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Introduction

A physical system is defined to be scale invariant at the classical level when all the parameters of the system are dimensionless quantities. In all known physical theories, scale invariance is naturally extended to conformal invariance, and no reasonable counterexamples have been found where such an enhancement is absent [START_REF] Nakayama | Scale invariance vs conformal invariance[END_REF].

In interacting theories, classical conformal invariance may break at quantum level, thus revealing the presence of a conformal anomaly [START_REF] Duff | Observations on Conformal Anomalies[END_REF][START_REF] Duff | Twenty years of the Weyl anomaly[END_REF]. A quantum anomaly, in general, regularly leads to the emergence of an associated anomalous transport law, which describes the appearance of a particular, usually unexpected in a classical theory, charge flow under the influence of specific external conditions [START_REF] Kharzeev | Strongly interacting matter in magnetic fields': an overview[END_REF].

While the quantum anomalies were predominantly discussed in the past in the context of particle physics [START_REF] Shifman | Anomalies and Low-Energy Theorems of Quantum Chromodynamics[END_REF], nowadays anomalies are addressed in solid-state systems as well. This may offer a reliable and systematic way for the experimental studies of their phenomenological implications [START_REF] Liu | Discovery of a three-dimensional topological Dirac semimetal, Na 3 Bi[END_REF][START_REF] Liu | A stable three-dimensional topological Dirac semimetal Cd 3 As 2[END_REF][START_REF] Xu | Discovery of a Weyl fermion semimetal and topological Fermi arcs[END_REF][START_REF] Lv | Experimental discovery of Weyl semimetal TaAs[END_REF][START_REF] Xu | Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide[END_REF]. Specifically, Dirac semimetals manifest several quantum anomalies which lead to various anomaly-related transport phenomena [START_REF] Landsteiner | Anomalous transport of Weyl fermions in Weyl semimetals[END_REF].

Dirac semimetals are three dimensional crystals whose lowenergy excitations are solutions of the massless Dirac equation. Their S O(1, 3) Lorentz symmetry is naturally enhanced to a classical conformal S O(2, 4) symmetry, provided that the fermion interaction in the bulk of such materials is also translational invariant. The conformal anomaly (see [START_REF] Duff | Twenty years of the Weyl anomaly[END_REF] for an overview) in these materials reveals itself via the appearance of a logarithmic dependence of the photon polarization function on the renormalization scale [START_REF] Isobe | Theory of quantum critical phenomenon in topological insulator -(3+1)D quantum electrodynamics in solids[END_REF][START_REF] Yang | Quantum criticality of topological phase transitions in 3d interacting electronic systems[END_REF][START_REF] González | Marginal Fermi liquid versus excitonic instability in threedimensional Dirac semimetals[END_REF][START_REF] Roy | Emergent Lorentz symmetry near fermionic quantum critical points in two and three dimensions[END_REF][START_REF] Pozo | Anisotropic fixed points in Dirac and Weyl semimetals[END_REF]. For such reasons topological semimetals have attracted wide research interests [START_REF]Focus issue "Topological semimetals[END_REF][START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF].

The anomalous charge and energy flows can be described in terms of the chiral/conformal/gravitational anomaly actions, depending on the case, which play a key role in high-energy phenomenology [START_REF] Corianò | Exact Correlators from Conformal Ward Identities in Momentum Space and Perturbative Realizations[END_REF] and in heavy-ion collisions at high energy scales [START_REF] Kharzeev | Strongly interacting matter in magnetic fields': an overview[END_REF]. The axial anomaly [START_REF] Kim | Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena[END_REF][START_REF] Xiong | Evidence for the chiral anomaly in the Dirac semimetal Na 3 Bi[END_REF][START_REF] Li | Giant negative magnetoresistance induced by the chiral anomaly in individual Cd 3 As 2 nanowires[END_REF][START_REF] Zhang | Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal[END_REF] generatesvia the chiral magnetic effect [START_REF] Fukushima | The Chiral Magnetic Effect[END_REF] -an electric current parallel to the axis of a background magnetic field [START_REF] Li | Chiral magnetic effect in ZrTe 5[END_REF] which can be measured in appropriate experiments. For example, the mixed axial-gravitational anomaly [START_REF] Landsteiner | Gravitational Anomaly and Transport[END_REF] leads to a positive magnetothermoelectric conductance for collinear temperature gradients and magnetic fields [START_REF] Chernodub | Condensed matter realization of the axial magnetic effect[END_REF][START_REF] Gooth | Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP[END_REF]. Related axial-torsional anomalies can also be studied at experimental level, for generating an alternating electric current driven by sound waves in Weyl semimetals [START_REF] Ferreiros | Mixed axial-torsional anomaly in Weyl semimetals[END_REF].

It has been also suggested that the conformal anomaly may generate -via the scale magnetic effect [START_REF] Chernodub | Anomalous Transport Due to the Conformal Anomaly[END_REF] -an anomalous thermoelectric current in topological semimetals, whenever a temperature gradient is present in the material [START_REF] Chernodub | Generation of a Nernst Current from the Conformal Anomaly in Dirac and Weyl Semimetals[END_REF][START_REF] Arjona | Fingerprints of the conformal anomaly on the thermoelectric transport in Dirac and Weyl semimetals: Result from a Kubo formula[END_REF]. The conformal anomaly produces an electric current and a current density at a boundary of a conformal system, if subjected to a background electromagnetic field [START_REF] Mcavity | A DeWitt expansion of the heat kernel for manifolds with a boundary[END_REF][START_REF] Chu | Weyl Anomaly Induced Current in Boundary Quantum Field Theories[END_REF][START_REF] Chernodub | Conformal magnetic effect at the edge: a numerical study in scalar QED[END_REF]. It may provide an experimental access to the beta function associated with the running of the electric charge [START_REF] Chernodub | Direct measurement of a beta function and an indirect check of the Schwinger effect near the boundary in Dirac-Weyl semimetals[END_REF].

