + ∆Φ/c2) and we immediately recover the Luttinger
relation (2) between the gradients of temperature and the grav-
itational potential for closely separated nonrelativistic systems.
Its relativistic generalization is shown in Eq. (3).

In order to ensure the appropriate definition of temperature,
the mentioned derivation of the Luttinger formula (1) requires
the sufficient proximity of the two subsystems and the weakness
of the gravitation field so that ∆Φ/c2 � 1. The same condition
is valid in the case of a slight departure from equilibrium: the
variation of the gravitational field may mimic the temperature
gradient.

A crucial role in the anomalous transport is played by
the quantum anomalies associated with the presence of non-
vanishing 3-point functions involving the fermions which are
present in such materials.

We recall that in a quantum field theory of chiral fermions,
the nonconservation of the fermion’s axial charge is generated
by the 〈AVV〉 vertex involving the vector current jV and the
axial current jA. The divergence of the axial current jA is lo-
cally proportional to the product of electric and magnetic fields
(represented by two “V” of the same vertex).

The very same 〈AVV〉 vertex is responsible for the chiral
magnetic effect: the electric current (one vector current “V”) is
generated in the background of a magnetic field (another “V”)
and of a non-zero chiral chemical potential µ5 (the time-like
component of the remaining axial current “A”). The chiral mag-
netic effect is responsible for the effect of negative magnetore-
sistivity, which has been experimentally observed in Weyl and
Dirac semimetals.

Another example in the same theory is given by the 〈AAA〉
diagram, with three axial-vector currents (A), which is also
responsible for the non-conservation of the axial charge in
the background of an axial-vector gauge field. As is well
known, axial-vector interactions, obviously, act on left- and
right-handed particles with different strengths. It is however
surprising that the same interaction emerges in a material.

Indeed, the 〈AAA〉 vertex is responsible for a variant of the
chiral magnetic effect which generates the axial current in the
background of the axial magnetic field at nonzero chiral chem-
ical potential. Therefore, although such chiral effects are exotic
properties of the fundamental interactions in the high energy
physics domain, they may readily appear in effective theories
of strained Weyl semimetals.

The 〈AAA〉 vertex is responsible, in particular, for the gener-
ation of a new unidirectional excitation, the chiral sound wave,
for which has been recently proposed a possible experimental
detection [42].

In this work we are going to discuss new anomalous trans-
port phenomena associated with the presence of another type of
anomaly, the conformal/trace anomaly [3]. In short, the confor-
mal anomaly implies sensitivity of certain physical phenomena
on the energy scale of the interactions, in an originally scale-
independent classical theory. The corresponding anomalous
vertex is described by the 3-point function 〈TVV〉, where “T”
stands for the energy-momentum tensor Tµν.

As we are going to elaborate in more detail below, the trace
of the energy-momentum tensor is a nonvanishing quantity in
the classical electromagnetic background (represented by the
two “V” in the diagram). For a classically conformal invariant
theory the trace of the energy-momentum tensor is zero and
induces an ordinary Ward identity on the TVV vertex, which is
proportional to 2-point functions of vector currents (VV).

In the quantum case this relation gets modified by the inclu-
sion of an extra contribution given by the trace anomaly. The
origin of such extra term can be traced back to an effective
massless interaction in the form of an anomaly pole [43, 44],
which in perturbation theory can be shown to be directly re-
lated to renormalization [45]. This phenomenon unifies chiral
and conformal anomalies, as exemplified in the context of the
supersymmetric anomaly supermultiplet in N = 1 Yang-Mills
theories [46].

The anomalous 3-point function 〈TVV〉 diagram may also
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lead to anomalous transport effects. For example, the scale
magnetic effect implies that in a gravitational potential (the
“T”), the background magnetic field (one of the V’s) gener-
ates an electric current (the remaining V) which is normal both
to the gravitational and to the magnetic field. It has been sug-
gested that such scale magnetic effect may generate Nernst ther-
moelectric phenomena in Dirac semimetals.