Certain quantum anomalies, such as conformal and mixed axial-gravitational anomalies, may reveal themselves in curved spacetimes because they involve the energy-momentum tensor and, consequently, the metric tensor. In condensed matter systems, these "gravitational" anomalies may be probed in an off-equilibrium regime using the Luttinger theory of thermal transport coefficients [START_REF] Luttinger | Theory of Thermal Transport Coefficients[END_REF][START_REF] Stone | Gravitational Anomalies and Thermal Hall effect in Topological Insulators[END_REF], which was used, for exam-ple, in studies of the thermal imprints of the axial-gravitational anomaly [START_REF] Chernodub | Condensed matter realization of the axial magnetic effect[END_REF][START_REF] Gooth | Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP[END_REF].

The basic idea is that the effect of a temperature gradient ∇T -that drives a system out of equilibrium -can be compensated, at linear order, by a non-uniform gravitational potential Φ

1 T ∇T = - 1 c 2 ∇Φ , (1) 
where c is the speed of light. For a weak gravitational field (in the Newtonian limit), the gravitational potential Φ,

g 00 = 1 + 2Φ c 2 , (2) 
is related to the g 00 component of the metric, while other components of the metric tensor are unmodified. This observation is closely related to the Tolman-Ehrenfest effect [START_REF] Tolman | On the Weight of Heat and Thermal Equilibrium in General Relativity[END_REF][START_REF] Tolman | Temperature Equilibrium in a Static Gravitational Field[END_REF], which states that in a stationary gravitational field, the local temperature of a system at thermal equilibrium is not constant in space.

The temperature depends on the spatial coordinates as

T (x) = T 0 / g 00 (x), (3) 
where T 0 is a reference temperature at a selected point with g 00 = 1. The Luttinger formula (1) may be derived from simple thermodynamic considerations (see, for example, Ref. [START_REF] Rovelli | Thermal time and Tolman-Ehrenfest effect: temperature as the speed of time[END_REF]). Consider a closed system divided arbitrarily into two subsystems, 1 and 2. A thermal equilibrium happens when the total entropy, S = S 1 + S 2 , takes its maximum, implying dS 1 + dS 2 = 0. If the quantity of heat dE leaves the first subsystem, dE 1 = -dE, it always enters the second subsystem, dE 2 = dE, because the system is closed. For any heat exchange between the subsystems, one gets therefore dS 1 /dE 1 = dS 2 /dE 2 . Given the definition of temperature, T = dS /dE, the last relation implies that in a thermal equilibrium, the temperatures of the two subsystems should be equal:

T 1 = T 2 .
In a static gravitational field Φ, the heat quantity dE possesses an inertial mass dm = dE/c 2 . In accordance with the equivalence between inertial and gravitational masses, the heat has a weight in a gravitational field. Therefore, the heat dE leaving system 1 and entering system 2 changes its energy by performing the work against the change of the gravitational potential ∆Φ = Φ 2 -Φ 1 between the two subsystems:

dE 2 = dE + (Φ 2 -Φ 1 )dm = dE 2 (1 + ∆Φ/c 2 ). Therefore, T 2 = T 1 (1 + ∆Φ/c
2 ) and we immediately recover the Luttinger relation (2) between the gradients of temperature and the gravitational potential for closely separated nonrelativistic systems. Its relativistic generalization is shown in Eq. [START_REF] Duff | Twenty years of the Weyl anomaly[END_REF].

In order to ensure the appropriate definition of temperature, the mentioned derivation of the Luttinger formula (1) requires the sufficient proximity of the two subsystems and the weakness of the gravitation field so that ∆Φ/c 2 1. The same condition is valid in the case of a slight departure from equilibrium: the variation of the gravitational field may mimic the temperature gradient.

A crucial role in the anomalous transport is played by the quantum anomalies associated with the presence of nonvanishing 3-point functions involving the fermions which are present in such materials.

We recall that in a quantum field theory of chiral fermions, the nonconservation of the fermion's axial charge is generated by the AVV vertex involving the vector current j V and the axial current j A . The divergence of the axial current j A is locally proportional to the product of electric and magnetic fields (represented by two "V" of the same vertex).

The very same AVV vertex is responsible for the chiral magnetic effect: the electric current (one vector current "V") is generated in the background of a magnetic field (another "V") and of a non-zero chiral chemical potential µ 5 (the time-like component of the remaining axial current "A"). The chiral magnetic effect is responsible for the effect of negative magnetoresistivity, which has been experimentally observed in Weyl and Dirac semimetals.

Another example in the same theory is given by the AAA diagram, with three axial-vector currents (A), which is also responsible for the non-conservation of the axial charge in the background of an axial-vector gauge field. As is well known, axial-vector interactions, obviously, act on left-and right-handed particles with different strengths. It is however surprising that the same interaction emerges in a material.

Indeed, the AAA vertex is responsible for a variant of the chiral magnetic effect which generates the axial current in the background of the axial magnetic field at nonzero chiral chemical potential. Therefore, although such chiral effects are exotic properties of the fundamental interactions in the high energy physics domain, they may readily appear in effective theories of strained Weyl semimetals.

The AAA vertex is responsible, in particular, for the generation of a new unidirectional excitation, the chiral sound wave, for which has been recently proposed a possible experimental detection [START_REF] Chernodub | Chiral sound waves in strained Weyl semimetals[END_REF].