The 〈TVV〉 diagram also generates the scale electric effect,
which leads to the appearance of the Ohmic conductivity of the
fermionic vacuum in the expanding (de Sitter) spacetime, and
is indirectly related to the Schwinger effect. This phenomenon
is discussed in the cosmological context in Refs. [47, 48]. In-
terestingly, for theories with a positive beta function (such as
QED, for example), the anomalous Ohmic conductivity is a
negative quantity.

In our paper we continue our investigations of the impact of
the conformal anomaly on the transport and equation-of-state
properties of a system of massless fermions. After a brief sum-
mary of the effects generated by the 〈TVV〉 diagram, we pro-
ceed with the investigation of the anomalous effects associated
with the 3-point vertex 〈TTT 〉.

2. The Conformal anomaly in QED

2.1. The flat-space case
We consider the case of Quantum Electrodynamics (QED)

with a massless Dirac fermion ψ coupled to an electromagnetic
field Aµ. This simplest theory exhibits a variety of anoma-
lous effects which are encountered also in more complex the-
ories, including those that describe topological, Dirac semimet-
als. A discussion of the 1PI (1–particle irreducible) conformal
anomaly action in this model can be found in [43] while the
connection between the structure of such action, the process of
renormalization, and the generation of a massless nonlocal in-
teraction (an anomaly pole) which is the key signature of the
conformal anomaly, has been discussed in [49] and, more re-
cently, in [45]. Below we will discuss the structure of such
anomaly poles starting from the nonlocal Riegert action [50],
which provides an equivalent description of such exchanges, as
shown for the TVV and TTT correlators [51, 52]. The latter
(TTT) will play a key role in our current analysis.

The Lagrangian of massless QED with a single fermion,

L = −
1
4

FµνFµν + ψ̄i /Dψ , (4)

involves the field strength tensor Fµν = ∂µAν−∂νAµ of the gauge
field Aµ coupled to the Dirac four spinor ψ with Dµ = ∂µ+ ieAµ.
We consider first the model in a flat Minkowski spacetime with
the metric

ηµν = diag(+1,−1,−1,−1), (5)

and then proceed to study the effects of a curved spacetime.
At the classical level, massless QED is characterized by a

global U(1)L × U(1)R ≡ U(1)V × U(1)A chiral symmetry. It
leads to conservation of the chiral currents,

jL/R =
1
2

∫
ψγµ(1 ± γ5)ψ, ∂ · jL/R = 0, (6)

with the left QL and right chiral charges QR, respectively:

QL =

∫
d3x j0L(x, t) QR =

∫
d3x j0R(x, t). (7)

At a quantum level, the ordinary gauge invariance U(1)V is an
unbroken symmetry. It leads to a zero divergency of the vector
current and to the conservation of the vector (electric) charge:

jµV ≡ jµR + jµL = ψ̄γµψ, ∂ · jV = 0, Q =

∫
d3x j0V (x, t). (8)

The axial symmetry UA(1) is broken by quantum fluctuations
signaling the existence of a quantum anomaly. The axial charge
is not conserved at quantum level. In a flat spacetime, the axial
current

jµA ≡ jµR − jµL = ψ̄γµγ5ψ, (9)

possesses a nonzero divergence in a classical electromagnetic
background:

∂µ jµA =
e2

8π2 F̃µνFµν ≡
e2

2π2 E · B, (10)

where E and B are electric and magnetic fields, respectively,
and F̃µν = (1/2)εµναβFαβ. A similar breaking is induced on the
dilatation current

jD(x) = xαT µ
α ∂ · jD = T µ

µ (11)

which at quantum level is promoted to the form

∂ · jD = 〈T µ
µ 〉 (12)

and is associated to the emergence of a nonzero β(e) function of
the running coupling in the quantum theory. Since this symme-
try plays a central role in our analysis, we will discuss it here in
more details.