In this work we are going to discuss new anomalous transport phenomena associated with the presence of another type of anomaly, the conformal/trace anomaly [START_REF] Duff | Twenty years of the Weyl anomaly[END_REF]. In short, the conformal anomaly implies sensitivity of certain physical phenomena on the energy scale of the interactions, in an originally scaleindependent classical theory. The corresponding anomalous vertex is described by the 3-point function T VV , where "T " stands for the energy-momentum tensor T µν .

As we are going to elaborate in more detail below, the trace of the energy-momentum tensor is a nonvanishing quantity in the classical electromagnetic background (represented by the two "V" in the diagram). For a classically conformal invariant theory the trace of the energy-momentum tensor is zero and induces an ordinary Ward identity on the TVV vertex, which is proportional to 2-point functions of vector currents (VV).

In the quantum case this relation gets modified by the inclusion of an extra contribution given by the trace anomaly. The origin of such extra term can be traced back to an effective massless interaction in the form of an anomaly pole [START_REF] Armillis | Conformal Anomalies and the Gravitational Effective Action: The TJJ Correlator for a Dirac Fermion[END_REF][START_REF] Giannotti | The Trace Anomaly and Massless Scalar Degrees of Freedom in Gravity[END_REF], which in perturbation theory can be shown to be directly related to renormalization [START_REF] Corianò | Renormalization, Conformal Ward Identities and the Origin of a Conformal Anomaly Pole[END_REF]. This phenomenon unifies chiral and conformal anomalies, as exemplified in the context of the supersymmetric anomaly supermultiplet in N = 1 Yang-Mills theories [START_REF] Corianò | Superconformal sum rules and the spectral density flow of the composite dilaton (ADD) multiplet in N = 1 theories[END_REF].

The anomalous 3-point function T VV diagram may also lead to anomalous transport effects. For example, the scale magnetic effect implies that in a gravitational potential (the "T "), the background magnetic field (one of the V's) generates an electric current (the remaining V) which is normal both to the gravitational and to the magnetic field. It has been suggested that such scale magnetic effect may generate Nernst thermoelectric phenomena in Dirac semimetals.

The T VV diagram also generates the scale electric effect, which leads to the appearance of the Ohmic conductivity of the fermionic vacuum in the expanding (de Sitter) spacetime, and is indirectly related to the Schwinger effect. This phenomenon is discussed in the cosmological context in Refs. [START_REF] Kobayashi | Schwinger Effect in 4D de Sitter Space and Constraints on Magnetogenesis in the Early Universe[END_REF][START_REF] Hayashinaka | Fermionic Schwinger effect and induced current in de Sitter space[END_REF]. Interestingly, for theories with a positive beta function (such as QED, for example), the anomalous Ohmic conductivity is a negative quantity.

In our paper we continue our investigations of the impact of the conformal anomaly on the transport and equation-of-state properties of a system of massless fermions. After a brief summary of the effects generated by the T VV diagram, we proceed with the investigation of the anomalous effects associated with the 3-point vertex T T T .

The Conformal anomaly in QED

The flat-space case

We consider the case of Quantum Electrodynamics (QED) with a massless Dirac fermion ψ coupled to an electromagnetic field A µ . This simplest theory exhibits a variety of anomalous effects which are encountered also in more complex theories, including those that describe topological, Dirac semimetals. A discussion of the 1PI (1-particle irreducible) conformal anomaly action in this model can be found in [START_REF] Armillis | Conformal Anomalies and the Gravitational Effective Action: The TJJ Correlator for a Dirac Fermion[END_REF] while the connection between the structure of such action, the process of renormalization, and the generation of a massless nonlocal interaction (an anomaly pole) which is the key signature of the conformal anomaly, has been discussed in [START_REF] Armillis | Anomaly Poles as Common Signatures of Chiral and Conformal Anomalies[END_REF] and, more recently, in [START_REF] Corianò | Renormalization, Conformal Ward Identities and the Origin of a Conformal Anomaly Pole[END_REF]. Below we will discuss the structure of such anomaly poles starting from the nonlocal Riegert action [START_REF] Riegert | A Nonlocal Action for the Trace Anomaly[END_REF], which provides an equivalent description of such exchanges, as shown for the T VV and T T T correlators [START_REF] Corianò | The general 3-graviton vertex (T T T ) of conformal field theories in momentum space in d = 4[END_REF][START_REF] Corianò | Exact Correlators from Conformal Ward Identities in Momentum Space and the Perturbative T JJ Vertex[END_REF]. The latter (TTT) will play a key role in our current analysis.

The Lagrangian of massless QED with a single fermion,

L = - 1 4 F µν F µν + ψi / Dψ , (4) 
involves the field strength tensor

F µν = ∂ µ A ν -∂ ν A µ of the gauge field A µ coupled to the Dirac four spinor ψ with D µ = ∂ µ + ieA µ .
We consider first the model in a flat Minkowski spacetime with the metric

η µν = diag(+1, -1, -1, -1), (5) 
and then proceed to study the effects of a curved spacetime. At the classical level, massless QED is characterized by a global U(1) L × U(1) R ≡ U(1) V × U(1) A chiral symmetry. It leads to conservation of the chiral currents,

j L/R = 1 2 ψγ µ (1 ± γ 5 )ψ, ∂ • j L/R = 0, (6) 
with the left Q L and right chiral charges Q R , respectively:

Q L = d 3 x j 0 L (x, t) Q R = d 3 x j 0 R (x, t). (7) 
At a quantum level, the ordinary gauge invariance U(1) V is an unbroken symmetry. It leads to a zero divergency of the vector current and to the conservation of the vector (electric) charge:

j µ V ≡ j µ R + j µ L = ψγ µ ψ, ∂ • j V = 0, Q = d 3 x j 0 V (x, t). ( 8 
)
The axial symmetry U A (1) is broken by quantum fluctuations signaling the existence of a quantum anomaly. The axial charge is not conserved at quantum level. In a flat spacetime, the axial current

j µ A ≡ j µ R -j µ L = ψγ µ γ 5 ψ, (9) 
possesses a nonzero divergence in a classical electromagnetic background:

∂ µ j µ A = e 2 8π 2 F µν F µν ≡ e 2 2π 2 E • B, (10) 
where E and B are electric and magnetic fields, respectively, and

F µν = (1/2) µναβ F αβ . A similar breaking is induced on the dilatation current j D (x) = x α T µ α ∂ • j D = T µ µ (11) 
which at quantum level is promoted to the form

∂ • j D = T µ µ ( 12 
)
and is associated to the emergence of a nonzero β(e) function of the running coupling in the quantum theory. Since this symmetry plays a central role in our analysis, we will discuss it here in more details.

The QED Lagrangian (4) describes a conformally invariant field theory as its action S = d 4 x L is invariant under a simultaneous rescaling of all coordinates and fields according to their canonical dimensions:

x → λ -1 x , A µ → λA µ , ψ → λ 3/2 ψ , (13) 
where λ is a real-valued parameter. Scale invariance ( 13) is a natural outcome of the simple fact that the classical theory (4) does not possess any characteristic mass or length scale. As a consequence, the energy-momentum tensor of the model (4),

T µν = -F µα F ν α + 1 4 η µν F αβ F αβ (14) 
+ i 2 ψ (γ µ D ν + γ ν D µ ) ψ -η µν ψi / Dψ ,
is a traceless quantity on a classical level, (T µ µ ) cl ≡ 0. However, at quantum level, scale invariance ( 13) is broken by the quantum corrections which induce a running of the electric charge e = e(µ) on the renormalization energy scale µ. In other words, the electric charge of a particle gets partially screened by quantum fluctuations. As the effectiveness of the screening depends on the distance (energy) at which the charge is probed, the effective electric charge becomes a distance-(energy-)dependent quantity. Therefore, the theory looses its conformal invariance due to effects induced by quantum fluctuations and interactions.

The loss of scale invariance in the quantum theory (13) manifests by a nonzero value of the beta-function associated with the running of the electric charge e

β(e) = de d ln µ . ( 15 
)
This dimensionless quantity parameterizes the breaking of conformal invariance of the model. Due to the conformal anomaly, the expectation value of the trace of the energy-momentum tensor ( 14) acquires a nonzero expectation value [5]

T α α (x) = β(e) 2e F µν (x)F µν (x) ≡ β(e) 2e B 2 -E 2 , ( 16 
)
where E and B are electric and magnetic fields of the classical electromagnetic background.

In QED with only one flavour of Dirac fermions (4), the oneloop QED beta function takes the form

β 1loop QED = e 3 12π 2 . ( 17 
)
2.2. The anomaly in a curved background in the QED case

Anomaly action

In a nontrivial spacetime background, the expectation value of the trace of the energy-momentum tensor acquires, in addition to the gauge contribution generated by the matter-related part (16) (i.e. the fermion loop), two contributions coming from the gravity side

T µ µ = bC 2 + b H + c M F µν F µν . (18) 
In general, the coefficients (b, b , c M ) are related to the number of massless scalars, fermions and spin-1 fields which may appear in the anomaly loops and are specific of a certain (classical) conformal field theory (CFT) in its Lagrangian realization. For non-Lagrangian realizations, i.e. for general conformal field theories, they are classified as "conformal data", which characterize a certain specific CFT. The first term is given by the Weyl tensor squared

C 2 = C µναβ C µναβ ≡ R µναβ R µναβ -2R µν R µν + R 2 /3, (19) 
which is expressed via the Riemann tensor R µναβ , the Ricci tensor R µν = R α µαν , and the scalar curvature R = R µ µ . The second term in Eq. ( 18) is given by the linear combination H = E -2 R/3, which involves the Euler (topological) density

E = * R µναβ * R µναβ ≡ R µναβ R µναβ -4R µν R µν + R 2 , (20) 
and the d'Alembertian differential operator ≡ ∇ µ ∇ µ of the scalar curvature R expressed via the covariant derivative ∇ µ . Here * R µναβ = µνµ ν R µ ν αβ /2 is a dual of the Riemann tensor.

In massless QED (4) the coefficients b, b and c in the trace expectation value [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF] are, respectively, as follows

b = 1 320π 2 , b = - 11 11520π 2 , c M = - e 2 24π 2 . (21)
The "matter" parameter c M is proportional to the one-loop QED beta function [START_REF]Focus issue "Topological semimetals[END_REF]: c M = -β 1loop QED /(2e). The trace anomaly [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF] reduces to Eq. ( 16) in a flat Minkowski spacetime [START_REF] Shifman | Anomalies and Low-Energy Theorems of Quantum Chromodynamics[END_REF].