The QED Lagrangian (4) describes a conformally invariant
field theory as its action S =

∫
d4xL is invariant under a si-

multaneous rescaling of all coordinates and fields according to
their canonical dimensions:

x→ λ−1x , Aµ → λAµ , ψ→ λ3/2ψ , (13)

where λ is a real-valued parameter.
Scale invariance (13) is a natural outcome of the simple fact

that the classical theory (4) does not possess any characteristic
mass or length scale. As a consequence, the energy-momentum
tensor of the model (4),

T µν = −FµαFν
α +

1
4
ηµνFαβFαβ (14)

+
i
2
ψ̄ (γµDν + γνDµ)ψ − ηµνψ̄i /Dψ ,

is a traceless quantity on a classical level, (T µ
µ )cl ≡ 0.

However, at quantum level, scale invariance (13) is broken
by the quantum corrections which induce a running of the elec-
tric charge e = e(µ) on the renormalization energy scale µ.
In other words, the electric charge of a particle gets partially
screened by quantum fluctuations. As the effectiveness of the
screening depends on the distance (energy) at which the charge
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is probed, the effective electric charge becomes a distance-
(energy-)dependent quantity. Therefore, the theory looses its
conformal invariance due to effects induced by quantum fluctu-
ations and interactions.

The loss of scale invariance in the quantum theory (13) man-
ifests by a nonzero value of the beta-function associated with
the running of the electric charge e

β(e) =
de

d ln µ
. (15)

This dimensionless quantity parameterizes the breaking of con-
formal invariance of the model.
Due to the conformal anomaly, the expectation value of the
trace of the energy-momentum tensor (14) acquires a nonzero
expectation value [5]

〈
Tα
α(x)

〉
=
β(e)
2e

Fµν(x)Fµν(x) ≡
β(e)
2e

(
B2 − E2

)
, (16)

where E and B are electric and magnetic fields of the classical
electromagnetic background.

In QED with only one flavour of Dirac fermions (4), the one-
loop QED beta function takes the form

β
1loop
QED =

e3

12π2 . (17)

2.2. The anomaly in a curved background in the QED case

2.2.1. Anomaly action
In a nontrivial spacetime background, the expectation value

of the trace of the energy-momentum tensor acquires, in ad-
dition to the gauge contribution generated by the matter-related
part (16) (i.e. the fermion loop), two contributions coming from
the gravity side〈

T µ
µ

〉
= bC2 + b′H + cMFµνFµν. (18)

In general, the coefficients (b, b′, cM) are related to the number
of massless scalars, fermions and spin-1 fields which may ap-
pear in the anomaly loops and are specific of a certain (classical)
conformal field theory (CFT) in its Lagrangian realization. For
non-Lagrangian realizations, i.e. for general conformal field
theories, they are classified as “conformal data”, which charac-
terize a certain specific CFT.

The first term is given by the Weyl tensor squared

C2 = CµναβCµναβ ≡ RµναβRµναβ − 2RµνRµν + R2/3, (19)

which is expressed via the Riemann tensor Rµναβ, the Ricci
tensor Rµν = Rα

µαν, and the scalar curvature R = Rµ
µ. The

second term in Eq. (18) is given by the linear combination
H = E−2�R/3, which involves the Euler (topological) density

E = ∗Rµναβ
∗Rµναβ ≡ RµναβRµναβ − 4RµνRµν + R2, (20)

and the d’Alembertian differential operator � ≡ ∇µ∇µ of the
scalar curvature R expressed via the covariant derivative ∇µ.
Here ∗Rµναβ = εµνµ′ν′R

µ′ν′

αβ
/2 is a dual of the Riemann tensor.