The anomalous trace of the energy-momentum tensor ( 18) is known to be generated by the nonlocal action [START_REF] Armillis | Conformal Anomalies and the Gravitational Effective Action: The TJJ Correlator for a Dirac Fermion[END_REF][START_REF] Riegert | A Nonlocal Action for the Trace Anomaly[END_REF][START_REF] Mazur | Weyl cohomology and the effective action for conformal anomalies[END_REF][START_REF] Mottola | Macroscopic Effects of the Quantum Trace Anomaly[END_REF]]

S anom [g, A] = 1 8 d 4 x -g(x) d 4 y -g(y) (22) 
•H(x)G (4) (x, y) 2bC 2 (y)

+ b H(y) + 2cF µν (y)F µν (y) ,
where G (4) (x, y) is the Green function the fourth-order differential operator, often called the Paneitz operator [START_REF] Stephen | A Quartic Conformally Covariant Differential Operator for Arbitrary Pseudo-Riemannian Manifolds (Summary)[END_REF]:

∆ 4 = ∇ µ ∇ µ ∇ ν + 2R µν - 2 3 Rg µν ∇ ν . (23) 
A variation of the action ( 22) with respect to metric,

T µ µ ≡ - 2g µν √ -g δS anom δg µν , (24) 
provides us, indeed, with the correct expression for the oneloop trace anomaly in the curved spacetime [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF]. The anomaly action ( 22) is a nonlocal function of the gauge field A µ and the metric g µν . The nonlocality indicates that the scale anomaly is associated with a massless pole.

Scale electromagnetic effects

The anomaly action ( 22) is induced by quantum fluctuations in the background of the classical electromagnetic field F µν and in the presence of a background curved metric associated with an external gravitational field. It describes the response of the matter system under such off-shell external fields.

Anomaly actions are not unique. For instance, it is possible to write down local actions containing extra degrees of freedom, which describe the breaking of the conformal symmetry with the inclusion of a Goldstone mode (a dilaton) in the low energy spectrum. Such local variants, usually derived using the Noether method [START_REF] Corianò | Higher Order Dilaton Interactions in the Nearly Conformal Limit of the Standard Model[END_REF][START_REF] Corianò | The dilaton Wess-Zumino action in six dimensions from Weyl gauging: local anomalies and trace relations[END_REF] are expected to provide two complementary descriptions of the dynamical breaking of the conformal symmetry at two ends (UV/IR) of a renormalization group flow (see the discussion in [START_REF] Corianò | Exact Correlators from Conformal Ward Identities in Momentum Space and Perturbative Realizations[END_REF] and in [START_REF] Corianò | Renormalization, Conformal Ward Identities and the Origin of a Conformal Anomaly Pole[END_REF]).

Since the action contains the explicit dependence on the field strength F µν , the anomalous quantum fluctuations may carry a local electric current. The electric current, induced by the quantum fluctuations, can straightforwardly be computed using a variation of the anomaly action [START_REF] Li | Giant negative magnetoresistance induced by the chiral anomaly in individual Cd 3 As 2 nanowires[END_REF] with respect to the electromagnetic field A µ

J µ (x) = - 1 -g(x) δS anom δA µ (x) = - c M -g(x) ∂ ∂x ν -g(x) F µν (x) (25) 
• d 4 y -g(y)G (4) (x, y) E(y) -

2 3 R(y) ,
where the Euler topological density E = E(x) is explicitly given in Eq. [START_REF] Kim | Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena[END_REF]. The parameter c is proportional to the QED beta function given in Eq. ( 21) for a single flavour. Equation [START_REF] Li | Chiral magnetic effect in ZrTe 5[END_REF] provides us with the one-loop expression for the anomalous electric current induced by the conformal anomaly in an arbitrary classical gravitational background. Similarly to the action, the electric current ( 25) is a non-local function of the metric and of the electromagnetic field [START_REF] Li | Giant negative magnetoresistance induced by the chiral anomaly in individual Cd 3 As 2 nanowires[END_REF].

Working in a linear-response approach, we consider the case of a weak gravitational background. To this end it is convenient to rewrite the electromagnetic part of the anomaly action [START_REF] Li | Giant negative magnetoresistance induced by the chiral anomaly in individual Cd 3 As 2 nanowires[END_REF],

S (1) anom = - c M 6 d 4 x -g(x) d 4 y -g(y) •R (1) (x) -1 x,y F αβ (y)F αβ (y) , (26) 
in terms a small perturbation (|h µν | 1) around the flat metric,

g µν = η µν + h µν . (27) 
The same expression of the anomaly action can be obtained by a perturbative analysis in QED [START_REF] Armillis | Conformal Anomalies and the Gravitational Effective Action: The TJJ Correlator for a Dirac Fermion[END_REF][START_REF] Giannotti | The Trace Anomaly and Massless Scalar Degrees of Freedom in Gravity[END_REF]. In Eq. ( 26) the expression -1

x,y denotes a Green function of the flat-space d'Alembertian ≡ ∂ µ ∂ µ and R (1) is the leading (linear in metric) double-derivative term of the Ricci scalar:

R (1) = ∂ µ ∂ ν h µν -η µν 0 h µν . ( 28 
)
The indices are raised/lowered with the background metric tensor, h µν = η µα η νβ h αβ . In linearized gravity the inverse metric tensor is g µν = η µνh µν , so that g µα g αν = δ µ ν + O(h 2 ). The conformal anomaly [START_REF] Pozo | Anisotropic fixed points in Dirac and Weyl semimetals[END_REF] leads to anomalous transport effects which most straightforwardly reveal themselves in a conformally flat spacetime metric

g µν (x) = e 2τ(x) η µν , (29) 
where τ(x) is a scalar conformal factor which vanishes at spatial infinity and η µν is the Minkowski metric tensor [START_REF] Shifman | Anomalies and Low-Energy Theorems of Quantum Chromodynamics[END_REF]. For a weak perturbation, |τ| 1, one has h µν = 2τη µν so that R (1) = 6 τ and the leading contribution to the anomaly action [START_REF] Landsteiner | Gravitational Anomaly and Transport[END_REF] reduces to the local expression:

S (1),conf anom = e 2 24π 2 d 4 x τ(x) F αβ (x)F αβ (x) . ( 30 
)
Hereafter we use the parameter c M for one-flavor QED [START_REF] Xiong | Evidence for the chiral anomaly in the Dirac semimetal Na 3 Bi[END_REF]. A variation of the action [START_REF] Chernodub | Anomalous Transport Due to the Conformal Anomaly[END_REF] with respect to the electromagnetic field A µ ,

J µ (x) = - 1 -g(x)
δS (1) anom

δA µ (x) , (31) 
generates the anomalous electric current via the scale magnetic effect (SME) [START_REF] Chernodub | Anomalous Transport Due to the Conformal Anomaly[END_REF] 

J = 2β(e) e ∇τ(x) × B(x) . ( 32 
)
In the presence of the electric field background E the conformal anomaly leads to the scale electric effect (SEE) which takes the form Ohm's law with the metric-dependent anomalous electric conductivity σ

J = σ(x)E(x) , σ(t, x) = - 2β(e) e ∂τ(t, x) ∂t . ( 33 
)
The T VV vertex could also lead to the Nernst effect, which generates an electric current normal to the temperature gradient and to the axis of the background magnetic field [START_REF] Chernodub | Generation of a Nernst Current from the Conformal Anomaly in Dirac and Weyl Semimetals[END_REF]. The derivation follows the same steps shown above with just a few extra subtleties. Instead of the conformal factor ( 29) one uses the gravitational potential associated with the temperature gradient ( 1) and ( 2). The Nernst coefficient, originating from the conformal anomaly, is proportional to the QED beta function ( 17), as expected.

The TTT vertex

The anomalous contribution to the T T T vertex, shown in Fig. 1, emerges naturally from the anomaly action ( 22) by functional differentiation. Contrary to the T VV vertex, the diagram responsible for the T T T vertex does not depend on the running electric charge e. As we will show below, the vertex carries information about the purely gravitational coupling b, which depends only on the number of fermion flavours. The value of b for massless QED with a single Dirac fermion is given in Eq. ( 21).

The T T T vertex in momentum space can be derived in CFT by solving the conformal Ward identities using a specific procedure, starting from the transverse traceless sector of such correlator, which can be simplified by mapping the general solution [START_REF] Bzowski | Implications of Conformal Invariance in Momentum Space[END_REF][START_REF] Bzowski | Renormalised 3-point functions of stress tensors and conserved currents in CFT[END_REF][START_REF] Bzowski | Renormalised CFT 3-point functions of scalars, currents and stress tensors[END_REF] to free field theory [START_REF] Corianò | The general 3-graviton vertex (T T T ) of conformal field theories in momentum space in d = 4[END_REF][START_REF] Corianò | TTT in CFT: Trace Identities and the Conformal Anomaly Effective Action[END_REF].

Building on our previous experience with the chiral magnetic and scale electromagnetic effects, we take one of the T µν tensors entering the T T T vertex as an external probe, while the other two T 's are to be considered as external perturbations present in the environment. Specifically, we assume that the system is in a slightly off-equilibrium state with a constant temperature gradient in one of the directions. We will use the Luttinger identification (1) to relate the variation of the g 00 component of the metric (2) with the temperature gradient ∇T .

The T T T vertex appears naturally at second order in the perturbative expansion of the effective action with respect to the metric's variations h µν

T µ 1 ν 1 (x 1 ) T T T = 1 8 dx 2 dx 3 T µ 1 ν 1 (x 1 )T µ 2 ν 2 (x 2 )T µ 3 ν 3 (x 3 ) h µ 2 ν 2 (x 2 ) h µ 3 ν 3 (x 3 ). (34) 
The anomalous part of the three-point diagram T T T in Eq. ( 34) can be found in a straightforward way from the anomaly action [START_REF] Li | Giant negative magnetoresistance induced by the chiral anomaly in individual Cd 3 As 2 nanowires[END_REF]. To this end we vary the action three times respect to the metric and then take the flat spacetime limit. Ignoring the local terms, the anomaly action up to third order in the metric variation h µν is given by S (3) anom [g] = -

1 6 d 4 xd 4 x R (1) x 1 0 xx B (2) 
x

+ b 9 d 4 xd 4 x d 4 x ∂ µ R (1) x 1 0 xx (35) 
• H (1),µν

x 1 0 x x ∂ ν R (1)
x , where we denoted, for brevity

H (1),µν x = R (1)µν - 1 3 η µν R (1) x , B (2) 
x = b (C 2 x ) (2) + b E (2) x .

The latter combination contains terms bilinear in h µν for, respectively, the Weyl tensor squared [START_REF] Corianò | Exact Correlators from Conformal Ward Identities in Momentum Space and Perturbative Realizations[END_REF] and the Euler density [START_REF] Kim | Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena[END_REF]. The linear perturbations of the Riemann and Ricci tensors, as well as the scalar curvature, are taken as