In massless QED (4) the coefficients b, b′ and c in the trace
expectation value (18) are, respectively, as follows

b =
1

320π2 , b′ = −
11

11520π2 , cM = −
e2

24π2 . (21)

The “matter” parameter cM is proportional to the one-loop QED
beta function (17): cM = −β

1loop
QED /(2e). The trace anomaly (18)

reduces to Eq. (16) in a flat Minkowski spacetime (5).
The anomalous trace of the energy-momentum tensor (18) is

known to be generated by the nonlocal action [43, 50, 53, 54]

S anom[g, A] =
1
8

∫
d4x

√
−g(x)

∫
d4y

√
−g(y) (22)

·H(x)G(4)(x, y)
[
2bC2(y) + b′H(y) + 2cFµν(y)Fµν(y)

]
,

where G(4)(x, y) is the Green function the fourth-order differen-
tial operator, often called the Paneitz operator [55]:

∆4 = ∇µ

(
∇µ∇ν + 2Rµν −

2
3

Rgµν
)
∇ν. (23)

A variation of the action (22) with respect to metric,〈
T µ
µ

〉
≡ −

2gµν
√
−g

δS anom

δgµν
, (24)

provides us, indeed, with the correct expression for the one-
loop trace anomaly in the curved spacetime (18). The anomaly
action (22) is a nonlocal function of the gauge field Aµ and the
metric gµν. The nonlocality indicates that the scale anomaly is
associated with a massless pole.

2.2.2. Scale electromagnetic effects
The anomaly action (22) is induced by quantum fluctuations

in the background of the classical electromagnetic field Fµν and
in the presence of a background curved metric associated with
an external gravitational field. It describes the response of the
matter system under such off-shell external fields.

Anomaly actions are not unique. For instance, it is possible
to write down local actions containing extra degrees of free-
dom, which describe the breaking of the conformal symmetry
with the inclusion of a Goldstone mode (a dilaton) in the low
energy spectrum. Such local variants, usually derived using the
Noether method [56, 57] are expected to provide two comple-
mentary descriptions of the dynamical breaking of the confor-
mal symmetry at two ends (UV/IR) of a renormalization group
flow (see the discussion in [19] and in [45]).

Since the action contains the explicit dependence on the field
strength Fµν, the anomalous quantum fluctuations may carry
a local electric current. The electric current, induced by the
quantum fluctuations, can straightforwardly be computed using
a variation of the anomaly action (22) with respect to the elec-
tromagnetic field Aµ

Jµ(x) = −
1√
−g(x)

δS anom

δAµ(x)

= −
cM√
−g(x)

∂

∂xν

[ √
−g(x) Fµν(x) (25)

·

∫
d4y

√
−g(y)G(4)(x, y)

(
E(y) −

2
3
�R(y)

)]
,
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where the Euler topological density E = E(x) is explicitly given
in Eq. (20). The parameter c is proportional to the QED beta
function given in Eq. (21) for a single flavour.

Equation (25) provides us with the one–loop expression
for the anomalous electric current induced by the conformal
anomaly in an arbitrary classical gravitational background.
Similarly to the action, the electric current (25) is a non-local
function of the metric and of the electromagnetic field (22).

Working in a linear-response approach, we consider the case
of a weak gravitational background. To this end it is convenient
to rewrite the electromagnetic part of the anomaly action (22),

S (1)
anom = −

cM

6

∫
d4x

√
−g(x)

∫
d4y

√
−g(y)

·R(1)(x)�−1
x,y Fαβ(y)Fαβ(y) , (26)

in terms a small perturbation (|hµν| � 1) around the flat metric,

gµν = ηµν + hµν . (27)

The same expression of the anomaly action can be obtained by
a perturbative analysis in QED [43, 44].

In Eq. (26) the expression �−1
x,y denotes a Green function of

the flat-space d’Alembertian � ≡ ∂µ∂
µ and R(1) is the leading

(linear in metric) double-derivative term of the Ricci scalar:

R(1) = ∂µ∂νhµν − ηµν�0hµν . (28)

The indices are raised/lowered with the background metric ten-
sor, hµν = ηµαηνβhαβ. In linearized gravity the inverse metric
tensor is gµν = ηµν − hµν, so that gµαgαν = δ

µ
ν + O(h2).

The conformal anomaly (16) leads to anomalous transport ef-
fects which most straightforwardly reveal themselves in a con-
formally flat spacetime metric

gµν(x) = e2τ(x)ηµν , (29)

where τ(x) is a scalar conformal factor which vanishes at spatial
infinity and ηµν is the Minkowski metric tensor (5). For a weak
perturbation, |τ| � 1, one has hµν = 2τηµν so that R(1) = 6�τ
and the leading contribution to the anomaly action (26) reduces
to the local expression:

S (1),conf
anom =

e2

24π2

∫
d4x τ(x) Fαβ(x)Fαβ(x) . (30)

Hereafter we use the parameter cM for one-flavor QED (21).
A variation of the action (30) with respect to the electromag-

netic field Aµ,

Jµ(x) = −
1√
−g(x)

δS (1)
anom

δAµ(x)
, (31)

generates the anomalous electric current via the scale magnetic
effect (SME) [30]

J =
2β(e)

e
∇τ(x) × B(x) . (32)

In the presence of the electric field background E the conformal
anomaly leads to the scale electric effect (SEE) which takes the

form Ohm’s law with the metric-dependent anomalous electric
conductivity σ

J = σ(x)E(x) , σ(t, x) = −
2β(e)

e
∂τ(t, x)
∂t

. (33)

The 〈TVV〉 vertex could also lead to the Nernst effect, which
generates an electric current normal to the temperature gra-
dient and to the axis of the background magnetic field [58].
The derivation follows the same steps shown above with just
a few extra subtleties. Instead of the conformal factor (29) one
uses the gravitational potential associated with the temperature
gradient (1) and (2). The Nernst coefficient, originating from
the conformal anomaly, is proportional to the QED beta func-
tion (17), as expected.

3. The TTT vertex

The anomalous contribution to the TTT vertex, shown in
Fig. 1, emerges naturally from the anomaly action (22) by func-
tional differentiation. Contrary to the TVV vertex, the diagram
responsible for the TTT vertex does not depend on the running
electric charge e.

gµ1ν1
gµ2ν2

gµ3ν3

1

Figure 1: The 1PI diagram for the TTT vertex (39).

As we will show below, the vertex carries information about
the purely gravitational coupling b, which depends only on the
number of fermion flavours. The value of b for massless QED
with a single Dirac fermion is given in Eq. (21).

The TTT vertex in momentum space can be derived in CFT
by solving the conformal Ward identities using a specific proce-
dure, starting from the transverse traceless sector of such corre-
lator, which can be simplified by mapping the general solution
[59, 60, 61] to free field theory [51, 62].

Building on our previous experience with the chiral magnetic
and scale electromagnetic effects, we take one of the T µν tensors
entering the TTT vertex as an external probe, while the other
two T ’s are to be considered as external perturbations present
in the environment. Specifically, we assume that the system is
in a slightly off-equilibrium state with a constant temperature
gradient in one of the directions. We will use the Luttinger
identification (1) to relate the variation of the g00 component of
the metric (2) with the temperature gradient ∇T .

The TTT vertex appears naturally at second order in the per-
turbative expansion of the effective action with respect to the
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metric’s variations hµν

〈T µ1ν1 (x1)〉TTT =
1
8

∫
dx2 dx3 〈T µ1ν1 (x1)T µ2ν2 (x2)T µ3ν3 (x3)〉

hµ2ν2 (x2) hµ3ν3 (x3). (34)

The anomalous part of the three-point diagram 〈TTT 〉 in
Eq. (34) can be found in a straightforward way from the
anomaly action (22). To this end we vary the action three times
respect to the metric and then take the flat spacetime limit. Ig-
noring the local terms, the anomaly action up to third order in
the metric variation hµν is given by

S(3)
anom[g] = −

1
6

∫
d4xd4x′ R(1)

x

(
1
�0

)
xx′

B(2)
x′

+
b′

9

∫
d4xd4x′ d4x′′

(
∂µR(1)

)
x

(
1
�0

)
xx′

(35)

· H(1),µν
x′

(
1
�0

)
x′x′′

(
∂νR(1)

)
x′′
,

where we denoted, for brevity

H(1),µν
x =

(
R(1)µν −

1
3
ηµνR(1)

)
x
, B(2)

x = b (C2
x)(2) + b′ E(2)

x .