R (1) αµβν = 1 2 ∂ µ ∂ β h αν -∂ α ∂ β h µν -∂ µ ∂ ν h αβ + ∂ ν ∂ α h µβ , (36) 
R (1) µν = 1 2 ∂ µ ∂ α h αν -0 h µν -η αβ ∂ µ ∂ ν h αβ + ∂ ν ∂ α h µα , (37) 
R (1) = (∂ µ ∂ ν -η µν 0 ) h µν . (38) 
Notice that Eq. ( 35) may be used to calculate the three-point correlator T T T provided all points are distinct from each other, x i x j , ∀ i j. Then all the contact terms vanish, giving

i 2 T {T µ 1 ν 1 (x 1 )T µ 2 ν 2 (x 2 )T µ 3 ν 3 (x 3 )} (39) = 8 g(x 1 ) g(x 2 ) g(x 3 ) δ 3 S [g] δg µ 1 ν 1 (x 1 )δg µ 2 ν 2 (x 2 )δg µ 3 ν 3 (x 3 ) ,
where T is the time-ordered product of energy-momentum tensors in the background g µν . With several rearrangements, the action (35) becomes

S (3) anom [g] = - 1 6 d 4 xd 4 x ∂ µ ∂ ν h µν x 1 0 xx B (2) 
x

+ d 4 x 1 6 h(x)B (2) x + b 9 ∂ µ h x H (1),µν x (∂ ν h) x - 2b 9 d 4 xd 4 x ∂ α ∂ β ∂ µ h αβ x 1 0 xx H (1),µν x (∂ ν h) x + b 9 d 4 xd 4 x d 4 x ∂ α ∂ β ∂ µ h αβ x 1 0 xx H (1),µν x • 1 0 x x ∂ ρ ∂ σ ∂ ν h ρσ x . (40) 
At leading order, the anomalous contribution to the expectation value of the energy-momentum tensor (34) can be read off from the functional [START_REF] Tolman | Temperature Equilibrium in a Static Gravitational Field[END_REF]. However, even with these simplifications, the explicit expression of the vertex (34) is still very lengthy. Fortunately, for our purposes, we need only certain components of the T T T diagram.

We consider the system in a slightly off-equilibrium regime with a small temperature variation along a certain (third, in our case) direction. We use the Luttinger identification (1) to relate the time-independent temperature gradient to the gradient of the gravitational potential Φ. Then, the perturbation of the metric tensor is nonzero only for the h 00 ≡ 2Φ component, which, in addition, depends only on one spatial variable, h 00 (x) ≡ h 00 (x 3 ). We find from Eqs. ( 40) and ( 34) that the anomalous part of the T T T vertex contributes to the expectation value for the energymomentum tensor as

T 00 T T T = 4b 9 3 ∂ 2 3 Φ 2 + 4 ∂ 3 Φ ∂ 3 3 Φ + 2Φ∂ 4 3 Φ , (41) 
T 11 T T T = T 22 T T T = 4b 9 2 ∂ 3 Φ ∂ 3 3 Φ + Φ∂ 4 3 Φ . ( 42 
)
Other components, including the energy flow T 0i and the momentum flow T i j , with i, j = 1, 2, 3, are all equal to zero. Notice that the contribution to the pressure along the gravitational gradient is also vanishing, P 3 ≡ T 33 = 0. There are some remarkable properties of Eqs. ( 41)-( 42) which we need to comment upon. First, these expressions are local functions of the gravitational potential Φ ≡ h 00 /2, despite the fact that they have been derived from the non-local anomaly action.

Second, one can readily observe that the expectation value of the energy-momentum tensor appears to involve only the anomalous coefficient b. This coefficient, given explicitly in Eq. [START_REF] Xiong | Evidence for the chiral anomaly in the Dirac semimetal Na 3 Bi[END_REF] for the case of one-species QED, is related to the truly anomalous part of the energy-momentum tensor. Consequently, there is no topological contribution coming from the Euler density [START_REF] Kim | Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena[END_REF] to the trace of the energy-momentum tensor [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF].

Third, each of the nonvanishing components ( 41)-( 42) contains a term that depends explicitly on the gravitational potential Φ ≡ h 00 /2 itself, and not on its spatial gradient. From a condensed matter theory perspective, this property is quite surprising in view of the fact that the identification between the thermal and gravitational inhomogeneities is given in terms of their gradients (1), and not in terms of the local temperature or the gravitational potential themselves. Notice that the T T T anomalous contribution to the trace of the energy-momentum tensor,

T µ µ T T T ≡ T 00 T T T - 3 i=1 T ii T T T = 16b 3 ∂ 2 3 Φ 2 , ( 43 
)
depends only on the (second) derivative of the gravitational potential. The Tolman-Ehrenfest formula (3), along with Eqs. ( 2) and ( 27), allows us to derive the gravitational potential Φ(x) mimicking the effect of spatially inhomogeneous temperature T (x)

Φ(x) ≡ h 00 (x) 2 = - 1 2       T 2 (x) T 2 0 -1       . ( 44 
)
Applying a spatial gradient to both sides of Eq. ( 44) we recover, as expected, the Luttinger relation (1) at leading order in the termal inhomogeneity. The "reference" temperature T 0 = T (x 0 ) serves as a normalization factor: it fixes a spatial point x 0 where the gravitational potential vanishes, Φ(x 0 ) = 0. Let's consider a fermion gas in an off-equilibrium state with a spatially varying temperature. We assume, for simplicity, that at a point x the spatial temperature gradient takes a nonzero constant value, ∇T 0, so that all the higher gradients of the temperature are vanishing, ∇ n T ≡ 0 for n 2 (hereafter we promote the spatial derivative to the gradient ∂ 3 → ∇ but we always assume that the temperature varies along one fixed direction).

We notice that for a linearly varying temperature, the contribution of the T T T anomaly to the pressure (42) vanishes, δP i ≡ T ii T T T = 0 in all directions i = 1, 2, 3. The leadingorder contribution of the T T T vertex to the energy density ( 41) is, however, nonzero. It is proportional to the fourth power of the temperature gradient,

δE ≡ T 00 T T T = 4b c 3 ∇T T 4 ≡ c 240π 2 ∇T T 4 , (45) 
where the last equation is given for one fermion flavour [START_REF] Xiong | Evidence for the chiral anomaly in the Dirac semimetal Na 3 Bi[END_REF].