The latter combination contains terms bilinear in hµν for, re-
spectively, the Weyl tensor squared (19) and the Euler den-
sity (20). The linear perturbations of the Riemann and Ricci
tensors, as well as the scalar curvature, are taken as

R(1)
αµβν =

1
2

(
∂µ∂βhαν − ∂α∂βhµν − ∂µ∂ν hαβ + ∂ν∂α hµβ

)
, (36)

R(1)
µν =

1
2

(
∂µ∂

αhαν −�0hµν − ηαβ∂µ∂ν hαβ + ∂ν∂
α hµα

)
, (37)

R(1) = (∂µ∂ν − ηµν�0) hµν. (38)

Notice that Eq. (35) may be used to calculate the three-point
correlator TTT provided all points are distinct from each other,
xi , x j,∀ i , j. Then all the contact terms vanish, giving

i2 〈T {T µ1ν1 (x1)T µ2ν2 (x2)T µ3ν3 (x3)}〉 (39)

=
8√

g(x1)
√

g(x2)
√

g(x3)

δ3 S [g]
δgµ1ν1 (x1)δgµ2ν2 (x2)δgµ3ν3 (x3)

,

where T is the time-ordered product of energy-momentum ten-
sors in the background gµν.

With several rearrangements, the action (35) becomes

S(3)
anom[g] = −

1
6

∫
d4xd4x′

(
∂µ∂νhµν

)
x

(
1
�0

)
xx′

B(2)
x′

+

∫
d4x

[
1
6

h(x)B(2)
x +

b′

9
(
∂µh

)
xH(1),µν

x (∂νh)x

]
−

2b′

9

∫
d4xd4x′

(
∂α∂β∂µhαβ

)
x

(
1
�0

)
xx′

H(1),µν
x′ (∂νh)x′

+
b′

9

∫
d4xd4x′ d4x′′

(
∂α∂β∂µhαβ

)
x

(
1
�0

)
xx′

H(1),µν
x′

·

(
1
�0

)
x′x′′

(
∂ρ∂σ∂νhρσ

)
x′′
.

(40)

At leading order, the anomalous contribution to the expec-
tation value of the energy-momentum tensor (34) can be read
off from the functional (40). However, even with these simpli-
fications, the explicit expression of the vertex (34) is still very
lengthy. Fortunately, for our purposes, we need only certain
components of the 〈TTT 〉 diagram.

We consider the system in a slightly off-equilibrium regime
with a small temperature variation along a certain (third, in our
case) direction. We use the Luttinger identification (1) to relate
the time-independent temperature gradient to the gradient of the
gravitational potential Φ. Then, the perturbation of the metric
tensor is nonzero only for the h00 ≡ 2Φ component, which, in
addition, depends only on one spatial variable, h00(x) ≡ h00(x3).
We find from Eqs. (40) and (34) that the anomalous part of the
TTT vertex contributes to the expectation value for the energy-
momentum tensor as

〈T 00〉TTT =
4b
9

[
3
(
∂2

3 Φ
)2

+ 4
(
∂3Φ

) (
∂3

3Φ
)

+ 2Φ∂4
3 Φ

]
, (41)

〈T 11〉TTT = 〈T 22〉TTT =
4b
9

[
2
(
∂3Φ

) (
∂3

3Φ
)

+ Φ∂4
3Φ

]
. (42)

Other components, including the energy flow T 0i and the mo-
mentum flow T i j, with i, j = 1, 2, 3, are all equal to zero. Notice
that the contribution to the pressure along the gravitational gra-
dient is also vanishing, P3 ≡ T 33 = 0.

There are some remarkable properties of Eqs. (41)–(42)
which we need to comment upon. First, these expressions are
local functions of the gravitational potential Φ ≡ h00/2, despite
the fact that they have been derived from the non-local anomaly
action.

Second, one can readily observe that the expectation value
of the energy-momentum tensor appears to involve only the
anomalous coefficient b. This coefficient, given explicitly in
Eq. (21) for the case of one-species QED, is related to the truly
anomalous part of the energy-momentum tensor. Consequently,
there is no topological contribution coming from the Euler den-
sity (20) to the trace of the energy-momentum tensor (18).

Third, each of the nonvanishing components (41)–(42) con-
tains a term that depends explicitly on the gravitational poten-
tial Φ ≡ h00/2 itself, and not on its spatial gradient. From a
condensed matter theory perspective, this property is quite sur-
prising in view of the fact that the identification between the
thermal and gravitational inhomogeneities is given in terms of
their gradients (1), and not in terms of the local temperature
or the gravitational potential themselves. Notice that the TTT
anomalous contribution to the trace of the energy-momentum
tensor,〈

T µ
µ

〉
TTT
≡

〈
T 00

〉
TTT
−

3∑
i=1

〈
T ii

〉
TTT

=
16b

3

(
∂2

3Φ
)2
, (43)

depends only on the (second) derivative of the gravitational po-
tential.

The Tolman–Ehrenfest formula (3), along with Eqs. (2) and
(27), allows us to derive the gravitational potential Φ(x) mim-
icking the effect of spatially inhomogeneous temperature T (x)

Φ(x) ≡
h00(x)

2
= −

1
2

T 2(x)
T 2

0

− 1
 . (44)
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Applying a spatial gradient to both sides of Eq. (44) we recover,
as expected, the Luttinger relation (1) at leading order in the ter-
mal inhomogeneity. The “reference” temperature T0 = T (x0)
serves as a normalization factor: it fixes a spatial point x0 where
the gravitational potential vanishes, Φ(x0) = 0.

Let’s consider a fermion gas in an off-equilibrium state with
a spatially varying temperature. We assume, for simplicity, that
at a point x the spatial temperature gradient takes a nonzero
constant value, ∇T , 0, so that all the higher gradients of the
temperature are vanishing, ∇nT ≡ 0 for n > 2 (hereafter we
promote the spatial derivative to the gradient ∂3 → ∇ but we
always assume that the temperature varies along one fixed di-
rection).

We notice that for a linearly varying temperature, the con-
tribution of the TTT anomaly to the pressure (42) vanishes,
δPi ≡

〈
T ii

〉
TTT

= 0 in all directions i = 1, 2, 3. The leading-
order contribution of the TTT vertex to the energy density (41)
is, however, nonzero. It is proportional to the fourth power of
the temperature gradient,

δE ≡
〈
T 00

〉
TTT

=
4b~c

3

(
∇T
T

)4

≡
~c

240π2

(
∇T
T

)4

, (45)

where the last equation is given for one fermion flavour (21).
We have also restored missing powers of the Planck constant ~
and the velocity c of the massless relativistic particle.

The TTT vertex of the conformal anomaly action leads to
a qualitatively new effect, as it makes the pressure anisotropic
with respect to the axis of the temperature variation. For this
purpose it is convenient to introduce the pressure asymmetry,
which characterizes the difference between the pressures along
the axis of the temperature gradient and the normal respect to
the same axis

δP = P‖ − P⊥, P‖ =
〈
T 33

〉
, P⊥ =

〈
T 11

〉
+

〈
T 22

〉
2

. (46)

According to Eq. (42), the temperature inhomogeneities may
give a nonzero anomalous contribution to the pressure asym-
metry (46) of the interacting gas, provided the temperature in-
homogeneities are beyond the linear regime. Assuming that
that the second-order derivatives of temperature are non-zero,
∇2T , 0, we get, at leading order in the thermal gradient

δP =
16b

3
~c

(
∇T
T

)2 (
∇2T

T

)
≡

~c
60π2

(
∇T
T

)2 (
∇2T

T

)
, (47)

where the last result is given for one fermion flavour (21).
In order to estimate the magnitude of the contribution of the