We have also restored missing powers of the Planck constant and the velocity c of the massless relativistic particle. The T T T vertex of the conformal anomaly action leads to a qualitatively new effect, as it makes the pressure anisotropic with respect to the axis of the temperature variation. For this purpose it is convenient to introduce the pressure asymmetry, which characterizes the difference between the pressures along the axis of the temperature gradient and the normal respect to the same axis δP = P -P ⊥ , P = T 33 , P ⊥ =

T 11 + T 22 2 . (46) 
According to Eq. ( 42), the temperature inhomogeneities may give a nonzero anomalous contribution to the pressure asymmetry (46) of the interacting gas, provided the temperature inhomogeneities are beyond the linear regime. Assuming that that the second-order derivatives of temperature are non-zero, ∇ 2 T 0, we get, at leading order in the thermal gradient

δP = 16b 3 c ∇T T 2 ∇ 2 T T ≡ c 60π 2 ∇T T 2 ∇ 2 T T , (47) 
where the last result is given for one fermion flavour [START_REF] Xiong | Evidence for the chiral anomaly in the Dirac semimetal Na 3 Bi[END_REF].

In order to estimate the magnitude of the contribution of the T T T anomaly in the energy density [START_REF] Corianò | Renormalization, Conformal Ward Identities and the Origin of a Conformal Anomaly Pole[END_REF] and the pressure asymmetry (45) of the interacting fermion gas, it is worth comparing these quantities respectively, to the thermal energy density and to the pressure,

E th = 3P th = 7π 2 T 4 /60 δE E th = 1 28 c∇T πT 2 4 , δP P th = 3 7 ∇T πT 2 2 ∇ 2 T π 2 T 3 . ( 48 
)
In a solid-state environment, the conformal anomaly may be studied in the context of the Dirac semimetals, where the massless particles could be realized, for example, as fermionic quasiparticles at low energies. These excitations propagate with a Fermi velocity which is much smaller than the speed of light, v F ≈ c/300 (for semimetals, one should therefore replace c → v F in all the appropriate places). To estimate the effectiveness of the T T T anomaly [START_REF] Hayashinaka | Fermionic Schwinger effect and induced current in de Sitter space[END_REF], one may take the pressure gradient of one Kelvin per millimeter, ∇T = 1. K/mm, of a Dirac semimetal kept at the ambient temperature T = 10 K. Then we get from Eq. ( 48) an unobservable tiny energy contribution: δE/E th ∼ 10 -19 . While this number may be higher for larger temperature gradients, even taking a 1 K temperature difference at the ends of a short 1. µm-long rod), the contribution of the conformal anomaly is still a rather small quantity: δE/E th ∼ 10 -7 . We expect the same order of magnitude, at best, for the relative pressure anisotropy [START_REF] Hayashinaka | Fermionic Schwinger effect and induced current in de Sitter space[END_REF].

In the particle-physics context, the effect may take place in an expanding fireball of quark-gluon plasma which is created in a heavy-ion collision, in experiments at the LHC at CERN or at RHIC at BNL [START_REF] Busza | Heavy Ion Collisions: The Big Picture, and the Big Questions[END_REF]. A typical initial temperature of the fireball is a few critical temperatures T c 150 MeV. Taking T = 2T c 300 MeV and assuming a moderate temperature gradient, ∇T = 0.1 T/ fm 30 MeV/fm 6 × 10 3 MeV 2 , one gets from Eq. ( 48) very small values for the energy variation and the pressure anisotropy: δE/E th ∼ δP/P th ∼ 10 -8 .

The pressure asymmetry (47) depends on the spatial concavity/convexity of the local temperature. The pressure along the axis of the temperature variation is larger (smaller) than the pressure in the transverse directions provided ∇ 2 T >0 (∇ 2 T <0), as illustrated in Fig. 2 Despite the absence of a particularly small pre-factor in Eq. ( 48), the relative pressure asymmetry is expected to be a small number due to the high power of the relative temperature gradients due to inhomogeneities. One may also consider the possibility that the effect may become more relevant in the astrophysical domain, in the early Universe, where the expanding gas of hot relativistic particles may experience large temperature gradients due to inhomogeneities.

Conclusions

In this work we have shown that the conformal anomaly leads to a qualitatively new effect. Specifically, the temperature inhomogeneity in a gas of interacting massless particles produces a pressure anisotropy with respect to the axis of the temperature variation. The effect originates from a purely gravitational part of the anomalous vertex given by the three-point correlator T T T of the energy-momentum tensor. This phenomenon may appear in several and rather different physical scenarios: 1) in the solid-state environment of Dirac semimetals, 2) in the expanding fireballs of the quark-gluon plasma and, perhaps, 3) in the astrophysical relativistic plasmas generated in the early Universe. Although the relative pressure asymmetry is parametrically very small in the environments which have been studied so far at experimental level, the effect, nevertheless, may be used to probe the elusive gravitational coefficient b which determines the anomalous contribution of the Weyl tensor to the trace of the energy-momentum tensor.
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 11 Figure 1: The 1PI diagram for the TTT vertex (39).
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 2 Figure 2: Illustration of the anomaly-induced asymmetry (47) between the pressure components in the transverse plane (P ⊥ ) and in the longitudinal directions (P ) along the temperature inhomogeneities T = T (x ) (the dimensions illustrate the strength of the components of the pressure and not the geometry of the system).
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