TTT anomaly in the energy density (45) and the pressure asym-
metry (45) of the interacting fermion gas, it is worth comparing
these quantities respectively, to the thermal energy density and
to the pressure, Eth = 3Pth = 7π2T 4/60

δE
Eth

=
1
28

(
~c∇T
πT 2

)4

,
δP
Pth

=
3
7

(
∇T
πT 2

)2 (
∇2T
π2T 3

)
. (48)

In a solid-state environment, the conformal anomaly may
be studied in the context of the Dirac semimetals, where the

massless particles could be realized, for example, as fermionic
quasiparticles at low energies. These excitations propagate
with a Fermi velocity which is much smaller than the speed
of light, vF ≈ c/300 (for semimetals, one should therefore re-
place c → vF in all the appropriate places). To estimate the
effectiveness of the TTT anomaly (48), one may take the pres-
sure gradient of one Kelvin per millimeter, ∇T = 1.K/mm, of
a Dirac semimetal kept at the ambient temperature T = 10 K.
Then we get from Eq. (48) an unobservable tiny energy con-
tribution: δE/Eth ∼ 10−19. While this number may be higher
for larger temperature gradients, even taking a 1 K temperature
difference at the ends of a short 1. µm-long rod), the contribu-
tion of the conformal anomaly is still a rather small quantity:
δE/Eth ∼ 10−7. We expect the same order of magnitude, at
best, for the relative pressure anisotropy (48).

In the particle-physics context, the effect may take place in
an expanding fireball of quark-gluon plasma which is created
in a heavy-ion collision, in experiments at the LHC at CERN
or at RHIC at BNL [63]. A typical initial temperature of the
fireball is a few critical temperatures Tc ' 150 MeV. Taking
T = 2Tc ' 300 MeV and assuming a moderate temperature
gradient, ∇T = 0.1 T/ fm ' 30 MeV/fm ' 6 × 103 MeV2, one
gets from Eq. (48) very small values for the energy variation
and the pressure anisotropy: δE/Eth ∼ δP/Pth ∼ 10−8.

The pressure asymmetry (47) depends on the spatial con-
cavity/convexity of the local temperature. The pressure along
the axis of the temperature variation is larger (smaller) than the
pressure in the transverse directions provided∇2T>0 (∇2T <0),
as illustrated in Fig. 2 Despite the absence of a particularly
small pre-factor in Eq. (48), the relative pressure asymmetry
is expected to be a small number due to the high power of the
relative temperature gradients due to inhomogeneities.

Figure 2: Illustration of the anomaly-induced asymmetry (47) between the pres-
sure components in the transverse plane (P⊥) and in the longitudinal directions
(P‖) along the temperature inhomogeneities T = T (x‖) (the dimensions illus-
trate the strength of the components of the pressure and not the geometry of the
system).

One may also consider the possibility that the effect may be-
come more relevant in the astrophysical domain, in the early
Universe, where the expanding gas of hot relativistic particles
may experience large temperature gradients due to inhomo-
geneities.
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4. Conclusions

In this work we have shown that the conformal anomaly leads
to a qualitatively new effect. Specifically, the temperature inho-
mogeneity in a gas of interacting massless particles produces
a pressure anisotropy with respect to the axis of the tempera-
ture variation. The effect originates from a purely gravitational
part of the anomalous vertex given by the three-point correlator
TTT of the energy-momentum tensor. This phenomenon may
appear in several and rather different physical scenarios: 1) in
the solid-state environment of Dirac semimetals, 2) in the ex-
panding fireballs of the quark-gluon plasma and, perhaps, 3) in
the astrophysical relativistic plasmas generated in the early Uni-
verse. Although the relative pressure asymmetry is parametri-
cally very small in the environments which have been studied
so far at experimental level, the effect, nevertheless, may be
used to probe the elusive gravitational coefficient b which de-
termines the anomalous contribution of the Weyl tensor to the
trace of the energy-momentum tensor.
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